old-cross-binutils/sim/common/sim-fpu.c

806 lines
16 KiB
C
Raw Normal View History

/* This is a software floating point library which can be used instead of
the floating point routines in libgcc1.c for targets without hardware
floating point. */
/* Copyright (C) 1994,1997 Free Software Foundation, Inc.
This file is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.
In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file with other programs, and to distribute
those programs without any restriction coming from the use of this
file. (The General Public License restrictions do apply in other
respects; for example, they cover modification of the file, and
distribution when not linked into another program.)
This file is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
/* As a special exception, if you link this library with other files,
some of which are compiled with GCC, to produce an executable,
this library does not by itself cause the resulting executable
to be covered by the GNU General Public License.
This exception does not however invalidate any other reasons why
the executable file might be covered by the GNU General Public License. */
/* This implements IEEE 754 format arithmetic, but does not provide a
mechanism for setting the rounding mode, or for generating or handling
exceptions.
The original code by Steve Chamberlain, hacked by Mark Eichin and Jim
Wilson, all of Cygnus Support. */
#ifndef SIM_FPU_C
#define SIM_FPU_C
#include "sim-main.h"
#include "sim-fpu.h"
#include "sim-assert.h"
#include <math.h>
/* Floating point number is <SIGN:1><EXP:EXPBITS><FRAC:FRACBITS> */
#define SP_NGARDS 7L
#define SP_GARDROUND 0x3f
#define SP_GARDMASK ((unsigned) 0x7f)
#define SP_GARDMSB ((unsigned) 0x40)
#define SP_EXPBITS 8
#define SP_EXPBIAS 127
#define SP_FRACBITS 23
#define SP_EXPMAX ((unsigned) 0xff)
#define SP_QUIET_NAN 0x100000L
#define SP_FRAC_NBITS 32
#define SP_FRACHIGH 0x80000000L
#define SP_FRACHIGH2 0xc0000000L
#define DP_NGARDS 8L
#define DP_GARDROUND 0x7f
#define DP_GARDMASK ((unsigned) 0xff)
#define DP_GARDMSB ((unsigned) 0x80)
#define DP_EXPBITS 11
#define DP_EXPBIAS 1023
#define DP_FRACBITS 52
#define DP_EXPMAX ((unsigned) 0x7ff)
#define DP_QUIET_NAN MSBIT64 (12) /* 0x0008000000000000LL */
#define DP_FRAC_NBITS 64
#define DP_FRACHIGH MSMASK64 (1) /* 0x8000000000000000LL */
#define DP_FRACHIGH2 MSMASK64 (2) /* 0xc000000000000000LL */
#define EXPMAX (is_double ? DP_EXPMAX : SP_EXPMAX)
#define EXPBITS (is_double ? DP_EXPBITS : SP_EXPBITS)
#define EXPBIAS (is_double ? DP_EXPBIAS : SP_EXPBIAS)
#define FRACBITS (is_double ? DP_FRACBITS : SP_FRACBITS)
#define NGARDS (is_double ? DP_NGARDS : (SP_NGARDS ))
#define SIGNBIT ((unsigned64)1 << (EXPBITS + FRACBITS))
#define FRAC_NBITS (is_double ? DP_FRAC_NBITS : SP_FRAC_NBITS)
#define GARDMASK (is_double ? DP_GARDMASK : SP_GARDMASK)
#define GARDMSB (is_double ? DP_GARDMSB : SP_GARDMSB)
#define GARDROUND (is_double ? DP_GARDROUND : SP_GARDROUND)
/* F_D_BITOFF is the number of bits offset between the MSB of the mantissa
of a float and of a double. Assumes there are only two float types.
(double::FRAC_BITS+double::NGARGS-(float::FRAC_BITS-float::NGARDS))
*/
#define F_D_BITOFF (is_double ? 0 : (52+8-(23+7)))
#if 0
#define (is_double ? DP_ : SP_)
#endif
#define NORMAL_EXPMIN (-(EXPBIAS)+1)
#define IMPLICIT_1 ((unsigned64)1 << (FRACBITS+NGARDS))
#define IMPLICIT_2 ((unsigned64)1 << (FRACBITS+1+NGARDS))
#define MAX_SI_INT (is_double ? LSMASK64 (63) : LSMASK64 (31))
#define MAX_USI_INT (is_double ? LSMASK64 (64) : LSMASK64 (32))
typedef enum
{
sim_fpu_class_snan,
sim_fpu_class_qnan,
sim_fpu_class_zero,
sim_fpu_class_number,
sim_fpu_class_infinity,
} sim_fpu_class;
typedef struct _sim_ufpu {
sim_fpu_class class;
int normal_exp;
int sign;
unsigned64 fraction;
union {
double d;
unsigned64 i;
} val;
} sim_ufpu;
STATIC_INLINE_SIM_FPU (unsigned64)
pack_fpu (const sim_ufpu *src, int is_double)
{
unsigned64 fraction;
unsigned64 exp;
int sign;
switch (src->class)
{
default:
/* create a NaN */
case sim_fpu_class_qnan:
case sim_fpu_class_snan:
sign = 1; /* fixme - always a qNaN */
exp = EXPMAX;
fraction = src->fraction;
break;
case sim_fpu_class_infinity:
sign = src->sign;
exp = EXPMAX;
fraction = 0;
break;
case sim_fpu_class_zero:
sign = src->sign;
exp = 0;
fraction = 0;
break;
case sim_fpu_class_number:
if (src->normal_exp < NORMAL_EXPMIN)
{
/* This number's exponent is too low to fit into the bits
available in the number, so we'll store 0 in the exponent and
shift the fraction to the right to make up for it. */
int shift = NORMAL_EXPMIN - src->normal_exp;
sign = src->sign;
exp = 0;
if (shift > (FRAC_NBITS - NGARDS))
{
/* No point shifting, since it's more that 64 out. */
fraction = 0;
}
else
{
/* Shift by the value */
fraction = src->fraction >> F_D_BITOFF;
fraction >>= shift;
fraction >>= NGARDS;
}
}
else if (src->normal_exp > EXPBIAS)
{
/* Infinity */
sign = src->sign;
exp = EXPMAX;
fraction = 0;
}
else
{
sign = src->sign;
exp = (src->normal_exp + EXPBIAS);
fraction = src->fraction >> F_D_BITOFF;
/* IF the gard bits are the all zero, but the first, then we're
half way between two numbers, choose the one which makes the
lsb of the answer 0. */
if ((fraction & GARDMASK) == GARDMSB)
{
if (fraction & (1 << NGARDS))
fraction += GARDROUND + 1;
}
else
{
/* Add a one to the guards to round up */
fraction += GARDROUND;
}
if (fraction >= IMPLICIT_2)
{
fraction >>= 1;
exp += 1;
}
fraction >>= NGARDS;
}
}
return ((sign ? SIGNBIT : 0)
| (exp << FRACBITS)
| LSMASKED64 (fraction, FRACBITS));
}
STATIC_INLINE_SIM_FPU (void)
unpack_fpu (sim_ufpu *dst, unsigned64 s, int is_double)
{
unsigned64 fraction = LSMASKED64 (s, FRACBITS);
unsigned exp = LSMASKED64 (s >> FRACBITS, EXPBITS);
dst->sign = (s & SIGNBIT) != 0;
if (exp == 0)
{
/* Hmm. Looks like 0 */
if (fraction == 0)
{
/* tastes like zero */
dst->class = sim_fpu_class_zero;
}
else
{
/* Zero exponent with non zero fraction - it's denormalized,
so there isn't a leading implicit one - we'll shift it so
it gets one. */
dst->normal_exp = exp - EXPBIAS + 1;
fraction <<= NGARDS;
dst->class = sim_fpu_class_number;
while (fraction < IMPLICIT_1)
{
fraction <<= 1;
dst->normal_exp--;
}
dst->fraction = fraction << F_D_BITOFF;
}
}
else if (exp == EXPMAX)
{
/* Huge exponent*/
if (fraction == 0)
{
/* Attached to a zero fraction - means infinity */
dst->class = sim_fpu_class_infinity;
}
else
{
/* Non zero fraction, means nan */
if (dst->sign)
{
dst->class = sim_fpu_class_snan;
}
else
{
dst->class = sim_fpu_class_qnan;
}
/* Keep the fraction part as the nan number */
dst->fraction = fraction << F_D_BITOFF;
}
}
else
{
/* Nothing strange about this number */
dst->normal_exp = exp - EXPBIAS;
dst->class = sim_fpu_class_number;
dst->fraction = ((fraction << NGARDS) | IMPLICIT_1) << F_D_BITOFF;
}
/* sanity checks */
dst->val.i = -1;
dst->val.i = pack_fpu (dst, 1);
{
if (is_double)
{
ASSERT (dst->val.i == s);
}
else
{
unsigned32 val = pack_fpu (dst, 0);
unsigned32 org = s;
ASSERT (val == org);
}
}
}
STATIC_INLINE_SIM_FPU (sim_fpu)
ufpu2fpu (const sim_ufpu *d)
{
sim_fpu ans;
ans.val.i = pack_fpu (d, 1);
return ans;
}
STATIC_INLINE_SIM_FPU (sim_ufpu)
fpu2ufpu (const sim_fpu *d)
{
sim_ufpu ans;
unpack_fpu (&ans, d->val.i, 1);
return ans;
}
#if 0
STATIC_INLINE_SIM_FPU (int)
is_ufpu_number (const sim_ufpu *d)
{
switch (d->class)
{
case sim_fpu_class_zero:
case sim_fpu_class_number:
return 1;
default:
return 0;
}
}
#endif
STATIC_INLINE_SIM_FPU (int)
is_ufpu_nan (const sim_ufpu *d)
{
switch (d->class)
{
case sim_fpu_class_qnan:
case sim_fpu_class_snan:
return 1;
default:
return 0;
}
}
STATIC_INLINE_SIM_FPU (int)
is_ufpu_zero (const sim_ufpu *d)
{
switch (d->class)
{
case sim_fpu_class_zero:
return 1;
default:
return 0;
}
}
STATIC_INLINE_SIM_FPU (int)
is_ufpu_inf (const sim_ufpu *d)
{
switch (d->class)
{
case sim_fpu_class_infinity:
return 1;
default:
return 0;
}
}
STATIC_INLINE_SIM_FPU (sim_fpu)
fpu_nan (void)
{
sim_ufpu tmp;
tmp.class = sim_fpu_class_snan;
tmp.fraction = 0;
tmp.sign = 1;
tmp.normal_exp = 0;
return ufpu2fpu (&tmp);
}
STATIC_INLINE_SIM_FPU (signed64)
fpu2i (sim_fpu s, int is_double)
{
sim_ufpu a = fpu2ufpu (&s);
unsigned64 tmp;
if (is_ufpu_zero (&a))
return 0;
if (is_ufpu_nan (&a))
return 0;
/* get reasonable MAX_SI_INT... */
if (is_ufpu_inf (&a))
return a.sign ? MAX_SI_INT : (-MAX_SI_INT)-1;
/* it is a number, but a small one */
if (a.normal_exp < 0)
return 0;
if (a.normal_exp > (FRAC_NBITS - 2))
return a.sign ? (-MAX_SI_INT)-1 : MAX_SI_INT;
if (a.normal_exp > (FRACBITS + NGARDS + F_D_BITOFF))
tmp = (a.fraction << (a.normal_exp - (FRACBITS + NGARDS)));
else
tmp = (a.fraction >> ((FRACBITS + NGARDS + F_D_BITOFF) - a.normal_exp));
return a.sign ? (-tmp) : (tmp);
}
STATIC_INLINE_SIM_FPU (unsigned64)
fpu2u (sim_fpu s, int is_double)
{
sim_ufpu a = fpu2ufpu (&s);
unsigned64 tmp;
if (is_ufpu_zero (&a))
return 0;
if (is_ufpu_nan (&a))
return 0;
/* get reasonable MAX_USI_INT... */
if (is_ufpu_inf (&a))
return a.sign ? MAX_USI_INT : 0;
/* it is a negative number */
if (a.sign)
return 0;
/* it is a number, but a small one */
if (a.normal_exp < 0)
return 0;
if (a.normal_exp > (FRAC_NBITS - 1))
return MAX_USI_INT;
if (a.normal_exp > (FRACBITS + NGARDS + F_D_BITOFF))
tmp = (a.fraction << (a.normal_exp - (FRACBITS + NGARDS + F_D_BITOFF)));
else
tmp = (a.fraction >> ((FRACBITS + NGARDS + F_D_BITOFF) - a.normal_exp));
return tmp;
}
1997-05-15 02:22:37 +00:00
/* register <-> sim_fpu */
INLINE_SIM_FPU (sim_fpu)
sim_fpu_32to (unsigned32 s)
{
sim_ufpu tmp;
unpack_fpu (&tmp, s, 0);
return ufpu2fpu (&tmp);
1997-05-15 02:22:37 +00:00
}
INLINE_SIM_FPU (sim_fpu)
sim_fpu_64to (unsigned64 s)
{
sim_fpu ans;
ans.val.i = s;
1997-05-15 02:22:37 +00:00
return ans;
}
INLINE_SIM_FPU (unsigned32)
sim_fpu_to32 (sim_fpu l)
{
/* convert to single safely */
sim_ufpu tmp = fpu2ufpu (&l);
return pack_fpu (&tmp, 0);
1997-05-15 02:22:37 +00:00
}
INLINE_SIM_FPU (unsigned64)
sim_fpu_to64 (sim_fpu s)
{
return s.val.i;
1997-05-15 02:22:37 +00:00
}
/* Arithmetic ops */
INLINE_SIM_FPU (sim_fpu)
sim_fpu_add (sim_fpu l,
sim_fpu r)
{
sim_fpu ans;
ans.val.d = l.val.d + r.val.d;
return ans;
}
INLINE_SIM_FPU (sim_fpu)
sim_fpu_sub (sim_fpu l,
sim_fpu r)
{
sim_fpu ans;
ans.val.d = l.val.d - r.val.d;
return ans;
}
INLINE_SIM_FPU (sim_fpu)
sim_fpu_mul (sim_fpu l,
sim_fpu r)
{
sim_fpu ans;
ans.val.d = l.val.d * r.val.d;
return ans;
}
INLINE_SIM_FPU (sim_fpu)
sim_fpu_div (sim_fpu l,
sim_fpu r)
{
const int is_double = 1;
sim_ufpu a = fpu2ufpu (&l);
sim_ufpu b = fpu2ufpu (&r);
unsigned64 bit;
unsigned64 numerator;
unsigned64 denominator;
unsigned64 quotient;
if (is_ufpu_nan (&a))
{
return ufpu2fpu (&a);
}
if (is_ufpu_nan (&b))
{
return ufpu2fpu (&b);
}
if (is_ufpu_inf (&a) || is_ufpu_zero (&a))
{
if (a.class == b.class)
return fpu_nan ();
return l;
}
a.sign = a.sign ^ b.sign;
if (is_ufpu_inf (&b))
{
a.fraction = 0;
a.normal_exp = 0;
return ufpu2fpu (&a);
}
if (is_ufpu_zero (&b))
{
a.class = sim_fpu_class_infinity;
return ufpu2fpu (&a);
}
/* Calculate the mantissa by multiplying both 64bit numbers to get a
128 bit number */
{
/* quotient =
( numerator / denominator) * 2^(numerator exponent - denominator exponent)
*/
a.normal_exp = a.normal_exp - b.normal_exp;
numerator = a.fraction;
denominator = b.fraction;
if (numerator < denominator)
{
/* Fraction will be less than 1.0 */
numerator *= 2;
a.normal_exp--;
}
bit = IMPLICIT_1;
quotient = 0;
/* ??? Does divide one bit at a time. Optimize. */
while (bit)
{
if (numerator >= denominator)
{
quotient |= bit;
numerator -= denominator;
}
bit >>= 1;
numerator *= 2;
}
if ((quotient & GARDMASK) == GARDMSB)
{
if (quotient & (1 << NGARDS))
{
/* half way, so round to even */
quotient += GARDROUND + 1;
}
else if (numerator)
{
/* but we really weren't half way, more bits exist */
quotient += GARDROUND + 1;
}
}
a.fraction = quotient;
return ufpu2fpu (&a);
}
}
INLINE_SIM_FPU (sim_fpu)
sim_fpu_inv (sim_fpu r)
{
sim_fpu ans;
ans.val.d = 1 / r.val.d;
return ans;
}
INLINE_SIM_FPU (sim_fpu)
sim_fpu_sqrt (sim_fpu r)
{
sim_fpu ans;
ans.val.d = sqrt (r.val.d);
return ans;
}
1997-05-15 02:22:37 +00:00
/* int/long -> sim_fpu */
INLINE_SIM_FPU (sim_fpu)
1997-05-15 02:22:37 +00:00
sim_fpu_i32to (signed32 s)
{
sim_fpu ans;
ans.val.d = s;
return ans;
}
INLINE_SIM_FPU (signed32)
sim_fpu_to32i (sim_fpu s)
{
return fpu2i (s, 0);
}
INLINE_SIM_FPU (sim_fpu)
1997-05-15 02:22:37 +00:00
sim_fpu_u32to (unsigned32 s)
{
sim_fpu ans;
ans.val.d = s;
return ans;
}
INLINE_SIM_FPU (unsigned32)
sim_fpu_to32u (sim_fpu s)
{
return fpu2u (s, 0);
}
1997-05-15 02:22:37 +00:00
INLINE_SIM_FPU (sim_fpu)
sim_fpu_i64to (signed64 s)
{
1997-05-15 02:22:37 +00:00
sim_fpu ans;
ans.val.d = s;
1997-05-15 02:22:37 +00:00
return ans;
}
INLINE_SIM_FPU (signed64)
sim_fpu_to64i (sim_fpu s)
{
return fpu2i (s, 1);
}
1997-05-15 02:22:37 +00:00
INLINE_SIM_FPU (sim_fpu)
sim_fpu_u64to (unsigned64 s)
{
1997-05-15 02:22:37 +00:00
sim_fpu ans;
ans.val.d = s;
1997-05-15 02:22:37 +00:00
return ans;
}
INLINE_SIM_FPU (unsigned64)
sim_fpu_to64u (sim_fpu s)
{
return fpu2u (s, 1);
}
1997-05-15 02:22:37 +00:00
/* sim_fpu -> host format */
INLINE_SIM_FPU (float)
sim_fpu_2f (sim_fpu f)
{
return f.val.d;
}
INLINE_SIM_FPU (double)
sim_fpu_2d (sim_fpu s)
{
return s.val.d;
}
INLINE_SIM_FPU (sim_fpu)
sim_fpu_f2 (float f)
{
sim_fpu ans;
ans.val.d = f;
return ans;
}
INLINE_SIM_FPU (sim_fpu)
sim_fpu_d2 (double d)
{
sim_fpu ans;
ans.val.d = d;
return ans;
}
1997-05-15 02:22:37 +00:00
1997-05-15 02:22:37 +00:00
/* General */
INLINE_SIM_FPU (int)
sim_fpu_is_nan (sim_fpu d)
{
sim_ufpu tmp = fpu2ufpu (&d);
return is_ufpu_nan (&tmp);
}
1997-05-15 02:22:37 +00:00
/* Compare operators */
INLINE_SIM_FPU (int)
1997-05-15 02:22:37 +00:00
sim_fpu_is_lt (sim_fpu l,
sim_fpu r)
{
sim_ufpu tl = fpu2ufpu (&l);
sim_ufpu tr = fpu2ufpu (&r);
if (!is_ufpu_nan (&tl) && !is_ufpu_nan (&tr))
return (l.val.d < r.val.d);
else
return 0;
1997-05-15 02:22:37 +00:00
}
INLINE_SIM_FPU (int)
sim_fpu_is_le (sim_fpu l,
sim_fpu r)
{
sim_ufpu tl = fpu2ufpu (&l);
sim_ufpu tr = fpu2ufpu (&r);
if (!is_ufpu_nan (&tl) && !is_ufpu_nan (&tr))
return (l.val.d <= r.val.d);
else
return 0;
1997-05-15 02:22:37 +00:00
}
INLINE_SIM_FPU (int)
sim_fpu_is_eq (sim_fpu l,
sim_fpu r)
{
sim_ufpu tl = fpu2ufpu (&l);
sim_ufpu tr = fpu2ufpu (&r);
if (!is_ufpu_nan (&tl) && !is_ufpu_nan (&tr))
return (l.val.d == r.val.d);
else
return 0;
1997-05-15 02:22:37 +00:00
}
INLINE_SIM_FPU (int)
sim_fpu_is_ne (sim_fpu l,
sim_fpu r)
{
sim_ufpu tl = fpu2ufpu (&l);
sim_ufpu tr = fpu2ufpu (&r);
if (!is_ufpu_nan (&tl) && !is_ufpu_nan (&tr))
return (l.val.d != r.val.d);
else
return 0;
1997-05-15 02:22:37 +00:00
}
INLINE_SIM_FPU (int)
sim_fpu_is_ge (sim_fpu l,
sim_fpu r)
{
sim_ufpu tl = fpu2ufpu (&l);
sim_ufpu tr = fpu2ufpu (&r);
if (!is_ufpu_nan (&tl) && !is_ufpu_nan (&tr))
return (l.val.d >= r.val.d);
else
return 0;
1997-05-15 02:22:37 +00:00
}
INLINE_SIM_FPU (int)
sim_fpu_is_gt (sim_fpu l,
sim_fpu r)
{
sim_ufpu tl = fpu2ufpu (&l);
sim_ufpu tr = fpu2ufpu (&r);
if (!is_ufpu_nan (&tl) && !is_ufpu_nan (&tr))
return (l.val.d > r.val.d);
else
return 0;
}
#endif