old-cross-binutils/gdb/gdbarch.sh

2119 lines
66 KiB
Bash
Raw Normal View History

2000-08-11 02:55:38 +00:00
#!/bin/sh -u
1999-08-31 01:14:27 +00:00
# Architecture commands for GDB, the GNU debugger.
# Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
1999-08-31 01:14:27 +00:00
#
# This file is part of GDB.
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
2000-03-30 05:32:23 +00:00
compare_new ()
{
file=$1
2000-08-11 02:55:38 +00:00
if test ! -r ${file}
2000-03-30 05:32:23 +00:00
then
echo "${file} missing? cp new-${file} ${file}" 1>&2
elif diff -c ${file} new-${file}
then
echo "${file} unchanged" 1>&2
else
echo "${file} has changed? cp new-${file} ${file}" 1>&2
fi
}
# Format of the input table
read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
do_read ()
{
comment=""
class=""
while read line
do
if test "${line}" = ""
then
continue
elif test "${line}" = "#" -a "${comment}" = ""
then
continue
elif expr "${line}" : "#" > /dev/null
then
comment="${comment}
${line}"
else
# The semantics of IFS varies between different SH's. Some
# treat ``::' as three fields while some treat it as just too.
# Work around this by eliminating ``::'' ....
line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
OFS="${IFS}" ; IFS="[:]"
eval read ${read} <<EOF
${line}
EOF
IFS="${OFS}"
# .... and then going back through each field and strip out those
# that ended up with just that space character.
for r in ${read}
do
if eval test \"\${${r}}\" = \"\ \"
then
eval ${r}=""
fi
done
test "${staticdefault}" || staticdefault=0
# NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
# multi-arch defaults.
# test "${predefault}" || predefault=0
test "${fmt}" || fmt="%ld"
test "${print}" || print="(long) ${macro}"
case "${invalid_p}" in
0 ) valid_p=1 ;;
"" )
if [ "${predefault}" ]
then
#invalid_p="gdbarch->${function} == ${predefault}"
valid_p="gdbarch->${function} != ${predefault}"
else
#invalid_p="gdbarch->${function} == 0"
valid_p="gdbarch->${function} != 0"
fi
;;
* ) valid_p="!(${invalid_p})"
esac
# PREDEFAULT is a valid fallback definition of MEMBER when
# multi-arch is not enabled. This ensures that the
# default value, when multi-arch is the same as the
# default value when not multi-arch. POSTDEFAULT is
# always a valid definition of MEMBER as this again
# ensures consistency.
if [ "${postdefault}" != "" ]
then
fallbackdefault="${postdefault}"
elif [ "${predefault}" != "" ]
then
fallbackdefault="${predefault}"
else
fallbackdefault=""
fi
#NOT YET: See gdbarch.log for basic verification of
# database
break
fi
done
if [ "${class}" ]
then
true
else
false
fi
}
1999-08-31 01:14:27 +00:00
fallback_default_p ()
{
[ "${postdefault}" != "" -a "${invalid_p}" != "0" ] \
|| [ "${predefault}" != "" -a "${invalid_p}" = "0" ]
}
class_is_variable_p ()
{
case "${class}" in
*v* | *V* ) true ;;
* ) false ;;
esac
}
class_is_function_p ()
{
case "${class}" in
*f* | *F* | *m* | *M* ) true ;;
* ) false ;;
esac
}
class_is_multiarch_p ()
{
case "${class}" in
*m* | *M* ) true ;;
* ) false ;;
esac
}
class_is_predicate_p ()
{
case "${class}" in
*F* | *V* | *M* ) true ;;
* ) false ;;
esac
}
class_is_info_p ()
{
case "${class}" in
*i* ) true ;;
* ) false ;;
esac
}
1999-09-13 21:40:00 +00:00
# dump out/verify the doco
for field in ${read}
do
case ${field} in
class ) : ;;
1999-12-14 01:06:04 +00:00
# # -> line disable
# f -> function
# hiding a function
# F -> function + predicate
# hiding a function + predicate to test function validity
# v -> variable
# hiding a variable
# V -> variable + predicate
# hiding a variable + predicate to test variables validity
# i -> set from info
# hiding something from the ``struct info'' object
# m -> multi-arch function
# hiding a multi-arch function (parameterised with the architecture)
# M -> multi-arch function + predicate
# hiding a multi-arch function + predicate to test function validity
1999-09-13 21:40:00 +00:00
level ) : ;;
# See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
# LEVEL is a predicate on checking that a given method is
# initialized (using INVALID_P).
1999-09-13 21:40:00 +00:00
macro ) : ;;
# The name of the MACRO that this method is to be accessed by.
1999-09-13 21:40:00 +00:00
returntype ) : ;;
# For functions, the return type; for variables, the data type
1999-09-13 21:40:00 +00:00
function ) : ;;
# For functions, the member function name; for variables, the
# variable name. Member function names are always prefixed with
# ``gdbarch_'' for name-space purity.
1999-09-13 21:40:00 +00:00
formal ) : ;;
# The formal argument list. It is assumed that the formal
# argument list includes the actual name of each list element.
# A function with no arguments shall have ``void'' as the
# formal argument list.
1999-09-13 21:40:00 +00:00
actual ) : ;;
# The list of actual arguments. The arguments specified shall
# match the FORMAL list given above. Functions with out
# arguments leave this blank.
1999-09-13 21:40:00 +00:00
attrib ) : ;;
# Any GCC attributes that should be attached to the function
# declaration. At present this field is unused.
1999-09-13 21:40:00 +00:00
staticdefault ) : ;;
# To help with the GDB startup a static gdbarch object is
# created. STATICDEFAULT is the value to insert into that
# static gdbarch object. Since this a static object only
# simple expressions can be used.
1999-09-13 21:40:00 +00:00
# If STATICDEFAULT is empty, zero is used.
predefault ) : ;;
1999-09-13 21:40:00 +00:00
# A initial value to assign to MEMBER of the freshly
# malloc()ed gdbarch object. After the gdbarch object has
# been initialized using PREDEFAULT, it is passed to the
# target code for further updates.
1999-09-13 21:40:00 +00:00
# If PREDEFAULT is empty, zero is used.
# When POSTDEFAULT is empty, a non-empty PREDEFAULT and a zero
# INVALID_P will be used as default values when when
# multi-arch is disabled. Specify a zero PREDEFAULT function
# to make that fallback call internal_error().
# Variable declarations can refer to ``gdbarch'' which will
# contain the current architecture. Care should be taken.
postdefault ) : ;;
# A value to assign to MEMBER of the new gdbarch object should
# the target code fail to change the PREDEFAULT value. Also
# use POSTDEFAULT as the fallback value for the non-
# multi-arch case.
# If POSTDEFAULT is empty, no post update is performed.
# If both INVALID_P and POSTDEFAULT are non-empty then
# INVALID_P will be used to determine if MEMBER should be
# changed to POSTDEFAULT.
# You cannot specify both a zero INVALID_P and a POSTDEFAULT.
# Variable declarations can refer to ``gdbarch'' which will
# contain the current architecture. Care should be taken.
1999-09-13 21:40:00 +00:00
1999-12-14 01:06:04 +00:00
invalid_p ) : ;;
1999-09-13 21:40:00 +00:00
# A predicate equation that validates MEMBER. Non-zero is
# returned if the code creating the new architecture failed to
# initialize MEMBER or the initialized the member is invalid.
# If POSTDEFAULT is non-empty then MEMBER will be updated to
# that value. If POSTDEFAULT is empty then internal_error()
# is called.
# If INVALID_P is empty, a check that MEMBER is no longer
# equal to PREDEFAULT is used.
# The expression ``0'' disables the INVALID_P check making
# PREDEFAULT a legitimate value.
# See also PREDEFAULT and POSTDEFAULT.
1999-09-13 21:40:00 +00:00
fmt ) : ;;
# printf style format string that can be used to print out the
# MEMBER. Sometimes "%s" is useful. For functions, this is
# ignored and the function address is printed.
# If FMT is empty, ``%ld'' is used.
1999-09-13 21:40:00 +00:00
print ) : ;;
# An optional equation that casts MEMBER to a value suitable
# for formatting by FMT.
# If PRINT is empty, ``(long)'' is used.
1999-09-13 21:40:00 +00:00
print_p ) : ;;
# An optional indicator for any predicte to wrap around the
# print member code.
# () -> Call a custom function to do the dump.
# exp -> Wrap print up in ``if (${print_p}) ...
# ``'' -> No predicate
1999-09-13 21:40:00 +00:00
# If PRINT_P is empty, ``1'' is always used.
1999-09-13 21:40:00 +00:00
description ) : ;;
# Currently unused.
1999-09-13 21:40:00 +00:00
*) exit 1;;
esac
done
1999-08-31 01:14:27 +00:00
function_list ()
{
1999-09-13 21:40:00 +00:00
# See below (DOCO) for description of each field
cat <<EOF
i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
1999-08-31 01:14:27 +00:00
#
i:2:TARGET_BYTE_ORDER:int:byte_order::::BIG_ENDIAN
2000-08-11 02:55:38 +00:00
# Number of bits in a char or unsigned char for the target machine.
# Just like CHAR_BIT in <limits.h> but describes the target machine.
# v::TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
#
# Number of bits in a short or unsigned short for the target machine.
v::TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
# Number of bits in an int or unsigned int for the target machine.
v::TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
# Number of bits in a long or unsigned long for the target machine.
v::TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
# Number of bits in a long long or unsigned long long for the target
# machine.
v::TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
# Number of bits in a float for the target machine.
v::TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
# Number of bits in a double for the target machine.
v::TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
# Number of bits in a long double for the target machine.
v::TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):2*TARGET_DOUBLE_BIT::0
# For most targets, a pointer on the target and its representation as an
# address in GDB have the same size and "look the same". For such a
# target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
# / addr_bit will be set from it.
#
# If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
# also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
#
# ptr_bit is the size of a pointer on the target
2000-08-11 02:55:38 +00:00
v::TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
# addr_bit is the size of a target address as represented in gdb
v::TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
2000-08-11 02:55:38 +00:00
# Number of bits in a BFD_VMA for the target object file format.
v::TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
1999-08-31 01:14:27 +00:00
#
v::IEEE_FLOAT:int:ieee_float::::0:0::0:::
1999-08-31 01:14:27 +00:00
#
f::TARGET_READ_PC:CORE_ADDR:read_pc:int pid:pid::0:generic_target_read_pc::0
f::TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, int pid:val, pid::0:generic_target_write_pc::0
f::TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
f::TARGET_WRITE_FP:void:write_fp:CORE_ADDR val:val::0:generic_target_write_fp::0
f::TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
f::TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
2000-08-11 02:55:38 +00:00
#
1999-08-31 01:14:27 +00:00
v:2:NUM_REGS:int:num_regs::::0:-1
# This macro gives the number of pseudo-registers that live in the
# register namespace but do not get fetched or stored on the target.
# These pseudo-registers may be aliases for other registers,
# combinations of other registers, or they may be computed by GDB.
v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
1999-08-31 01:14:27 +00:00
v:2:SP_REGNUM:int:sp_regnum::::0:-1
v:2:FP_REGNUM:int:fp_regnum::::0:-1
v:2:PC_REGNUM:int:pc_regnum::::0:-1
v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
v:2:NNPC_REGNUM:int:nnpc_regnum::::0:-1::0
# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
# Provide a default mapping from a ecoff register number to a gdb REGNUM.
f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
# Provide a default mapping from a DWARF register number to a gdb REGNUM.
f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
# Convert from an sdb register number to an internal gdb register number.
# This should be defined in tm.h, if REGISTER_NAMES is not set up
# to map one to one onto the sdb register numbers.
f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
f:2:REGISTER_NAME:char *:register_name:int regnr:regnr:::legacy_register_name::0
1999-08-31 01:14:27 +00:00
v:2:REGISTER_SIZE:int:register_size::::0:-1
v:2:REGISTER_BYTES:int:register_bytes::::0:-1
f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::0:0
f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::0:0
v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::0:0
v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
f:2:DO_REGISTERS_INFO:void:do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs:::do_registers_info::0
# MAP a GDB RAW register number onto a simulator register number. See
# also include/...-sim.h.
f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::default_register_sim_regno::0
2000-12-15 12:33:08 +00:00
F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
1999-08-31 01:14:27 +00:00
#
v:1:USE_GENERIC_DUMMY_FRAMES:int:use_generic_dummy_frames::::0:-1
v:2:CALL_DUMMY_LOCATION:int:call_dummy_location::::0:0
f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1:::0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
1999-08-31 01:14:27 +00:00
v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::CALL_DUMMY_LOCATION == BEFORE_TEXT_END || CALL_DUMMY_LOCATION == AFTER_TEXT_END
1999-08-31 01:14:27 +00:00
f:2:PC_IN_CALL_DUMMY:int:pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::0:0
v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
1999-08-31 01:14:27 +00:00
#
v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
v:2:BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
f:2:COERCE_FLOAT_TO_DOUBLE:int:coerce_float_to_double:struct type *formal, struct type *actual:formal, actual:::default_coerce_float_to_double::0
1999-08-31 01:14:27 +00:00
f:1:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval::generic_get_saved_register:0
#
f:1:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
# This function is called when the value of a pseudo-register needs to
# be updated. Typically it will be defined on a per-architecture
# basis.
f:2:FETCH_PSEUDO_REGISTER:void:fetch_pseudo_register:int regnum:regnum:::0::0
# This function is called when the value of a pseudo-register needs to
# be set or stored. Typically it will be defined on a
# per-architecture basis.
f:2:STORE_PSEUDO_REGISTER:void:store_pseudo_register:int regnum:regnum:::0::0
1999-08-31 01:14:27 +00:00
#
f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, void *buf:type, buf:::unsigned_pointer_to_address::0
f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
* gdbarch.sh (POINTER_TO_ADDRESS, ADDRESS_TO_POINTER): Two new functions which architectures can redefine, defaulting to generic_pointer_to_address and generic_address_to_pointer. * findvar.c (extract_typed_address, store_typed_address, generic_pointer_to_address, generic_address_to_pointer): New functions. (POINTER_TO_ADDRESS, ADDRESS_TO_POINTER): Provide default definitions. (extract_address, store_address): Doc fixes. * values.c (value_as_pointer): Doc fix. (value_from_pointer): New function. * defs.h (extract_typed_address, store_typed_address): New declarations. * inferior.h (generic_address_to_pointer, generic_pointer_to_address): New declarations. * value.h (value_from_pointer): New declaration. * ax-gdb.c (const_var_ref): Use value_from_pointer, not value_from_longest. * blockframe.c (generic_push_dummy_frame): Use read_pc and read_sp, not read_register. * c-valprint.c (c_val_print): Use extract_typed_address instead of extract_address to extract vtable entries and references. * cp-valprint.c (cp_print_value_fields): Use value_from_pointer instead of value_from_longest to extract the vtable's address. * eval.c (evaluate_subexp_standard): Use value_from_pointer instead of value_from_longest to compute `this', and for doing pointer-to-member dereferencing. * findvar.c (read_register): Use extract_unsigned_integer, not extract_address. (read_var_value): Use store_typed_address instead of store_address for building label values. (locate_var_value): Use value_from_pointer instead of value_from_longest. * hppa-tdep.c (find_stub_with_shl_get): Use value_from_pointer, instead of value_from_longest, to build arguments to __d_shl_get. * printcmd.c (set_next_address): Use value_from_pointer, not value_from_longest. (x_command): Use value_from_pointer, not value_from_longest. * tracepoint.c (set_traceframe_context): Use value_from_pointer, not value_from_longest. * valarith.c (value_add, value_sub): Use value_from_pointer, not value_from_longest. * valops.c (find_function_in_inferior, value_coerce_array, value_coerce_function, value_addr, hand_function_call): Same. * value.h (COERCE_REF): Use unpack_pointer, not unpack_long. * values.c (unpack_long): Use extract_typed_address to produce addresses from pointers and references, not extract_address. (value_from_longest): Use store_typed_address instead of store_address to produce pointer and reference values.
2000-04-14 18:43:41 +00:00
#
f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
1999-08-31 01:14:27 +00:00
f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf::0:0
f:1:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr::0:0
f:2:PUSH_DUMMY_FRAME:void:push_dummy_frame:void:-:::0
f:1:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
f:2:POP_FRAME:void:pop_frame:void:-:::0
1999-08-31 01:14:27 +00:00
#
# I wish that these would just go away....
f:2:D10V_MAKE_DADDR:CORE_ADDR:d10v_make_daddr:CORE_ADDR x:x:::0::0
f:2:D10V_MAKE_IADDR:CORE_ADDR:d10v_make_iaddr:CORE_ADDR x:x:::0::0
f:2:D10V_DADDR_P:int:d10v_daddr_p:CORE_ADDR x:x:::0::0
f:2:D10V_IADDR_P:int:d10v_iaddr_p:CORE_ADDR x:x:::0::0
f:2:D10V_CONVERT_DADDR_TO_RAW:CORE_ADDR:d10v_convert_daddr_to_raw:CORE_ADDR x:x:::0::0
f:2:D10V_CONVERT_IADDR_TO_RAW:CORE_ADDR:d10v_convert_iaddr_to_raw:CORE_ADDR x:x:::0::0
1999-08-31 01:14:27 +00:00
#
f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, char *valbuf:type, valbuf:::0
f:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:char *regbuf:regbuf:::0
f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::0
1999-08-31 01:14:27 +00:00
#
f:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame::0:0
f:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
1999-08-31 01:14:27 +00:00
#
f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
1999-08-31 01:14:27 +00:00
f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
f:2:BREAKPOINT_FROM_PC:unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
1999-08-31 01:14:27 +00:00
v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
#
f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
1999-08-31 01:14:27 +00:00
#
v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
1999-08-31 01:14:27 +00:00
f:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
f:1:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe::0:0
f:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:0
f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:0
f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
#
F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
v:1:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
v:2:PARM_BOUNDARY:int:parm_boundary
#
v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)
v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)
v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::&floatformat_unknown
f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::default_convert_from_func_ptr_addr::0
1999-08-31 01:14:27 +00:00
EOF
}
#
# The .log file
#
exec > new-gdbarch.log
function_list | while do_read
do
cat <<EOF
1999-08-31 01:14:27 +00:00
${class} ${macro}(${actual})
${returntype} ${function} ($formal)${attrib}
EOF
for r in ${read}
do
eval echo \"\ \ \ \ ${r}=\${${r}}\"
done
# #fallbackdefault=${fallbackdefault}
# #valid_p=${valid_p}
#EOF
if class_is_predicate_p && fallback_default_p
then
2000-08-11 02:55:38 +00:00
echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
kill $$
exit 1
fi
if [ "${invalid_p}" = "0" -a "${postdefault}" != "" ]
then
echo "Error: postdefault is useless when invalid_p=0" 1>&2
kill $$
exit 1
fi
echo ""
done
exec 1>&2
compare_new gdbarch.log
1999-08-31 01:14:27 +00:00
copyright ()
{
cat <<EOF
2000-03-30 05:32:23 +00:00
/* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
1999-08-31 01:14:27 +00:00
/* Dynamic architecture support for GDB, the GNU debugger.
Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
1999-08-31 01:14:27 +00:00
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* This file was created with the aid of \`\`gdbarch.sh''.
The Bourne shell script \`\`gdbarch.sh'' creates the files
1999-08-31 01:14:27 +00:00
\`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
against the existing \`\`gdbarch.[hc]''. Any differences found
being reported.
If editing this file, please also run gdbarch.sh and merge any
changes into that script. Conversely, when making sweeping changes
1999-08-31 01:14:27 +00:00
to this file, modifying gdbarch.sh and using its output may prove
easier. */
EOF
}
#
# The .h file
#
exec > new-gdbarch.h
copyright
cat <<EOF
#ifndef GDBARCH_H
#define GDBARCH_H
struct frame_info;
struct value;
extern struct gdbarch *current_gdbarch;
/* If any of the following are defined, the target wasn't correctly
converted. */
#if GDB_MULTI_ARCH
#if defined (EXTRA_FRAME_INFO)
#error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
#endif
#endif
#if GDB_MULTI_ARCH
#if defined (FRAME_FIND_SAVED_REGS)
#error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
#endif
#endif
EOF
# function typedef's
printf "\n"
printf "\n"
printf "/* The following are pre-initialized by GDBARCH. */\n"
function_list | while do_read
1999-08-31 01:14:27 +00:00
do
if class_is_info_p
then
printf "\n"
printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
printf "#if GDB_MULTI_ARCH\n"
printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
printf "#endif\n"
printf "#endif\n"
fi
1999-08-31 01:14:27 +00:00
done
# function typedef's
printf "\n"
printf "\n"
printf "/* The following are initialized by the target dependent code. */\n"
function_list | while do_read
1999-08-31 01:14:27 +00:00
do
if [ "${comment}" ]
then
echo "${comment}" | sed \
-e '2 s,#,/*,' \
-e '3,$ s,#, ,' \
-e '$ s,$, */,'
fi
if class_is_predicate_p && ! class_is_multiarch_p
then
printf "\n"
printf "#if defined (${macro})\n"
printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
#printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
printf "#define ${macro}_P() (1)\n"
printf "#endif\n"
printf "\n"
printf "/* Default predicate for non- multi-arch targets. */\n"
printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
printf "#define ${macro}_P() (0)\n"
printf "#endif\n"
printf "\n"
printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro}_P)\n"
printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
printf "#endif\n"
fi
if class_is_predicate_p && class_is_multiarch_p
then
printf "\n"
printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
fi
if class_is_variable_p
then
if fallback_default_p || class_is_predicate_p
then
printf "\n"
printf "/* Default (value) for non- multi-arch platforms. */\n"
printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
echo "#define ${macro} (${fallbackdefault})" \
| sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
printf "#endif\n"
fi
printf "\n"
printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
printf "#if GDB_MULTI_ARCH\n"
printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
printf "#endif\n"
printf "#endif\n"
fi
if class_is_function_p
then
if ( fallback_default_p || class_is_predicate_p ) && ! class_is_multiarch_p
then
printf "\n"
printf "/* Default (function) for non- multi-arch platforms. */\n"
printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
if [ "${fallbackdefault}" = "0" ]
then
printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
else
# FIXME: Should be passing current_gdbarch through!
echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
| sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
fi
printf "#endif\n"
fi
printf "\n"
if [ "${formal}" = "void" ] && class_is_multiarch_p
then
printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
elif class_is_multiarch_p
then
printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
else
printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
fi
1999-08-31 01:14:27 +00:00
if [ "${formal}" = "void" ]
then
printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1999-08-31 01:14:27 +00:00
else
printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1999-08-31 01:14:27 +00:00
fi
printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
if ! class_is_multiarch_p
1999-08-31 01:14:27 +00:00
then
printf "#if GDB_MULTI_ARCH\n"
printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
if [ "${actual}" = "" ]
then
printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
elif [ "${actual}" = "-" ]
then
printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
else
printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
fi
printf "#endif\n"
printf "#endif\n"
1999-08-31 01:14:27 +00:00
fi
fi
1999-08-31 01:14:27 +00:00
done
# close it off
cat <<EOF
extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
/* Mechanism for co-ordinating the selection of a specific
architecture.
GDB targets (*-tdep.c) can register an interest in a specific
architecture. Other GDB components can register a need to maintain
per-architecture data.
The mechanisms below ensures that there is only a loose connection
between the set-architecture command and the various GDB
components. Each component can independently register their need
1999-08-31 01:14:27 +00:00
to maintain architecture specific data with gdbarch.
Pragmatics:
Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
didn't scale.
The more traditional mega-struct containing architecture specific
data for all the various GDB components was also considered. Since
GDB is built from a variable number of (fairly independent)
1999-08-31 01:14:27 +00:00
components it was determined that the global aproach was not
applicable. */
/* Register a new architectural family with GDB.
Register support for the specified ARCHITECTURE with GDB. When
gdbarch determines that the specified architecture has been
selected, the corresponding INIT function is called.
--
The INIT function takes two parameters: INFO which contains the
information available to gdbarch about the (possibly new)
architecture; ARCHES which is a list of the previously created
\`\`struct gdbarch'' for this architecture.
The INIT function parameter INFO shall, as far as possible, be
pre-initialized with information obtained from INFO.ABFD or
previously selected architecture (if similar). INIT shall ensure
that the INFO.BYTE_ORDER is non-zero.
The INIT function shall return any of: NULL - indicating that it
doesn't recognize the selected architecture; an existing \`\`struct
1999-08-31 01:14:27 +00:00
gdbarch'' from the ARCHES list - indicating that the new
architecture is just a synonym for an earlier architecture (see
gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
- that describes the selected architecture (see gdbarch_alloc()).
The DUMP_TDEP function shall print out all target specific values.
Care should be taken to ensure that the function works in both the
multi-arch and non- multi-arch cases. */
1999-08-31 01:14:27 +00:00
struct gdbarch_list
{
struct gdbarch *gdbarch;
struct gdbarch_list *next;
};
struct gdbarch_info
{
/* Use default: bfd_arch_unknown (ZERO). */
enum bfd_architecture bfd_architecture;
/* Use default: NULL (ZERO). */
const struct bfd_arch_info *bfd_arch_info;
/* Use default: 0 (ZERO). */
int byte_order;
/* Use default: NULL (ZERO). */
bfd *abfd;
/* Use default: NULL (ZERO). */
struct gdbarch_tdep_info *tdep_info;
};
typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1999-08-31 01:14:27 +00:00
/* DEPRECATED - use gdbarch_register() */
1999-08-31 01:14:27 +00:00
extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
extern void gdbarch_register (enum bfd_architecture architecture,
gdbarch_init_ftype *,
gdbarch_dump_tdep_ftype *);
1999-08-31 01:14:27 +00:00
/* Return a freshly allocated, NULL terminated, array of the valid
architecture names. Since architectures are registered during the
_initialize phase this function only returns useful information
once initialization has been completed. */
extern const char **gdbarch_printable_names (void);
1999-08-31 01:14:27 +00:00
/* Helper function. Search the list of ARCHES for a GDBARCH that
matches the information provided by INFO. */
extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
basic initialization using values obtained from the INFO andTDEP
parameters. set_gdbarch_*() functions are called to complete the
initialization of the object. */
extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
It is assumed that the caller freeds the \`\`struct
gdbarch_tdep''. */
extern void gdbarch_free (struct gdbarch *);
1999-08-31 01:14:27 +00:00
/* Helper function. Force an update of the current architecture. Used
by legacy targets that have added their own target specific
architecture manipulation commands.
The INFO parameter shall be fully initialized (\`\`memset (&INFO,
sizeof (info), 0)'' set relevant fields) before gdbarch_update_p()
is called. gdbarch_update_p() shall initialize any \`\`default''
fields using information obtained from the previous architecture or
1999-08-31 01:14:27 +00:00
INFO.ABFD (if specified) before calling the corresponding
architectures INIT function.
1999-08-31 01:14:27 +00:00
Returns non-zero if the update succeeds */
extern int gdbarch_update_p (struct gdbarch_info info);
1999-08-31 01:14:27 +00:00
/* Register per-architecture data-pointer.
Reserve space for a per-architecture data-pointer. An identifier
for the reserved data-pointer is returned. That identifer should
be saved in a local static variable.
1999-08-31 01:14:27 +00:00
The per-architecture data-pointer can be initialized in one of two
ways: The value can be set explicitly using a call to
set_gdbarch_data(); the value can be set implicitly using the value
returned by a non-NULL INIT() callback. INIT(), when non-NULL is
called after the basic architecture vector has been created.
1999-08-31 01:14:27 +00:00
When a previously created architecture is re-selected, the
per-architecture data-pointer for that previous architecture is
restored. INIT() is not called.
During initialization, multiple assignments of the data-pointer are
allowed, non-NULL values are deleted by calling FREE(). If the
architecture is deleted using gdbarch_free() all non-NULL data
pointers are also deleted using FREE().
1999-08-31 01:14:27 +00:00
Multiple registrarants for any architecture are allowed (and
strongly encouraged). */
struct gdbarch_data;
1999-08-31 01:14:27 +00:00
typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
void *pointer);
extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
gdbarch_data_free_ftype *free);
extern void set_gdbarch_data (struct gdbarch *gdbarch,
struct gdbarch_data *data,
void *pointer);
1999-08-31 01:14:27 +00:00
extern void *gdbarch_data (struct gdbarch_data*);
/* Register per-architecture memory region.
Provide a memory-region swap mechanism. Per-architecture memory
region are created. These memory regions are swapped whenever the
architecture is changed. For a new architecture, the memory region
is initialized with zero (0) and the INIT function is called.
Memory regions are swapped / initialized in the order that they are
registered. NULL DATA and/or INIT values can be specified.
New code should use register_gdbarch_data(). */
typedef void (gdbarch_swap_ftype) (void);
extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1999-10-26 03:43:48 +00:00
#define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1999-08-31 01:14:27 +00:00
/* The target-system-dependent byte order is dynamic */
1999-08-31 01:14:27 +00:00
/* TARGET_BYTE_ORDER_SELECTABLE_P determines if the target endianness
is selectable at runtime. The user can use the \`\`set endian''
command to change it. TARGET_BYTE_ORDER_AUTO is nonzero when
target_byte_order should be auto-detected (from the program image
say). */
#if GDB_MULTI_ARCH
/* Multi-arch GDB is always bi-endian. */
#define TARGET_BYTE_ORDER_SELECTABLE_P 1
#endif
#ifndef TARGET_BYTE_ORDER_SELECTABLE_P
/* compat - Catch old targets that define TARGET_BYTE_ORDER_SLECTABLE
when they should have defined TARGET_BYTE_ORDER_SELECTABLE_P 1 */
#ifdef TARGET_BYTE_ORDER_SELECTABLE
#define TARGET_BYTE_ORDER_SELECTABLE_P 1
#else
#define TARGET_BYTE_ORDER_SELECTABLE_P 0
#endif
#endif
extern int target_byte_order;
#ifdef TARGET_BYTE_ORDER_SELECTABLE
/* compat - Catch old targets that define TARGET_BYTE_ORDER_SELECTABLE
and expect defs.h to re-define TARGET_BYTE_ORDER. */
#undef TARGET_BYTE_ORDER
#endif
#ifndef TARGET_BYTE_ORDER
#define TARGET_BYTE_ORDER (target_byte_order + 0)
#endif
extern int target_byte_order_auto;
#ifndef TARGET_BYTE_ORDER_AUTO
#define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
#endif
/* The target-system-dependent BFD architecture is dynamic */
1999-08-31 01:14:27 +00:00
extern int target_architecture_auto;
#ifndef TARGET_ARCHITECTURE_AUTO
#define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
#endif
extern const struct bfd_arch_info *target_architecture;
#ifndef TARGET_ARCHITECTURE
#define TARGET_ARCHITECTURE (target_architecture + 0)
#endif
/* The target-system-dependent disassembler is semi-dynamic */
1999-08-31 01:14:27 +00:00
#include "dis-asm.h" /* Get defs for disassemble_info */
extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
unsigned int len, disassemble_info *info);
1999-08-31 01:14:27 +00:00
extern void dis_asm_memory_error (int status, bfd_vma memaddr,
disassemble_info *info);
extern void dis_asm_print_address (bfd_vma addr,
disassemble_info *info);
extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
extern disassemble_info tm_print_insn_info;
#ifndef TARGET_PRINT_INSN
#define TARGET_PRINT_INSN(vma, info) (*tm_print_insn) (vma, info)
#endif
#ifndef TARGET_PRINT_INSN_INFO
#define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
#endif
/* Explicit test for D10V architecture.
USE of these macro's is *STRONGLY* discouraged. */
#define GDB_TARGET_IS_D10V (TARGET_ARCHITECTURE->arch == bfd_arch_d10v)
/* Fallback definition for EXTRACT_STRUCT_VALUE_ADDRESS */
#ifndef EXTRACT_STRUCT_VALUE_ADDRESS
#define EXTRACT_STRUCT_VALUE_ADDRESS_P (0)
#define EXTRACT_STRUCT_VALUE_ADDRESS(X) (internal_error (__FILE__, __LINE__, "gdbarch: EXTRACT_STRUCT_VALUE_ADDRESS"), 0)
1999-08-31 01:14:27 +00:00
#else
#ifndef EXTRACT_STRUCT_VALUE_ADDRESS_P
#define EXTRACT_STRUCT_VALUE_ADDRESS_P (1)
#endif
#endif
/* Set the dynamic target-system-dependent parameters (architecture,
1999-08-31 01:14:27 +00:00
byte-order, ...) using information found in the BFD */
extern void set_gdbarch_from_file (bfd *);
1999-10-26 03:43:48 +00:00
/* Initialize the current architecture to the "first" one we find on
our list. */
extern void initialize_current_architecture (void);
1999-08-31 01:14:27 +00:00
/* gdbarch trace variable */
extern int gdbarch_debug;
extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1999-08-31 01:14:27 +00:00
#endif
EOF
exec 1>&2
#../move-if-change new-gdbarch.h gdbarch.h
2000-03-30 05:32:23 +00:00
compare_new gdbarch.h
1999-08-31 01:14:27 +00:00
#
# C file
#
exec > new-gdbarch.c
copyright
cat <<EOF
#include "defs.h"
#include "arch-utils.h"
1999-08-31 01:14:27 +00:00
#if GDB_MULTI_ARCH
#include "gdbcmd.h"
#include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
#else
/* Just include everything in sight so that the every old definition
of macro is visible. */
#include "gdb_string.h"
#include <ctype.h>
#include "symtab.h"
#include "frame.h"
#include "inferior.h"
#include "breakpoint.h"
#include "gdb_wait.h"
1999-08-31 01:14:27 +00:00
#include "gdbcore.h"
#include "gdbcmd.h"
#include "target.h"
#include "gdbthread.h"
#include "annotate.h"
#include "symfile.h" /* for overlay functions */
#endif
#include "symcat.h"
#include "floatformat.h"
1999-08-31 01:14:27 +00:00
#include "gdb_assert.h"
1999-08-31 01:14:27 +00:00
/* Static function declarations */
static void verify_gdbarch (struct gdbarch *gdbarch);
static void alloc_gdbarch_data (struct gdbarch *);
1999-08-31 01:14:27 +00:00
static void init_gdbarch_data (struct gdbarch *);
static void free_gdbarch_data (struct gdbarch *);
1999-08-31 01:14:27 +00:00
static void init_gdbarch_swap (struct gdbarch *);
static void swapout_gdbarch_swap (struct gdbarch *);
static void swapin_gdbarch_swap (struct gdbarch *);
/* Convenience macro for allocting typesafe memory. */
#ifndef XMALLOC
#define XMALLOC(TYPE) (TYPE*) xmalloc (sizeof (TYPE))
#endif
/* Non-zero if we want to trace architecture code. */
#ifndef GDBARCH_DEBUG
#define GDBARCH_DEBUG 0
#endif
int gdbarch_debug = GDBARCH_DEBUG;
EOF
# gdbarch open the gdbarch object
printf "\n"
printf "/* Maintain the struct gdbarch object */\n"
printf "\n"
printf "struct gdbarch\n"
printf "{\n"
printf " /* basic architectural information */\n"
function_list | while do_read
1999-08-31 01:14:27 +00:00
do
if class_is_info_p
then
printf " ${returntype} ${function};\n"
fi
1999-08-31 01:14:27 +00:00
done
printf "\n"
printf " /* target specific vector. */\n"
printf " struct gdbarch_tdep *tdep;\n"
printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
printf "\n"
printf " /* per-architecture data-pointers */\n"
printf " unsigned nr_data;\n"
printf " void **data;\n"
printf "\n"
printf " /* per-architecture swap-regions */\n"
printf " struct gdbarch_swap *swap;\n"
printf "\n"
1999-08-31 01:14:27 +00:00
cat <<EOF
/* Multi-arch values.
When extending this structure you must:
Add the field below.
Declare set/get functions and define the corresponding
macro in gdbarch.h.
gdbarch_alloc(): If zero/NULL is not a suitable default,
initialize the new field.
verify_gdbarch(): Confirm that the target updated the field
correctly.
gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1999-08-31 01:14:27 +00:00
field is dumped out
\`\`startup_gdbarch()'': Append an initial value to the static
1999-08-31 01:14:27 +00:00
variable (base values on the host's c-type system).
get_gdbarch(): Implement the set/get functions (probably using
the macro's as shortcuts).
*/
EOF
function_list | while do_read
1999-08-31 01:14:27 +00:00
do
if class_is_variable_p
then
printf " ${returntype} ${function};\n"
elif class_is_function_p
then
printf " gdbarch_${function}_ftype *${function}${attrib};\n"
fi
1999-08-31 01:14:27 +00:00
done
printf "};\n"
1999-08-31 01:14:27 +00:00
# A pre-initialized vector
printf "\n"
printf "\n"
1999-08-31 01:14:27 +00:00
cat <<EOF
/* The default architecture uses host values (for want of a better
choice). */
EOF
printf "\n"
printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
printf "\n"
printf "struct gdbarch startup_gdbarch =\n"
printf "{\n"
printf " /* basic architecture information */\n"
function_list | while do_read
1999-08-31 01:14:27 +00:00
do
if class_is_info_p
then
printf " ${staticdefault},\n"
fi
1999-08-31 01:14:27 +00:00
done
cat <<EOF
/* target specific vector and its dump routine */
NULL, NULL,
1999-08-31 01:14:27 +00:00
/*per-architecture data-pointers and swap regions */
0, NULL, NULL,
/* Multi-arch values */
EOF
function_list | while do_read
1999-08-31 01:14:27 +00:00
do
if class_is_function_p || class_is_variable_p
then
printf " ${staticdefault},\n"
fi
1999-08-31 01:14:27 +00:00
done
cat <<EOF
/* startup_gdbarch() */
1999-08-31 01:14:27 +00:00
};
struct gdbarch *current_gdbarch = &startup_gdbarch;
1999-08-31 01:14:27 +00:00
EOF
# Create a new gdbarch struct
printf "\n"
printf "\n"
1999-08-31 01:14:27 +00:00
cat <<EOF
2000-08-11 02:55:38 +00:00
/* Create a new \`\`struct gdbarch'' based on information provided by
1999-08-31 01:14:27 +00:00
\`\`struct gdbarch_info''. */
EOF
printf "\n"
1999-08-31 01:14:27 +00:00
cat <<EOF
struct gdbarch *
gdbarch_alloc (const struct gdbarch_info *info,
struct gdbarch_tdep *tdep)
{
struct gdbarch *gdbarch = XMALLOC (struct gdbarch);
memset (gdbarch, 0, sizeof (*gdbarch));
alloc_gdbarch_data (gdbarch);
1999-08-31 01:14:27 +00:00
gdbarch->tdep = tdep;
EOF
printf "\n"
function_list | while do_read
1999-08-31 01:14:27 +00:00
do
if class_is_info_p
then
printf " gdbarch->${function} = info->${function};\n"
fi
1999-08-31 01:14:27 +00:00
done
printf "\n"
printf " /* Force the explicit initialization of these. */\n"
function_list | while do_read
1999-08-31 01:14:27 +00:00
do
if class_is_function_p || class_is_variable_p
then
if [ "${predefault}" != "" -a "${predefault}" != "0" ]
1999-08-31 01:14:27 +00:00
then
printf " gdbarch->${function} = ${predefault};\n"
1999-08-31 01:14:27 +00:00
fi
fi
1999-08-31 01:14:27 +00:00
done
cat <<EOF
/* gdbarch_alloc() */
return gdbarch;
}
EOF
# Free a gdbarch struct.
printf "\n"
printf "\n"
cat <<EOF
/* Free a gdbarch struct. This should never happen in normal
operation --- once you've created a gdbarch, you keep it around.
However, if an architecture's init function encounters an error
building the structure, it may need to clean up a partially
constructed gdbarch. */
void
gdbarch_free (struct gdbarch *arch)
{
gdb_assert (arch != NULL);
free_gdbarch_data (arch);
xfree (arch);
}
EOF
1999-08-31 01:14:27 +00:00
# verify a new architecture
printf "\n"
printf "\n"
printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
printf "\n"
1999-08-31 01:14:27 +00:00
cat <<EOF
static void
verify_gdbarch (struct gdbarch *gdbarch)
{
/* Only perform sanity checks on a multi-arch target. */
if (!GDB_MULTI_ARCH)
1999-08-31 01:14:27 +00:00
return;
/* fundamental */
if (gdbarch->byte_order == 0)
internal_error (__FILE__, __LINE__,
"verify_gdbarch: byte-order unset");
1999-08-31 01:14:27 +00:00
if (gdbarch->bfd_arch_info == NULL)
internal_error (__FILE__, __LINE__,
"verify_gdbarch: bfd_arch_info unset");
1999-08-31 01:14:27 +00:00
/* Check those that need to be defined for the given multi-arch level. */
EOF
function_list | while do_read
1999-08-31 01:14:27 +00:00
do
if class_is_function_p || class_is_variable_p
then
if [ "${invalid_p}" = "0" ]
then
printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
elif class_is_predicate_p
then
printf " /* Skip verify of ${function}, has predicate */\n"
# FIXME: See do_read for potential simplification
elif [ "${invalid_p}" -a "${postdefault}" ]
then
printf " if (${invalid_p})\n"
printf " gdbarch->${function} = ${postdefault};\n"
elif [ "${predefault}" -a "${postdefault}" ]
then
printf " if (gdbarch->${function} == ${predefault})\n"
printf " gdbarch->${function} = ${postdefault};\n"
elif [ "${postdefault}" ]
then
printf " if (gdbarch->${function} == 0)\n"
printf " gdbarch->${function} = ${postdefault};\n"
elif [ "${invalid_p}" ]
1999-08-31 01:14:27 +00:00
then
printf " if ((GDB_MULTI_ARCH >= ${level})\n"
printf " && (${invalid_p}))\n"
printf " internal_error (__FILE__, __LINE__,\n"
printf " \"gdbarch: verify_gdbarch: ${function} invalid\");\n"
elif [ "${predefault}" ]
1999-08-31 01:14:27 +00:00
then
printf " if ((GDB_MULTI_ARCH >= ${level})\n"
printf " && (gdbarch->${function} == ${predefault}))\n"
printf " internal_error (__FILE__, __LINE__,\n"
printf " \"gdbarch: verify_gdbarch: ${function} invalid\");\n"
1999-08-31 01:14:27 +00:00
fi
fi
1999-08-31 01:14:27 +00:00
done
cat <<EOF
}
EOF
# dump the structure
printf "\n"
printf "\n"
1999-08-31 01:14:27 +00:00
cat <<EOF
/* Print out the details of the current architecture. */
/* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
just happens to match the global variable \`\`current_gdbarch''. That
way macros refering to that variable get the local and not the global
version - ulgh. Once everything is parameterised with gdbarch, this
will go away. */
1999-08-31 01:14:27 +00:00
void
gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1999-08-31 01:14:27 +00:00
{
fprintf_unfiltered (file,
"gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
GDB_MULTI_ARCH);
1999-08-31 01:14:27 +00:00
EOF
function_list | while do_read
1999-08-31 01:14:27 +00:00
do
# multiarch functions don't have macros.
class_is_multiarch_p && continue
2000-08-11 02:55:38 +00:00
if [ "${returntype}" = "void" ]
then
printf "#if defined (${macro}) && GDB_MULTI_ARCH\n"
printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
else
printf "#ifdef ${macro}\n"
fi
if class_is_function_p
then
printf " fprintf_unfiltered (file,\n"
printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
printf " \"${macro}(${actual})\",\n"
printf " XSTRING (${macro} (${actual})));\n"
else
printf " fprintf_unfiltered (file,\n"
printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
printf " XSTRING (${macro}));\n"
fi
printf "#endif\n"
done
function_list | while do_read
do
if class_is_multiarch_p
then
printf " if (GDB_MULTI_ARCH)\n"
printf " fprintf_unfiltered (file,\n"
printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
printf " (long) current_gdbarch->${function});\n"
continue
fi
printf "#ifdef ${macro}\n"
if [ "${print_p}" = "()" ]
then
printf " gdbarch_dump_${function} (current_gdbarch);\n"
elif [ "${print_p}" = "0" ]
then
printf " /* skip print of ${macro}, print_p == 0. */\n"
elif [ "${print_p}" ]
then
printf " if (${print_p})\n"
printf " fprintf_unfiltered (file,\n"
printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
printf " ${print});\n"
elif class_is_function_p
then
printf " if (GDB_MULTI_ARCH)\n"
printf " fprintf_unfiltered (file,\n"
printf " \"gdbarch_dump: ${macro} = 0x%%08lx\\\\n\",\n"
printf " (long) current_gdbarch->${function}\n"
printf " /*${macro} ()*/);\n"
else
printf " fprintf_unfiltered (file,\n"
printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
printf " ${print});\n"
fi
printf "#endif\n"
1999-08-31 01:14:27 +00:00
done
cat <<EOF
if (current_gdbarch->dump_tdep != NULL)
current_gdbarch->dump_tdep (current_gdbarch, file);
}
EOF
1999-08-31 01:14:27 +00:00
# GET/SET
printf "\n"
1999-08-31 01:14:27 +00:00
cat <<EOF
struct gdbarch_tdep *
gdbarch_tdep (struct gdbarch *gdbarch)
{
if (gdbarch_debug >= 2)
fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1999-08-31 01:14:27 +00:00
return gdbarch->tdep;
}
EOF
printf "\n"
function_list | while do_read
1999-08-31 01:14:27 +00:00
do
if class_is_predicate_p
then
printf "\n"
printf "int\n"
printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
printf "{\n"
if [ "${valid_p}" ]
then
printf " return ${valid_p};\n"
else
printf "#error \"gdbarch_${function}_p: not defined\"\n"
fi
printf "}\n"
fi
if class_is_function_p
then
printf "\n"
printf "${returntype}\n"
1999-08-31 01:14:27 +00:00
if [ "${formal}" = "void" ]
then
printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1999-08-31 01:14:27 +00:00
else
printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1999-08-31 01:14:27 +00:00
fi
printf "{\n"
printf " if (gdbarch->${function} == 0)\n"
printf " internal_error (__FILE__, __LINE__,\n"
printf " \"gdbarch: gdbarch_${function} invalid\");\n"
printf " if (gdbarch_debug >= 2)\n"
printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
if [ "${actual}" = "-" -o "${actual}" = "" ]
then
if class_is_multiarch_p
then
params="gdbarch"
else
params=""
fi
else
if class_is_multiarch_p
then
params="gdbarch, ${actual}"
else
params="${actual}"
fi
fi
1999-08-31 01:14:27 +00:00
if [ "${returntype}" = "void" ]
then
printf " gdbarch->${function} (${params});\n"
1999-08-31 01:14:27 +00:00
else
printf " return gdbarch->${function} (${params});\n"
1999-08-31 01:14:27 +00:00
fi
printf "}\n"
printf "\n"
printf "void\n"
printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
printf "{\n"
printf " gdbarch->${function} = ${function};\n"
printf "}\n"
elif class_is_variable_p
then
printf "\n"
printf "${returntype}\n"
printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
printf "{\n"
if [ "${invalid_p}" = "0" ]
then
printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
elif [ "${invalid_p}" ]
1999-08-31 01:14:27 +00:00
then
printf " if (${invalid_p})\n"
printf " internal_error (__FILE__, __LINE__,\n"
printf " \"gdbarch: gdbarch_${function} invalid\");\n"
elif [ "${predefault}" ]
1999-08-31 01:14:27 +00:00
then
printf " if (gdbarch->${function} == ${predefault})\n"
printf " internal_error (__FILE__, __LINE__,\n"
printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1999-08-31 01:14:27 +00:00
fi
printf " if (gdbarch_debug >= 2)\n"
printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
printf " return gdbarch->${function};\n"
printf "}\n"
printf "\n"
printf "void\n"
printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
printf "{\n"
printf " gdbarch->${function} = ${function};\n"
printf "}\n"
elif class_is_info_p
then
printf "\n"
printf "${returntype}\n"
printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
printf "{\n"
printf " if (gdbarch_debug >= 2)\n"
printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
printf " return gdbarch->${function};\n"
printf "}\n"
fi
1999-08-31 01:14:27 +00:00
done
# All the trailing guff
cat <<EOF
/* Keep a registry of per-architecture data-pointers required by GDB
1999-08-31 01:14:27 +00:00
modules. */
struct gdbarch_data
{
unsigned index;
gdbarch_data_init_ftype *init;
gdbarch_data_free_ftype *free;
1999-08-31 01:14:27 +00:00
};
struct gdbarch_data_registration
{
struct gdbarch_data *data;
struct gdbarch_data_registration *next;
};
struct gdbarch_data_registry
1999-08-31 01:14:27 +00:00
{
unsigned nr;
1999-08-31 01:14:27 +00:00
struct gdbarch_data_registration *registrations;
};
struct gdbarch_data_registry gdbarch_data_registry =
1999-08-31 01:14:27 +00:00
{
0, NULL,
};
struct gdbarch_data *
register_gdbarch_data (gdbarch_data_init_ftype *init,
gdbarch_data_free_ftype *free)
1999-08-31 01:14:27 +00:00
{
struct gdbarch_data_registration **curr;
for (curr = &gdbarch_data_registry.registrations;
1999-08-31 01:14:27 +00:00
(*curr) != NULL;
curr = &(*curr)->next);
(*curr) = XMALLOC (struct gdbarch_data_registration);
(*curr)->next = NULL;
(*curr)->data = XMALLOC (struct gdbarch_data);
(*curr)->data->index = gdbarch_data_registry.nr++;
(*curr)->data->init = init;
(*curr)->data->free = free;
1999-08-31 01:14:27 +00:00
return (*curr)->data;
}
/* Walk through all the registered users initializing each in turn. */
static void
init_gdbarch_data (struct gdbarch *gdbarch)
{
struct gdbarch_data_registration *rego;
for (rego = gdbarch_data_registry.registrations;
1999-08-31 01:14:27 +00:00
rego != NULL;
rego = rego->next)
{
struct gdbarch_data *data = rego->data;
gdb_assert (data->index < gdbarch->nr_data);
if (data->init != NULL)
{
void *pointer = data->init (gdbarch);
set_gdbarch_data (gdbarch, data, pointer);
}
}
}
/* Create/delete the gdbarch data vector. */
static void
alloc_gdbarch_data (struct gdbarch *gdbarch)
{
gdb_assert (gdbarch->data == NULL);
gdbarch->nr_data = gdbarch_data_registry.nr;
gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
}
static void
free_gdbarch_data (struct gdbarch *gdbarch)
{
struct gdbarch_data_registration *rego;
gdb_assert (gdbarch->data != NULL);
for (rego = gdbarch_data_registry.registrations;
rego != NULL;
rego = rego->next)
{
struct gdbarch_data *data = rego->data;
gdb_assert (data->index < gdbarch->nr_data);
if (data->free != NULL && gdbarch->data[data->index] != NULL)
{
data->free (gdbarch, gdbarch->data[data->index]);
gdbarch->data[data->index] = NULL;
}
1999-08-31 01:14:27 +00:00
}
xfree (gdbarch->data);
gdbarch->data = NULL;
1999-08-31 01:14:27 +00:00
}
/* Initialize the current value of thee specified per-architecture
data-pointer. */
void
set_gdbarch_data (struct gdbarch *gdbarch,
struct gdbarch_data *data,
void *pointer)
{
gdb_assert (data->index < gdbarch->nr_data);
if (data->free != NULL && gdbarch->data[data->index] != NULL)
data->free (gdbarch, gdbarch->data[data->index]);
gdbarch->data[data->index] = pointer;
}
1999-08-31 01:14:27 +00:00
/* Return the current value of the specified per-architecture
data-pointer. */
void *
gdbarch_data (struct gdbarch_data *data)
1999-08-31 01:14:27 +00:00
{
gdb_assert (data->index < current_gdbarch->nr_data);
1999-08-31 01:14:27 +00:00
return current_gdbarch->data[data->index];
}
/* Keep a registry of swapped data required by GDB modules. */
1999-08-31 01:14:27 +00:00
struct gdbarch_swap
{
void *swap;
struct gdbarch_swap_registration *source;
struct gdbarch_swap *next;
};
struct gdbarch_swap_registration
{
void *data;
unsigned long sizeof_data;
gdbarch_swap_ftype *init;
struct gdbarch_swap_registration *next;
};
struct gdbarch_swap_registry
1999-08-31 01:14:27 +00:00
{
int nr;
struct gdbarch_swap_registration *registrations;
};
struct gdbarch_swap_registry gdbarch_swap_registry =
1999-08-31 01:14:27 +00:00
{
0, NULL,
};
void
register_gdbarch_swap (void *data,
unsigned long sizeof_data,
gdbarch_swap_ftype *init)
{
struct gdbarch_swap_registration **rego;
for (rego = &gdbarch_swap_registry.registrations;
1999-08-31 01:14:27 +00:00
(*rego) != NULL;
rego = &(*rego)->next);
(*rego) = XMALLOC (struct gdbarch_swap_registration);
(*rego)->next = NULL;
(*rego)->init = init;
(*rego)->data = data;
(*rego)->sizeof_data = sizeof_data;
}
static void
init_gdbarch_swap (struct gdbarch *gdbarch)
{
struct gdbarch_swap_registration *rego;
struct gdbarch_swap **curr = &gdbarch->swap;
for (rego = gdbarch_swap_registry.registrations;
1999-08-31 01:14:27 +00:00
rego != NULL;
rego = rego->next)
{
if (rego->data != NULL)
{
(*curr) = XMALLOC (struct gdbarch_swap);
(*curr)->source = rego;
(*curr)->swap = xmalloc (rego->sizeof_data);
(*curr)->next = NULL;
memset (rego->data, 0, rego->sizeof_data);
curr = &(*curr)->next;
}
if (rego->init != NULL)
rego->init ();
}
}
static void
swapout_gdbarch_swap (struct gdbarch *gdbarch)
{
struct gdbarch_swap *curr;
for (curr = gdbarch->swap;
curr != NULL;
curr = curr->next)
memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
}
static void
swapin_gdbarch_swap (struct gdbarch *gdbarch)
{
struct gdbarch_swap *curr;
for (curr = gdbarch->swap;
curr != NULL;
curr = curr->next)
memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
}
/* Keep a registry of the architectures known by GDB. */
1999-08-31 01:14:27 +00:00
struct gdbarch_registration
1999-08-31 01:14:27 +00:00
{
enum bfd_architecture bfd_architecture;
gdbarch_init_ftype *init;
gdbarch_dump_tdep_ftype *dump_tdep;
1999-08-31 01:14:27 +00:00
struct gdbarch_list *arches;
struct gdbarch_registration *next;
1999-08-31 01:14:27 +00:00
};
static struct gdbarch_registration *gdbarch_registry = NULL;
1999-08-31 01:14:27 +00:00
static void
append_name (const char ***buf, int *nr, const char *name)
{
*buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
(*buf)[*nr] = name;
*nr += 1;
}
const char **
gdbarch_printable_names (void)
{
if (GDB_MULTI_ARCH)
{
/* Accumulate a list of names based on the registed list of
architectures. */
enum bfd_architecture a;
int nr_arches = 0;
const char **arches = NULL;
struct gdbarch_registration *rego;
for (rego = gdbarch_registry;
rego != NULL;
rego = rego->next)
{
const struct bfd_arch_info *ap;
ap = bfd_lookup_arch (rego->bfd_architecture, 0);
if (ap == NULL)
internal_error (__FILE__, __LINE__,
"gdbarch_architecture_names: multi-arch unknown");
do
{
append_name (&arches, &nr_arches, ap->printable_name);
ap = ap->next;
}
while (ap != NULL);
}
append_name (&arches, &nr_arches, NULL);
return arches;
}
else
/* Just return all the architectures that BFD knows. Assume that
the legacy architecture framework supports them. */
return bfd_arch_list ();
}
1999-08-31 01:14:27 +00:00
void
gdbarch_register (enum bfd_architecture bfd_architecture,
gdbarch_init_ftype *init,
gdbarch_dump_tdep_ftype *dump_tdep)
1999-08-31 01:14:27 +00:00
{
struct gdbarch_registration **curr;
1999-08-31 01:14:27 +00:00
const struct bfd_arch_info *bfd_arch_info;
/* Check that BFD recognizes this architecture */
1999-08-31 01:14:27 +00:00
bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
if (bfd_arch_info == NULL)
{
internal_error (__FILE__, __LINE__,
"gdbarch: Attempt to register unknown architecture (%d)",
bfd_architecture);
1999-08-31 01:14:27 +00:00
}
/* Check that we haven't seen this architecture before */
for (curr = &gdbarch_registry;
1999-08-31 01:14:27 +00:00
(*curr) != NULL;
curr = &(*curr)->next)
{
if (bfd_architecture == (*curr)->bfd_architecture)
internal_error (__FILE__, __LINE__,
"gdbarch: Duplicate registraration of architecture (%s)",
bfd_arch_info->printable_name);
1999-08-31 01:14:27 +00:00
}
/* log it */
if (gdbarch_debug)
fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
bfd_arch_info->printable_name,
(long) init);
/* Append it */
(*curr) = XMALLOC (struct gdbarch_registration);
1999-08-31 01:14:27 +00:00
(*curr)->bfd_architecture = bfd_architecture;
(*curr)->init = init;
(*curr)->dump_tdep = dump_tdep;
1999-08-31 01:14:27 +00:00
(*curr)->arches = NULL;
(*curr)->next = NULL;
/* When non- multi-arch, install whatever target dump routine we've
been provided - hopefully that routine has been written correctly
and works regardless of multi-arch. */
if (!GDB_MULTI_ARCH && dump_tdep != NULL
&& startup_gdbarch.dump_tdep == NULL)
startup_gdbarch.dump_tdep = dump_tdep;
}
void
register_gdbarch_init (enum bfd_architecture bfd_architecture,
gdbarch_init_ftype *init)
{
gdbarch_register (bfd_architecture, init, NULL);
1999-08-31 01:14:27 +00:00
}
/* Look for an architecture using gdbarch_info. Base search on only
BFD_ARCH_INFO and BYTE_ORDER. */
struct gdbarch_list *
gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
const struct gdbarch_info *info)
{
for (; arches != NULL; arches = arches->next)
{
if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
continue;
if (info->byte_order != arches->gdbarch->byte_order)
continue;
return arches;
}
return NULL;
}
/* Update the current architecture. Return ZERO if the update request
failed. */
int
gdbarch_update_p (struct gdbarch_info info)
1999-08-31 01:14:27 +00:00
{
struct gdbarch *new_gdbarch;
struct gdbarch_list **list;
struct gdbarch_registration *rego;
1999-08-31 01:14:27 +00:00
/* Fill in any missing bits. Most important is the bfd_architecture
which is used to select the target architecture. */
if (info.bfd_architecture == bfd_arch_unknown)
{
if (info.bfd_arch_info != NULL)
info.bfd_architecture = info.bfd_arch_info->arch;
else if (info.abfd != NULL)
info.bfd_architecture = bfd_get_arch (info.abfd);
/* FIXME - should query BFD for its default architecture. */
else
info.bfd_architecture = current_gdbarch->bfd_arch_info->arch;
}
if (info.bfd_arch_info == NULL)
{
if (target_architecture_auto && info.abfd != NULL)
info.bfd_arch_info = bfd_get_arch_info (info.abfd);
else
info.bfd_arch_info = current_gdbarch->bfd_arch_info;
}
if (info.byte_order == 0)
{
if (target_byte_order_auto && info.abfd != NULL)
info.byte_order = (bfd_big_endian (info.abfd) ? BIG_ENDIAN
: bfd_little_endian (info.abfd) ? LITTLE_ENDIAN
: 0);
else
info.byte_order = current_gdbarch->byte_order;
/* FIXME - should query BFD for its default byte-order. */
}
/* A default for abfd? */
/* Find the target that knows about this architecture. */
for (rego = gdbarch_registry;
rego != NULL;
rego = rego->next)
if (rego->bfd_architecture == info.bfd_architecture)
break;
1999-08-31 01:14:27 +00:00
if (rego == NULL)
{
if (gdbarch_debug)
fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
1999-08-31 01:14:27 +00:00
return 0;
}
if (gdbarch_debug)
{
fprintf_unfiltered (gdb_stdlog,
"gdbarch_update: info.bfd_architecture %d (%s)\\n",
1999-08-31 01:14:27 +00:00
info.bfd_architecture,
bfd_lookup_arch (info.bfd_architecture, 0)->printable_name);
fprintf_unfiltered (gdb_stdlog,
"gdbarch_update: info.bfd_arch_info %s\\n",
1999-08-31 01:14:27 +00:00
(info.bfd_arch_info != NULL
? info.bfd_arch_info->printable_name
: "(null)"));
fprintf_unfiltered (gdb_stdlog,
"gdbarch_update: info.byte_order %d (%s)\\n",
1999-08-31 01:14:27 +00:00
info.byte_order,
(info.byte_order == BIG_ENDIAN ? "big"
: info.byte_order == LITTLE_ENDIAN ? "little"
: "default"));
fprintf_unfiltered (gdb_stdlog,
"gdbarch_update: info.abfd 0x%lx\\n",
1999-08-31 01:14:27 +00:00
(long) info.abfd);
fprintf_unfiltered (gdb_stdlog,
"gdbarch_update: info.tdep_info 0x%lx\\n",
1999-08-31 01:14:27 +00:00
(long) info.tdep_info);
}
/* Ask the target for a replacement architecture. */
new_gdbarch = rego->init (info, rego->arches);
/* Did the target like it? No. Reject the change. */
if (new_gdbarch == NULL)
{
if (gdbarch_debug)
fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
1999-08-31 01:14:27 +00:00
return 0;
}
/* Did the architecture change? No. Do nothing. */
if (current_gdbarch == new_gdbarch)
{
if (gdbarch_debug)
fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
1999-08-31 01:14:27 +00:00
(long) new_gdbarch,
new_gdbarch->bfd_arch_info->printable_name);
return 1;
}
/* Swap all data belonging to the old target out */
swapout_gdbarch_swap (current_gdbarch);
/* Is this a pre-existing architecture? Yes. Swap it in. */
for (list = &rego->arches;
(*list) != NULL;
list = &(*list)->next)
{
if ((*list)->gdbarch == new_gdbarch)
{
if (gdbarch_debug)
fprintf_unfiltered (gdb_stdlog,
"gdbarch_update: Previous architecture 0x%08lx (%s) selected\\n",
1999-08-31 01:14:27 +00:00
(long) new_gdbarch,
new_gdbarch->bfd_arch_info->printable_name);
current_gdbarch = new_gdbarch;
swapin_gdbarch_swap (new_gdbarch);
return 1;
}
}
1999-08-31 01:14:27 +00:00
/* Append this new architecture to this targets list. */
(*list) = XMALLOC (struct gdbarch_list);
(*list)->next = NULL;
(*list)->gdbarch = new_gdbarch;
/* Switch to this new architecture. Dump it out. */
current_gdbarch = new_gdbarch;
if (gdbarch_debug)
{
fprintf_unfiltered (gdb_stdlog,
"gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
1999-08-31 01:14:27 +00:00
(long) new_gdbarch,
new_gdbarch->bfd_arch_info->printable_name);
}
/* Check that the newly installed architecture is valid. Plug in
any post init values. */
new_gdbarch->dump_tdep = rego->dump_tdep;
1999-08-31 01:14:27 +00:00
verify_gdbarch (new_gdbarch);
/* Initialize the per-architecture memory (swap) areas.
CURRENT_GDBARCH must be update before these modules are
called. */
init_gdbarch_swap (new_gdbarch);
/* Initialize the per-architecture data-pointer of all parties that
registered an interest in this architecture. CURRENT_GDBARCH
must be updated before these modules are called. */
init_gdbarch_data (new_gdbarch);
if (gdbarch_debug)
gdbarch_dump (current_gdbarch, gdb_stdlog);
1999-08-31 01:14:27 +00:00
return 1;
}
/* Disassembler */
/* Pointer to the target-dependent disassembly function. */
int (*tm_print_insn) (bfd_vma, disassemble_info *);
disassemble_info tm_print_insn_info;
extern void _initialize_gdbarch (void);
1999-08-31 01:14:27 +00:00
void
_initialize_gdbarch (void)
1999-08-31 01:14:27 +00:00
{
2000-03-30 05:32:23 +00:00
struct cmd_list_element *c;
1999-08-31 01:14:27 +00:00
INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
tm_print_insn_info.flavour = bfd_target_unknown_flavour;
tm_print_insn_info.read_memory_func = dis_asm_read_memory;
tm_print_insn_info.memory_error_func = dis_asm_memory_error;
tm_print_insn_info.print_address_func = dis_asm_print_address;
2000-03-30 05:32:23 +00:00
add_show_from_set (add_set_cmd ("arch",
1999-08-31 01:14:27 +00:00
class_maintenance,
var_zinteger,
(char *)&gdbarch_debug,
"Set architecture debugging.\\n\\
2000-03-30 05:32:23 +00:00
When non-zero, architecture debugging is enabled.", &setdebuglist),
&showdebuglist);
c = add_set_cmd ("archdebug",
class_maintenance,
var_zinteger,
(char *)&gdbarch_debug,
"Set architecture debugging.\\n\\
2000-03-30 05:32:23 +00:00
When non-zero, architecture debugging is enabled.", &setlist);
deprecate_cmd (c, "set debug arch");
deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
1999-08-31 01:14:27 +00:00
}
EOF
# close things off
exec 1>&2
#../move-if-change new-gdbarch.c gdbarch.c
2000-03-30 05:32:23 +00:00
compare_new gdbarch.c