1992-07-28 04:22:18 +00:00
|
|
|
|
/* Support routines for decoding "stabs" debugging information format.
|
|
|
|
|
Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992
|
|
|
|
|
Free Software Foundation, Inc.
|
|
|
|
|
|
|
|
|
|
This file is part of GDB.
|
|
|
|
|
|
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
|
|
|
(at your option) any later version.
|
|
|
|
|
|
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
|
along with this program; if not, write to the Free Software
|
|
|
|
|
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
|
|
|
|
|
|
|
|
|
|
/* Support routines for reading and decoding debugging information in
|
|
|
|
|
the "stabs" format. This format is used with many systems that use
|
|
|
|
|
the a.out object file format, as well as some systems that use
|
|
|
|
|
COFF or ELF where the stabs data is placed in a special section.
|
|
|
|
|
Avoid placing any object file format specific code in this file. */
|
|
|
|
|
|
|
|
|
|
#include "defs.h"
|
|
|
|
|
#include "bfd.h"
|
|
|
|
|
#include "obstack.h"
|
|
|
|
|
#include "symtab.h"
|
|
|
|
|
#include "gdbtypes.h"
|
|
|
|
|
#include "symfile.h" /* Needed for "struct complaint" */
|
|
|
|
|
#include "objfiles.h"
|
|
|
|
|
#include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
|
|
|
|
|
#include "buildsym.h"
|
|
|
|
|
|
|
|
|
|
/* Ask stabsread.h to define the vars it normally declares `extern'. */
|
|
|
|
|
#define EXTERN /**/
|
|
|
|
|
#include "stabsread.h" /* Our own declarations */
|
|
|
|
|
#undef EXTERN
|
|
|
|
|
|
|
|
|
|
static struct type *
|
|
|
|
|
dbx_alloc_type PARAMS ((int [2], struct objfile *));
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
read_huge_number PARAMS ((char **, int, long *, int *));
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
patch_block_stabs PARAMS ((struct pending *, struct pending_stabs *,
|
|
|
|
|
struct objfile *));
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
fix_common_block PARAMS ((struct symbol *, int));
|
|
|
|
|
|
|
|
|
|
static struct type *
|
|
|
|
|
read_range_type PARAMS ((char **, int [2], struct objfile *));
|
|
|
|
|
|
|
|
|
|
static struct type *
|
|
|
|
|
read_sun_builtin_type PARAMS ((char **, int [2], struct objfile *));
|
|
|
|
|
|
|
|
|
|
static struct type *
|
|
|
|
|
read_sun_floating_type PARAMS ((char **, int [2], struct objfile *));
|
|
|
|
|
|
|
|
|
|
static struct type *
|
|
|
|
|
read_enum_type PARAMS ((char **, struct type *, struct objfile *));
|
|
|
|
|
|
|
|
|
|
static struct type *
|
|
|
|
|
read_struct_type PARAMS ((char **, struct type *, struct objfile *));
|
|
|
|
|
|
|
|
|
|
static struct type *
|
|
|
|
|
read_array_type PARAMS ((char **, struct type *, struct objfile *));
|
|
|
|
|
|
|
|
|
|
static struct type **
|
|
|
|
|
read_args PARAMS ((char **, int, struct objfile *));
|
|
|
|
|
|
|
|
|
|
static const char vptr_name[] = { '_','v','p','t','r',CPLUS_MARKER,'\0' };
|
|
|
|
|
static const char vb_name[] = { '_','v','b',CPLUS_MARKER,'\0' };
|
|
|
|
|
|
|
|
|
|
/* Define this as 1 if a pcc declaration of a char or short argument
|
|
|
|
|
gives the correct address. Otherwise assume pcc gives the
|
|
|
|
|
address of the corresponding int, which is not the same on a
|
|
|
|
|
big-endian machine. */
|
|
|
|
|
|
|
|
|
|
#ifndef BELIEVE_PCC_PROMOTION
|
|
|
|
|
#define BELIEVE_PCC_PROMOTION 0
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* During some calls to read_type (and thus to read_range_type), this
|
|
|
|
|
contains the name of the type being defined. Range types are only
|
|
|
|
|
used in C as basic types. We use the name to distinguish the otherwise
|
|
|
|
|
identical basic types "int" and "long" and their unsigned versions.
|
|
|
|
|
FIXME, this should disappear with better type management. */
|
|
|
|
|
|
|
|
|
|
static char *long_kludge_name;
|
|
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
|
struct complaint dbx_class_complaint =
|
|
|
|
|
{
|
|
|
|
|
"encountered DBX-style class variable debugging information.\n\
|
|
|
|
|
You seem to have compiled your program with \
|
|
|
|
|
\"g++ -g0\" instead of \"g++ -g\".\n\
|
|
|
|
|
Therefore GDB will not know about your class variables", 0, 0
|
|
|
|
|
};
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
struct complaint invalid_cpp_abbrev_complaint =
|
|
|
|
|
{"invalid C++ abbreviation `%s'", 0, 0};
|
|
|
|
|
|
|
|
|
|
struct complaint invalid_cpp_type_complaint =
|
|
|
|
|
{"C++ abbreviated type name unknown at symtab pos %d", 0, 0};
|
|
|
|
|
|
|
|
|
|
struct complaint member_fn_complaint =
|
|
|
|
|
{"member function type missing, got '%c'", 0, 0};
|
|
|
|
|
|
|
|
|
|
struct complaint const_vol_complaint =
|
|
|
|
|
{"const/volatile indicator missing, got '%c'", 0, 0};
|
|
|
|
|
|
|
|
|
|
struct complaint error_type_complaint =
|
|
|
|
|
{"debug info mismatch between compiler and debugger", 0, 0};
|
|
|
|
|
|
|
|
|
|
struct complaint invalid_member_complaint =
|
|
|
|
|
{"invalid (minimal) member type data format at symtab pos %d.", 0, 0};
|
|
|
|
|
|
|
|
|
|
struct complaint range_type_base_complaint =
|
|
|
|
|
{"base type %d of range type is not defined", 0, 0};
|
|
|
|
|
|
|
|
|
|
struct complaint reg_value_complaint =
|
|
|
|
|
{"register number too large in symbol %s", 0, 0};
|
|
|
|
|
|
|
|
|
|
/* Make a list of forward references which haven't been defined. */
|
|
|
|
|
|
|
|
|
|
static struct type **undef_types;
|
|
|
|
|
static int undef_types_allocated;
|
|
|
|
|
static int undef_types_length;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int
|
|
|
|
|
hashname (name)
|
|
|
|
|
char *name;
|
|
|
|
|
{
|
|
|
|
|
register char *p = name;
|
|
|
|
|
register int total = p[0];
|
|
|
|
|
register int c;
|
|
|
|
|
|
|
|
|
|
c = p[1];
|
|
|
|
|
total += c << 2;
|
|
|
|
|
if (c)
|
|
|
|
|
{
|
|
|
|
|
c = p[2];
|
|
|
|
|
total += c << 4;
|
|
|
|
|
if (c)
|
|
|
|
|
{
|
|
|
|
|
total += p[3] << 6;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Ensure result is positive. */
|
|
|
|
|
if (total < 0)
|
|
|
|
|
{
|
|
|
|
|
total += (1000 << 6);
|
|
|
|
|
}
|
|
|
|
|
return (total % HASHSIZE);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* Look up a dbx type-number pair. Return the address of the slot
|
|
|
|
|
where the type for that number-pair is stored.
|
|
|
|
|
The number-pair is in TYPENUMS.
|
|
|
|
|
|
|
|
|
|
This can be used for finding the type associated with that pair
|
|
|
|
|
or for associating a new type with the pair. */
|
|
|
|
|
|
|
|
|
|
struct type **
|
|
|
|
|
dbx_lookup_type (typenums)
|
|
|
|
|
int typenums[2];
|
|
|
|
|
{
|
|
|
|
|
register int filenum = typenums[0];
|
|
|
|
|
register int index = typenums[1];
|
|
|
|
|
unsigned old_len;
|
|
|
|
|
register int real_filenum;
|
|
|
|
|
register struct header_file *f;
|
|
|
|
|
int f_orig_length;
|
|
|
|
|
|
|
|
|
|
if (filenum == -1) /* -1,-1 is for temporary types. */
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
if (filenum < 0 || filenum >= n_this_object_header_files)
|
|
|
|
|
error ("Invalid symbol data: type number (%d,%d) out of range at symtab pos %d.",
|
|
|
|
|
filenum, index, symnum);
|
|
|
|
|
|
|
|
|
|
if (filenum == 0)
|
|
|
|
|
{
|
|
|
|
|
/* Type is defined outside of header files.
|
|
|
|
|
Find it in this object file's type vector. */
|
|
|
|
|
if (index >= type_vector_length)
|
|
|
|
|
{
|
|
|
|
|
old_len = type_vector_length;
|
|
|
|
|
if (old_len == 0)
|
|
|
|
|
{
|
|
|
|
|
type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
|
|
|
|
|
type_vector = (struct type **)
|
|
|
|
|
malloc (type_vector_length * sizeof (struct type *));
|
|
|
|
|
}
|
|
|
|
|
while (index >= type_vector_length)
|
|
|
|
|
{
|
|
|
|
|
type_vector_length *= 2;
|
|
|
|
|
}
|
|
|
|
|
type_vector = (struct type **)
|
|
|
|
|
xrealloc ((char *) type_vector,
|
|
|
|
|
(type_vector_length * sizeof (struct type *)));
|
|
|
|
|
memset (&type_vector[old_len], 0,
|
|
|
|
|
(type_vector_length - old_len) * sizeof (struct type *));
|
|
|
|
|
}
|
|
|
|
|
return (&type_vector[index]);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
real_filenum = this_object_header_files[filenum];
|
|
|
|
|
|
|
|
|
|
if (real_filenum >= n_header_files)
|
|
|
|
|
{
|
|
|
|
|
abort ();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
f = &header_files[real_filenum];
|
|
|
|
|
|
|
|
|
|
f_orig_length = f->length;
|
|
|
|
|
if (index >= f_orig_length)
|
|
|
|
|
{
|
|
|
|
|
while (index >= f->length)
|
|
|
|
|
{
|
|
|
|
|
f->length *= 2;
|
|
|
|
|
}
|
|
|
|
|
f->vector = (struct type **)
|
|
|
|
|
xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
|
|
|
|
|
memset (&f->vector[f_orig_length], 0,
|
|
|
|
|
(f->length - f_orig_length) * sizeof (struct type *));
|
|
|
|
|
}
|
|
|
|
|
return (&f->vector[index]);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Make sure there is a type allocated for type numbers TYPENUMS
|
|
|
|
|
and return the type object.
|
|
|
|
|
This can create an empty (zeroed) type object.
|
|
|
|
|
TYPENUMS may be (-1, -1) to return a new type object that is not
|
|
|
|
|
put into the type vector, and so may not be referred to by number. */
|
|
|
|
|
|
|
|
|
|
static struct type *
|
|
|
|
|
dbx_alloc_type (typenums, objfile)
|
|
|
|
|
int typenums[2];
|
|
|
|
|
struct objfile *objfile;
|
|
|
|
|
{
|
|
|
|
|
register struct type **type_addr;
|
|
|
|
|
|
|
|
|
|
if (typenums[0] == -1)
|
|
|
|
|
{
|
|
|
|
|
return (alloc_type (objfile));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
type_addr = dbx_lookup_type (typenums);
|
|
|
|
|
|
|
|
|
|
/* If we are referring to a type not known at all yet,
|
|
|
|
|
allocate an empty type for it.
|
|
|
|
|
We will fill it in later if we find out how. */
|
|
|
|
|
if (*type_addr == 0)
|
|
|
|
|
{
|
|
|
|
|
*type_addr = alloc_type (objfile);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return (*type_addr);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* for all the stabs in a given stab vector, build appropriate types
|
|
|
|
|
and fix their symbols in given symbol vector. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
patch_block_stabs (symbols, stabs, objfile)
|
|
|
|
|
struct pending *symbols;
|
|
|
|
|
struct pending_stabs *stabs;
|
|
|
|
|
struct objfile *objfile;
|
|
|
|
|
{
|
|
|
|
|
int ii;
|
|
|
|
|
char *name;
|
|
|
|
|
char *pp;
|
|
|
|
|
struct symbol *sym;
|
|
|
|
|
|
|
|
|
|
if (stabs)
|
|
|
|
|
{
|
|
|
|
|
|
|
|
|
|
/* for all the stab entries, find their corresponding symbols and
|
|
|
|
|
patch their types! */
|
|
|
|
|
|
|
|
|
|
for (ii = 0; ii < stabs->count; ++ii)
|
|
|
|
|
{
|
|
|
|
|
name = stabs->stab[ii];
|
|
|
|
|
pp = (char*) strchr (name, ':');
|
|
|
|
|
sym = find_symbol_in_list (symbols, name, pp-name);
|
|
|
|
|
if (!sym)
|
|
|
|
|
{
|
|
|
|
|
#ifndef IBM6000_TARGET
|
|
|
|
|
printf ("ERROR! stab symbol not found!\n"); /* FIXME */
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
pp += 2;
|
|
|
|
|
if (*(pp-1) == 'F' || *(pp-1) == 'f')
|
|
|
|
|
{
|
|
|
|
|
SYMBOL_TYPE (sym) =
|
|
|
|
|
lookup_function_type (read_type (&pp, objfile));
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
SYMBOL_TYPE (sym) = read_type (&pp, objfile);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* Read a number by which a type is referred to in dbx data,
|
|
|
|
|
or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
|
|
|
|
|
Just a single number N is equivalent to (0,N).
|
|
|
|
|
Return the two numbers by storing them in the vector TYPENUMS.
|
|
|
|
|
TYPENUMS will then be used as an argument to dbx_lookup_type. */
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
read_type_number (pp, typenums)
|
|
|
|
|
register char **pp;
|
|
|
|
|
register int *typenums;
|
|
|
|
|
{
|
|
|
|
|
if (**pp == '(')
|
|
|
|
|
{
|
|
|
|
|
(*pp)++;
|
|
|
|
|
typenums[0] = read_number (pp, ',');
|
|
|
|
|
typenums[1] = read_number (pp, ')');
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
typenums[0] = 0;
|
|
|
|
|
typenums[1] = read_number (pp, 0);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* To handle GNU C++ typename abbreviation, we need to be able to
|
|
|
|
|
fill in a type's name as soon as space for that type is allocated.
|
|
|
|
|
`type_synonym_name' is the name of the type being allocated.
|
|
|
|
|
It is cleared as soon as it is used (lest all allocated types
|
|
|
|
|
get this name). */
|
|
|
|
|
|
|
|
|
|
static char *type_synonym_name;
|
|
|
|
|
|
|
|
|
|
/* ARGSUSED */
|
|
|
|
|
struct symbol *
|
|
|
|
|
define_symbol (valu, string, desc, type, objfile)
|
|
|
|
|
unsigned int valu;
|
|
|
|
|
char *string;
|
|
|
|
|
int desc;
|
|
|
|
|
int type;
|
|
|
|
|
struct objfile *objfile;
|
|
|
|
|
{
|
|
|
|
|
register struct symbol *sym;
|
|
|
|
|
char *p = (char *) strchr (string, ':');
|
|
|
|
|
int deftype;
|
|
|
|
|
int synonym = 0;
|
|
|
|
|
register int i;
|
|
|
|
|
struct type *temptype;
|
|
|
|
|
|
|
|
|
|
/* We would like to eliminate nameless symbols, but keep their types.
|
|
|
|
|
E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
|
|
|
|
|
to type 2, but, should not creat a symbol to address that type. Since
|
|
|
|
|
the symbol will be nameless, there is no way any user can refer to it. */
|
|
|
|
|
|
|
|
|
|
int nameless;
|
|
|
|
|
|
|
|
|
|
/* Ignore syms with empty names. */
|
|
|
|
|
if (string[0] == 0)
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
/* Ignore old-style symbols from cc -go */
|
|
|
|
|
if (p == 0)
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
/* If a nameless stab entry, all we need is the type, not the symbol.
|
|
|
|
|
e.g. ":t10=*2" */
|
|
|
|
|
nameless = (p == string);
|
|
|
|
|
|
|
|
|
|
sym = (struct symbol *)
|
|
|
|
|
obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
|
1992-08-06 21:44:36 +00:00
|
|
|
|
memset (sym, 0, sizeof (struct symbol));
|
1992-07-28 04:22:18 +00:00
|
|
|
|
|
|
|
|
|
if (processing_gcc_compilation)
|
|
|
|
|
{
|
|
|
|
|
/* GCC 2.x puts the line number in desc. SunOS apparently puts in the
|
|
|
|
|
number of bytes occupied by a type or object, which we ignore. */
|
|
|
|
|
SYMBOL_LINE(sym) = desc;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
SYMBOL_LINE(sym) = 0; /* unknown */
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (string[0] == CPLUS_MARKER)
|
|
|
|
|
{
|
|
|
|
|
/* Special GNU C++ names. */
|
|
|
|
|
switch (string[1])
|
|
|
|
|
{
|
|
|
|
|
case 't':
|
|
|
|
|
SYMBOL_NAME (sym) = obsavestring ("this", strlen ("this"),
|
|
|
|
|
&objfile -> symbol_obstack);
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case 'v': /* $vtbl_ptr_type */
|
|
|
|
|
/* Was: SYMBOL_NAME (sym) = "vptr"; */
|
|
|
|
|
goto normal;
|
|
|
|
|
|
|
|
|
|
case 'e':
|
|
|
|
|
SYMBOL_NAME (sym) = obsavestring ("eh_throw", strlen ("eh_throw"),
|
|
|
|
|
&objfile -> symbol_obstack);
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case '_':
|
|
|
|
|
/* This was an anonymous type that was never fixed up. */
|
|
|
|
|
goto normal;
|
|
|
|
|
|
|
|
|
|
default:
|
|
|
|
|
abort ();
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
normal:
|
|
|
|
|
SYMBOL_NAME (sym) = (char *)
|
|
|
|
|
obstack_alloc (&objfile -> symbol_obstack, ((p - string) + 1));
|
|
|
|
|
/* Open-coded bcopy--saves function call time. */
|
|
|
|
|
{
|
|
|
|
|
register char *p1 = string;
|
|
|
|
|
register char *p2 = SYMBOL_NAME (sym);
|
|
|
|
|
while (p1 != p)
|
|
|
|
|
{
|
|
|
|
|
*p2++ = *p1++;
|
|
|
|
|
}
|
|
|
|
|
*p2++ = '\0';
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
p++;
|
RS/6000 portability changes (for hosting cross-debuggers).
* breakpoint.c (fixup_breakpoints): Re-kludge to IBM6000_TARGET.
* buildsym.c, rs6000-xdep.c, rs6000-tdep.c, tm-rs6000.h,
xcoffexec.c, xcoffread.c: Rename aixcoff to xcoff everywhere.
* printcmd.c (print_frame_args): Remove an RS/6000 dependency.
* stabsread.c (define_symbol): Remove RS/6000 dependencies.
* tm-rs6000.h (ATTACH_DETACH): Remove: host-dependent.
(PTRACE_ATTACH, PTRACE_DETACH): Remove: host-dep.
(NO_SINGLE_STEP): Add, target-dependent.
(loadinfotextindex): Lowercase, remove "aix_".
* xm-rs6000.h: Add <sys/ptrace.h> for infptrace.c.
(NO_SINGLE_STEP): Remove, target-dependent.
* xcoffexec.c (vmap_symtab): Cleanup #if 0'd code.
* xcoffread.c: Only build file if RS/6000 native GDB.
(build_function_symbol): Remove #if 0'd code.
* rs6000-tdep.c: Cleanup. Add static fn protos.
Use CORE_ADDR for addresses throughout. Make void fns void.
(pop_dummy_frame): Add FIXME about bogosity of design here.
(rs6000_struct_return_address): Ditto.
(frameless_function_invocation, frame_get_cache_fsr,
frame_initial_stack_address, xcoff_relocate_symtab,
xcoff_init_loadinfo, free_loadinfo, xcoff_add_toc_to_loadinfo,
add_text_to_loadinfo, find_toc_address): Move from xdep file.
Use CORE_ADDRs. Change identifiers to lowercase.
* rs6000-xdep.c: Make whole file conditional on native RS/6000,
supplying dummy routines if non-native. Add prototype for
static exec_one_dummy_insn. Move a mess of functions to
rs6000-tdep.c (as above). Remove #if 0'd code.
* config/rs6000.mh (XDEPFILES): Move xcoffexec.o to target side.
(XM_CLIBS): Add -lm to circumvent AIX 3.2 libc ldexp bug.
* config/rs6000.mt (TDEPFILES): Adopt xcoffexec.o.
1992-08-29 00:32:58 +00:00
|
|
|
|
|
1992-07-28 04:22:18 +00:00
|
|
|
|
/* Determine the type of name being defined. */
|
|
|
|
|
/* The Acorn RISC machine's compiler can put out locals that don't
|
|
|
|
|
start with "234=" or "(3,4)=", so assume anything other than the
|
|
|
|
|
deftypes we know how to handle is a local. */
|
|
|
|
|
if (!strchr ("cfFGpPrStTvVXCR", *p))
|
|
|
|
|
deftype = 'l';
|
|
|
|
|
else
|
|
|
|
|
deftype = *p++;
|
|
|
|
|
|
|
|
|
|
/* c is a special case, not followed by a type-number.
|
|
|
|
|
SYMBOL:c=iVALUE for an integer constant symbol.
|
|
|
|
|
SYMBOL:c=rVALUE for a floating constant symbol.
|
|
|
|
|
SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
|
|
|
|
|
e.g. "b:c=e6,0" for "const b = blob1"
|
|
|
|
|
(where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
|
|
|
|
|
if (deftype == 'c')
|
|
|
|
|
{
|
|
|
|
|
if (*p++ != '=')
|
|
|
|
|
error ("Invalid symbol data at symtab pos %d.", symnum);
|
|
|
|
|
switch (*p++)
|
|
|
|
|
{
|
|
|
|
|
case 'r':
|
|
|
|
|
{
|
|
|
|
|
double d = atof (p);
|
|
|
|
|
char *dbl_valu;
|
|
|
|
|
|
|
|
|
|
SYMBOL_TYPE (sym) = lookup_fundamental_type (objfile,
|
|
|
|
|
FT_DBL_PREC_FLOAT);
|
|
|
|
|
dbl_valu = (char *)
|
* coffread.c (decode_type): Call alloc_type to alloc new
types.
* stabsread.c (read_array_type, read_range_type, define_symbol):
Call alloc_type to alloc new types.
* stabsread.c (define_symbol): Move dbl_valu symbol field data
from type_obstack to symbol_obstack.
* stabsread.c (define_symbol): Move typedef_sym from type_obstack
to symbol_obstack.
* gdbtypes.h (TYPE_ALLOC): New macro to allocate space for data
associated with a type, using the same mechanism as was used to
allocate space for the type structure itself.
* coffread.c (patch_type, coff_read_struct_type,
coff_read_enum_type): Use TYPE_ALLOC.
* dwarfread.c (struct_type): Use TYPE_ALLOC.
* gdbtypes.c (create_array_type, check_stub_method,
allocate_cplus_struct_type): Use TYPE_ALLOC.
* mipsread.c (parse_symbol, parse_type): Use TYPE_ALLOC.
* stabsread.c (read_struct_type, read_array_type, read_enum_type,
read_range_type): Use TYPE_ALLOC.
1992-08-24 00:13:11 +00:00
|
|
|
|
obstack_alloc (&objfile -> symbol_obstack, sizeof (double));
|
1992-07-28 04:22:18 +00:00
|
|
|
|
memcpy (dbl_valu, &d, sizeof (double));
|
|
|
|
|
SWAP_TARGET_AND_HOST (dbl_valu, sizeof (double));
|
|
|
|
|
SYMBOL_VALUE_BYTES (sym) = dbl_valu;
|
|
|
|
|
SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
case 'i':
|
|
|
|
|
{
|
|
|
|
|
SYMBOL_TYPE (sym) = lookup_fundamental_type (objfile,
|
|
|
|
|
FT_INTEGER);
|
|
|
|
|
SYMBOL_VALUE (sym) = atoi (p);
|
|
|
|
|
SYMBOL_CLASS (sym) = LOC_CONST;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
case 'e':
|
|
|
|
|
/* SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
|
|
|
|
|
e.g. "b:c=e6,0" for "const b = blob1"
|
|
|
|
|
(where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
|
|
|
|
|
{
|
|
|
|
|
int typenums[2];
|
|
|
|
|
|
|
|
|
|
read_type_number (&p, typenums);
|
|
|
|
|
if (*p++ != ',')
|
|
|
|
|
error ("Invalid symbol data: no comma in enum const symbol");
|
|
|
|
|
|
|
|
|
|
SYMBOL_TYPE (sym) = *dbx_lookup_type (typenums);
|
|
|
|
|
SYMBOL_VALUE (sym) = atoi (p);
|
|
|
|
|
SYMBOL_CLASS (sym) = LOC_CONST;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
default:
|
|
|
|
|
error ("Invalid symbol data at symtab pos %d.", symnum);
|
|
|
|
|
}
|
|
|
|
|
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
|
|
|
|
|
add_symbol_to_list (sym, &file_symbols);
|
|
|
|
|
return sym;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Now usually comes a number that says which data type,
|
|
|
|
|
and possibly more stuff to define the type
|
|
|
|
|
(all of which is handled by read_type) */
|
|
|
|
|
|
|
|
|
|
if (deftype == 'p' && *p == 'F')
|
|
|
|
|
/* pF is a two-letter code that means a function parameter in Fortran.
|
|
|
|
|
The type-number specifies the type of the return value.
|
|
|
|
|
Translate it into a pointer-to-function type. */
|
|
|
|
|
{
|
|
|
|
|
p++;
|
|
|
|
|
SYMBOL_TYPE (sym)
|
|
|
|
|
= lookup_pointer_type (lookup_function_type (read_type (&p, objfile)));
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* The symbol class letter is followed by a type (typically the
|
|
|
|
|
type of the symbol, or its return-type, or etc). Read it. */
|
|
|
|
|
|
|
|
|
|
synonym = *p == 't';
|
|
|
|
|
|
|
|
|
|
if (synonym)
|
|
|
|
|
{
|
|
|
|
|
p += 1;
|
|
|
|
|
type_synonym_name = obsavestring (SYMBOL_NAME (sym),
|
|
|
|
|
strlen (SYMBOL_NAME (sym)),
|
|
|
|
|
&objfile -> symbol_obstack);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Here we save the name of the symbol for read_range_type, which
|
|
|
|
|
ends up reading in the basic types. In stabs, unfortunately there
|
|
|
|
|
is no distinction between "int" and "long" types except their
|
|
|
|
|
names. Until we work out a saner type policy (eliminating most
|
|
|
|
|
builtin types and using the names specified in the files), we
|
|
|
|
|
save away the name so that far away from here in read_range_type,
|
|
|
|
|
we can examine it to decide between "int" and "long". FIXME. */
|
|
|
|
|
long_kludge_name = SYMBOL_NAME (sym);
|
|
|
|
|
|
|
|
|
|
SYMBOL_TYPE (sym) = read_type (&p, objfile);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
switch (deftype)
|
|
|
|
|
{
|
|
|
|
|
case 'C':
|
|
|
|
|
/* The name of a caught exception. */
|
|
|
|
|
SYMBOL_CLASS (sym) = LOC_LABEL;
|
|
|
|
|
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
|
|
|
|
|
SYMBOL_VALUE_ADDRESS (sym) = valu;
|
|
|
|
|
add_symbol_to_list (sym, &local_symbols);
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case 'f':
|
|
|
|
|
/* A static function definition. */
|
|
|
|
|
SYMBOL_CLASS (sym) = LOC_BLOCK;
|
|
|
|
|
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
|
|
|
|
|
add_symbol_to_list (sym, &file_symbols);
|
|
|
|
|
/* fall into process_function_types. */
|
|
|
|
|
|
|
|
|
|
process_function_types:
|
|
|
|
|
/* Function result types are described as the result type in stabs.
|
|
|
|
|
We need to convert this to the function-returning-type-X type
|
|
|
|
|
in GDB. E.g. "int" is converted to "function returning int". */
|
|
|
|
|
if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
|
|
|
|
|
{
|
|
|
|
|
#if 0
|
|
|
|
|
/* This code doesn't work -- it needs to realloc and can't. */
|
|
|
|
|
/* Attempt to set up to record a function prototype... */
|
* coffread.c (decode_type): Call alloc_type to alloc new
types.
* stabsread.c (read_array_type, read_range_type, define_symbol):
Call alloc_type to alloc new types.
* stabsread.c (define_symbol): Move dbl_valu symbol field data
from type_obstack to symbol_obstack.
* stabsread.c (define_symbol): Move typedef_sym from type_obstack
to symbol_obstack.
* gdbtypes.h (TYPE_ALLOC): New macro to allocate space for data
associated with a type, using the same mechanism as was used to
allocate space for the type structure itself.
* coffread.c (patch_type, coff_read_struct_type,
coff_read_enum_type): Use TYPE_ALLOC.
* dwarfread.c (struct_type): Use TYPE_ALLOC.
* gdbtypes.c (create_array_type, check_stub_method,
allocate_cplus_struct_type): Use TYPE_ALLOC.
* mipsread.c (parse_symbol, parse_type): Use TYPE_ALLOC.
* stabsread.c (read_struct_type, read_array_type, read_enum_type,
read_range_type): Use TYPE_ALLOC.
1992-08-24 00:13:11 +00:00
|
|
|
|
struct type *new = alloc_type (objfile);
|
1992-07-28 04:22:18 +00:00
|
|
|
|
|
|
|
|
|
/* Generate a template for the type of this function. The
|
|
|
|
|
types of the arguments will be added as we read the symbol
|
|
|
|
|
table. */
|
|
|
|
|
*new = *lookup_function_type (SYMBOL_TYPE(sym));
|
|
|
|
|
SYMBOL_TYPE(sym) = new;
|
|
|
|
|
TYPE_OBJFILE (new) = objfile;
|
|
|
|
|
in_function_type = new;
|
|
|
|
|
#else
|
|
|
|
|
SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
/* fall into process_prototype_types */
|
|
|
|
|
|
|
|
|
|
process_prototype_types:
|
|
|
|
|
/* Sun acc puts declared types of arguments here. We don't care
|
|
|
|
|
about their actual types (FIXME -- we should remember the whole
|
|
|
|
|
function prototype), but the list may define some new types
|
|
|
|
|
that we have to remember, so we must scan it now. */
|
|
|
|
|
while (*p == ';') {
|
|
|
|
|
p++;
|
|
|
|
|
read_type (&p, objfile);
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case 'F':
|
|
|
|
|
/* A global function definition. */
|
|
|
|
|
SYMBOL_CLASS (sym) = LOC_BLOCK;
|
|
|
|
|
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
|
|
|
|
|
add_symbol_to_list (sym, &global_symbols);
|
|
|
|
|
goto process_function_types;
|
|
|
|
|
|
|
|
|
|
case 'G':
|
|
|
|
|
/* For a class G (global) symbol, it appears that the
|
|
|
|
|
value is not correct. It is necessary to search for the
|
|
|
|
|
corresponding linker definition to find the value.
|
|
|
|
|
These definitions appear at the end of the namelist. */
|
|
|
|
|
i = hashname (SYMBOL_NAME (sym));
|
|
|
|
|
SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
|
|
|
|
|
global_sym_chain[i] = sym;
|
|
|
|
|
SYMBOL_CLASS (sym) = LOC_STATIC;
|
|
|
|
|
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
|
|
|
|
|
add_symbol_to_list (sym, &global_symbols);
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
/* This case is faked by a conditional above,
|
|
|
|
|
when there is no code letter in the dbx data.
|
|
|
|
|
Dbx data never actually contains 'l'. */
|
|
|
|
|
case 'l':
|
|
|
|
|
SYMBOL_CLASS (sym) = LOC_LOCAL;
|
|
|
|
|
SYMBOL_VALUE (sym) = valu;
|
|
|
|
|
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
|
|
|
|
|
add_symbol_to_list (sym, &local_symbols);
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case 'p':
|
|
|
|
|
/* Normally this is a parameter, a LOC_ARG. On the i960, it
|
|
|
|
|
can also be a LOC_LOCAL_ARG depending on symbol type. */
|
|
|
|
|
#ifndef DBX_PARM_SYMBOL_CLASS
|
|
|
|
|
#define DBX_PARM_SYMBOL_CLASS(type) LOC_ARG
|
|
|
|
|
#endif
|
|
|
|
|
SYMBOL_CLASS (sym) = DBX_PARM_SYMBOL_CLASS (type);
|
|
|
|
|
SYMBOL_VALUE (sym) = valu;
|
|
|
|
|
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
|
|
|
|
|
#if 0
|
|
|
|
|
/* This doesn't work yet. */
|
|
|
|
|
add_param_to_type (&in_function_type, sym);
|
|
|
|
|
#endif
|
|
|
|
|
add_symbol_to_list (sym, &local_symbols);
|
|
|
|
|
|
|
|
|
|
/* If it's gcc-compiled, if it says `short', believe it. */
|
|
|
|
|
if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION)
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
#if defined(BELIEVE_PCC_PROMOTION_TYPE)
|
|
|
|
|
/* This macro is defined on machines (e.g. sparc) where
|
|
|
|
|
we should believe the type of a PCC 'short' argument,
|
|
|
|
|
but shouldn't believe the address (the address is
|
|
|
|
|
the address of the corresponding int). Note that
|
|
|
|
|
this is only different from the BELIEVE_PCC_PROMOTION
|
|
|
|
|
case on big-endian machines.
|
|
|
|
|
|
|
|
|
|
My guess is that this correction, as opposed to changing
|
|
|
|
|
the parameter to an 'int' (as done below, for PCC
|
|
|
|
|
on most machines), is the right thing to do
|
|
|
|
|
on all machines, but I don't want to risk breaking
|
|
|
|
|
something that already works. On most PCC machines,
|
|
|
|
|
the sparc problem doesn't come up because the calling
|
|
|
|
|
function has to zero the top bytes (not knowing whether
|
|
|
|
|
the called function wants an int or a short), so there
|
|
|
|
|
is no practical difference between an int and a short
|
|
|
|
|
(except perhaps what happens when the GDB user types
|
|
|
|
|
"print short_arg = 0x10000;").
|
|
|
|
|
|
|
|
|
|
Hacked for SunOS 4.1 by gnu@cygnus.com. In 4.1, the compiler
|
|
|
|
|
actually produces the correct address (we don't need to fix it
|
|
|
|
|
up). I made this code adapt so that it will offset the symbol
|
|
|
|
|
if it was pointing at an int-aligned location and not
|
|
|
|
|
otherwise. This way you can use the same gdb for 4.0.x and
|
|
|
|
|
4.1 systems.
|
|
|
|
|
|
|
|
|
|
If the parameter is shorter than an int, and is integral
|
|
|
|
|
(e.g. char, short, or unsigned equivalent), and is claimed to
|
|
|
|
|
be passed on an integer boundary, don't believe it! Offset the
|
|
|
|
|
parameter's address to the tail-end of that integer. */
|
|
|
|
|
|
|
|
|
|
temptype = lookup_fundamental_type (objfile, FT_INTEGER);
|
|
|
|
|
if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (temptype)
|
|
|
|
|
&& TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT
|
|
|
|
|
&& 0 == SYMBOL_VALUE (sym) % TYPE_LENGTH (temptype))
|
|
|
|
|
{
|
|
|
|
|
SYMBOL_VALUE (sym) += TYPE_LENGTH (temptype)
|
|
|
|
|
- TYPE_LENGTH (SYMBOL_TYPE (sym));
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
#else /* no BELIEVE_PCC_PROMOTION_TYPE. */
|
|
|
|
|
|
|
|
|
|
/* If PCC says a parameter is a short or a char,
|
|
|
|
|
it is really an int. */
|
|
|
|
|
temptype = lookup_fundamental_type (objfile, FT_INTEGER);
|
|
|
|
|
if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (temptype)
|
|
|
|
|
&& TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
|
|
|
|
|
{
|
|
|
|
|
SYMBOL_TYPE (sym) = TYPE_UNSIGNED (SYMBOL_TYPE (sym))
|
|
|
|
|
? lookup_fundamental_type (objfile, FT_UNSIGNED_INTEGER)
|
|
|
|
|
: temptype;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
#endif /* no BELIEVE_PCC_PROMOTION_TYPE. */
|
|
|
|
|
|
|
|
|
|
case 'P':
|
|
|
|
|
/* acc seems to use P to delare the prototypes of functions that
|
|
|
|
|
are referenced by this file. gdb is not prepared to deal
|
|
|
|
|
with this extra information. FIXME, it ought to. */
|
|
|
|
|
if (type == N_FUN)
|
|
|
|
|
goto process_prototype_types;
|
|
|
|
|
|
|
|
|
|
/* Parameter which is in a register. */
|
|
|
|
|
SYMBOL_CLASS (sym) = LOC_REGPARM;
|
|
|
|
|
SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
|
|
|
|
|
if (SYMBOL_VALUE (sym) >= NUM_REGS)
|
|
|
|
|
{
|
|
|
|
|
complain (®_value_complaint, SYMBOL_NAME (sym));
|
|
|
|
|
SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
|
|
|
|
|
}
|
|
|
|
|
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
|
|
|
|
|
add_symbol_to_list (sym, &local_symbols);
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case 'R':
|
|
|
|
|
case 'r':
|
|
|
|
|
/* Register variable (either global or local). */
|
|
|
|
|
SYMBOL_CLASS (sym) = LOC_REGISTER;
|
|
|
|
|
SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
|
|
|
|
|
if (SYMBOL_VALUE (sym) >= NUM_REGS)
|
|
|
|
|
{
|
|
|
|
|
complain (®_value_complaint, SYMBOL_NAME (sym));
|
|
|
|
|
SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
|
|
|
|
|
}
|
|
|
|
|
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
|
|
|
|
|
if (within_function)
|
|
|
|
|
add_symbol_to_list (sym, &local_symbols);
|
|
|
|
|
else
|
|
|
|
|
add_symbol_to_list (sym, &file_symbols);
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case 'S':
|
|
|
|
|
/* Static symbol at top level of file */
|
|
|
|
|
SYMBOL_CLASS (sym) = LOC_STATIC;
|
|
|
|
|
SYMBOL_VALUE_ADDRESS (sym) = valu;
|
|
|
|
|
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
|
|
|
|
|
add_symbol_to_list (sym, &file_symbols);
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case 't':
|
|
|
|
|
/* For a nameless type, we don't want a create a symbol, thus we
|
|
|
|
|
did not use `sym'. Return without further processing. */
|
|
|
|
|
if (nameless) return NULL;
|
|
|
|
|
|
|
|
|
|
SYMBOL_CLASS (sym) = LOC_TYPEDEF;
|
|
|
|
|
SYMBOL_VALUE (sym) = valu;
|
|
|
|
|
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
|
|
|
|
|
/* C++ vagaries: we may have a type which is derived from
|
|
|
|
|
a base type which did not have its name defined when the
|
|
|
|
|
derived class was output. We fill in the derived class's
|
|
|
|
|
base part member's name here in that case. */
|
|
|
|
|
if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
|
|
|
|
|
if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
|
|
|
|
|
|| TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
|
|
|
|
|
&& TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
|
|
|
|
|
{
|
|
|
|
|
int j;
|
|
|
|
|
for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
|
|
|
|
|
if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
|
|
|
|
|
TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
|
|
|
|
|
type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
add_symbol_to_list (sym, &file_symbols);
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case 'T':
|
|
|
|
|
/* For a nameless type, we don't want a create a symbol, thus we
|
|
|
|
|
did not use `sym'. Return without further processing. */
|
|
|
|
|
if (nameless) return NULL;
|
|
|
|
|
|
|
|
|
|
SYMBOL_CLASS (sym) = LOC_TYPEDEF;
|
|
|
|
|
SYMBOL_VALUE (sym) = valu;
|
|
|
|
|
SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
|
|
|
|
|
if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
|
|
|
|
|
TYPE_NAME (SYMBOL_TYPE (sym))
|
|
|
|
|
= obconcat (&objfile -> type_obstack, "",
|
|
|
|
|
(TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_ENUM
|
|
|
|
|
? "enum "
|
|
|
|
|
: (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
|
|
|
|
|
? "struct " : "union ")),
|
|
|
|
|
SYMBOL_NAME (sym));
|
|
|
|
|
add_symbol_to_list (sym, &file_symbols);
|
|
|
|
|
|
|
|
|
|
if (synonym)
|
|
|
|
|
{
|
|
|
|
|
register struct symbol *typedef_sym = (struct symbol *)
|
* coffread.c (decode_type): Call alloc_type to alloc new
types.
* stabsread.c (read_array_type, read_range_type, define_symbol):
Call alloc_type to alloc new types.
* stabsread.c (define_symbol): Move dbl_valu symbol field data
from type_obstack to symbol_obstack.
* stabsread.c (define_symbol): Move typedef_sym from type_obstack
to symbol_obstack.
* gdbtypes.h (TYPE_ALLOC): New macro to allocate space for data
associated with a type, using the same mechanism as was used to
allocate space for the type structure itself.
* coffread.c (patch_type, coff_read_struct_type,
coff_read_enum_type): Use TYPE_ALLOC.
* dwarfread.c (struct_type): Use TYPE_ALLOC.
* gdbtypes.c (create_array_type, check_stub_method,
allocate_cplus_struct_type): Use TYPE_ALLOC.
* mipsread.c (parse_symbol, parse_type): Use TYPE_ALLOC.
* stabsread.c (read_struct_type, read_array_type, read_enum_type,
read_range_type): Use TYPE_ALLOC.
1992-08-24 00:13:11 +00:00
|
|
|
|
obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
|
1992-08-06 21:44:36 +00:00
|
|
|
|
memset (typedef_sym, 0, sizeof (struct symbol));
|
1992-07-28 04:22:18 +00:00
|
|
|
|
SYMBOL_NAME (typedef_sym) = SYMBOL_NAME (sym);
|
|
|
|
|
SYMBOL_TYPE (typedef_sym) = SYMBOL_TYPE (sym);
|
|
|
|
|
|
|
|
|
|
SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
|
|
|
|
|
SYMBOL_VALUE (typedef_sym) = valu;
|
|
|
|
|
SYMBOL_NAMESPACE (typedef_sym) = VAR_NAMESPACE;
|
|
|
|
|
add_symbol_to_list (typedef_sym, &file_symbols);
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case 'V':
|
|
|
|
|
/* Static symbol of local scope */
|
|
|
|
|
SYMBOL_CLASS (sym) = LOC_STATIC;
|
|
|
|
|
SYMBOL_VALUE_ADDRESS (sym) = valu;
|
|
|
|
|
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
|
|
|
|
|
add_symbol_to_list (sym, &local_symbols);
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case 'v':
|
|
|
|
|
/* Reference parameter */
|
|
|
|
|
SYMBOL_CLASS (sym) = LOC_REF_ARG;
|
|
|
|
|
SYMBOL_VALUE (sym) = valu;
|
|
|
|
|
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
|
|
|
|
|
add_symbol_to_list (sym, &local_symbols);
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case 'X':
|
|
|
|
|
/* This is used by Sun FORTRAN for "function result value".
|
|
|
|
|
Sun claims ("dbx and dbxtool interfaces", 2nd ed)
|
|
|
|
|
that Pascal uses it too, but when I tried it Pascal used
|
|
|
|
|
"x:3" (local symbol) instead. */
|
|
|
|
|
SYMBOL_CLASS (sym) = LOC_LOCAL;
|
|
|
|
|
SYMBOL_VALUE (sym) = valu;
|
|
|
|
|
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
|
|
|
|
|
add_symbol_to_list (sym, &local_symbols);
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
default:
|
|
|
|
|
error ("Invalid symbol data: unknown symbol-type code `%c' at symtab pos %d.", deftype, symnum);
|
|
|
|
|
}
|
|
|
|
|
return sym;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* Skip rest of this symbol and return an error type.
|
|
|
|
|
|
|
|
|
|
General notes on error recovery: error_type always skips to the
|
|
|
|
|
end of the symbol (modulo cretinous dbx symbol name continuation).
|
|
|
|
|
Thus code like this:
|
|
|
|
|
|
|
|
|
|
if (*(*pp)++ != ';')
|
|
|
|
|
return error_type (pp);
|
|
|
|
|
|
|
|
|
|
is wrong because if *pp starts out pointing at '\0' (typically as the
|
|
|
|
|
result of an earlier error), it will be incremented to point to the
|
|
|
|
|
start of the next symbol, which might produce strange results, at least
|
|
|
|
|
if you run off the end of the string table. Instead use
|
|
|
|
|
|
|
|
|
|
if (**pp != ';')
|
|
|
|
|
return error_type (pp);
|
|
|
|
|
++*pp;
|
|
|
|
|
|
|
|
|
|
or
|
|
|
|
|
|
|
|
|
|
if (**pp != ';')
|
|
|
|
|
foo = error_type (pp);
|
|
|
|
|
else
|
|
|
|
|
++*pp;
|
|
|
|
|
|
|
|
|
|
And in case it isn't obvious, the point of all this hair is so the compiler
|
|
|
|
|
can define new types and new syntaxes, and old versions of the
|
|
|
|
|
debugger will be able to read the new symbol tables. */
|
|
|
|
|
|
|
|
|
|
struct type *
|
|
|
|
|
error_type (pp)
|
|
|
|
|
char **pp;
|
|
|
|
|
{
|
|
|
|
|
complain (&error_type_complaint, 0);
|
|
|
|
|
while (1)
|
|
|
|
|
{
|
|
|
|
|
/* Skip to end of symbol. */
|
|
|
|
|
while (**pp != '\0')
|
|
|
|
|
(*pp)++;
|
|
|
|
|
|
|
|
|
|
/* Check for and handle cretinous dbx symbol name continuation! */
|
|
|
|
|
if ((*pp)[-1] == '\\')
|
|
|
|
|
*pp = next_symbol_text ();
|
|
|
|
|
else
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
return builtin_type_error;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* Read a dbx type reference or definition;
|
|
|
|
|
return the type that is meant.
|
|
|
|
|
This can be just a number, in which case it references
|
|
|
|
|
a type already defined and placed in type_vector.
|
|
|
|
|
Or the number can be followed by an =, in which case
|
|
|
|
|
it means to define a new type according to the text that
|
|
|
|
|
follows the =. */
|
|
|
|
|
|
|
|
|
|
struct type *
|
|
|
|
|
read_type (pp, objfile)
|
|
|
|
|
register char **pp;
|
|
|
|
|
struct objfile *objfile;
|
|
|
|
|
{
|
|
|
|
|
register struct type *type = 0;
|
|
|
|
|
struct type *type1;
|
|
|
|
|
int typenums[2];
|
|
|
|
|
int xtypenums[2];
|
|
|
|
|
|
|
|
|
|
/* Read type number if present. The type number may be omitted.
|
|
|
|
|
for instance in a two-dimensional array declared with type
|
|
|
|
|
"ar1;1;10;ar1;1;10;4". */
|
|
|
|
|
if ((**pp >= '0' && **pp <= '9')
|
|
|
|
|
|| **pp == '(')
|
|
|
|
|
{
|
|
|
|
|
read_type_number (pp, typenums);
|
|
|
|
|
|
|
|
|
|
/* Type is not being defined here. Either it already exists,
|
|
|
|
|
or this is a forward reference to it. dbx_alloc_type handles
|
|
|
|
|
both cases. */
|
|
|
|
|
if (**pp != '=')
|
|
|
|
|
return dbx_alloc_type (typenums, objfile);
|
|
|
|
|
|
|
|
|
|
/* Type is being defined here. */
|
|
|
|
|
#if 0 /* Callers aren't prepared for a NULL result! FIXME -- metin! */
|
|
|
|
|
{
|
|
|
|
|
struct type *tt;
|
|
|
|
|
|
|
|
|
|
/* if such a type already exists, this is an unnecessary duplication
|
|
|
|
|
of the stab string, which is common in (RS/6000) xlc generated
|
|
|
|
|
objects. In that case, simply return NULL and let the caller take
|
|
|
|
|
care of it. */
|
|
|
|
|
|
|
|
|
|
tt = *dbx_lookup_type (typenums);
|
|
|
|
|
if (tt && tt->length && tt->code)
|
|
|
|
|
return NULL;
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
*pp += 2;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* 'typenums=' not present, type is anonymous. Read and return
|
|
|
|
|
the definition, but don't put it in the type vector. */
|
|
|
|
|
typenums[0] = typenums[1] = -1;
|
|
|
|
|
*pp += 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
switch ((*pp)[-1])
|
|
|
|
|
{
|
|
|
|
|
case 'x':
|
|
|
|
|
{
|
|
|
|
|
enum type_code code;
|
|
|
|
|
|
|
|
|
|
/* Used to index through file_symbols. */
|
|
|
|
|
struct pending *ppt;
|
|
|
|
|
int i;
|
|
|
|
|
|
|
|
|
|
/* Name including "struct", etc. */
|
|
|
|
|
char *type_name;
|
|
|
|
|
|
|
|
|
|
/* Name without "struct", etc. */
|
|
|
|
|
char *type_name_only;
|
|
|
|
|
|
|
|
|
|
{
|
|
|
|
|
char *prefix;
|
|
|
|
|
char *from, *to;
|
|
|
|
|
|
|
|
|
|
/* Set the type code according to the following letter. */
|
|
|
|
|
switch ((*pp)[0])
|
|
|
|
|
{
|
|
|
|
|
case 's':
|
|
|
|
|
code = TYPE_CODE_STRUCT;
|
|
|
|
|
prefix = "struct ";
|
|
|
|
|
break;
|
|
|
|
|
case 'u':
|
|
|
|
|
code = TYPE_CODE_UNION;
|
|
|
|
|
prefix = "union ";
|
|
|
|
|
break;
|
|
|
|
|
case 'e':
|
|
|
|
|
code = TYPE_CODE_ENUM;
|
|
|
|
|
prefix = "enum ";
|
|
|
|
|
break;
|
|
|
|
|
default:
|
|
|
|
|
return error_type (pp);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
to = type_name = (char *)
|
|
|
|
|
obstack_alloc (&objfile -> type_obstack,
|
|
|
|
|
(strlen (prefix) +
|
|
|
|
|
((char *) strchr (*pp, ':') - (*pp)) + 1));
|
|
|
|
|
|
|
|
|
|
/* Copy the prefix. */
|
|
|
|
|
from = prefix;
|
|
|
|
|
while (*to++ = *from++)
|
|
|
|
|
;
|
|
|
|
|
to--;
|
|
|
|
|
|
|
|
|
|
type_name_only = to;
|
|
|
|
|
|
|
|
|
|
/* Copy the name. */
|
|
|
|
|
from = *pp + 1;
|
|
|
|
|
while ((*to++ = *from++) != ':')
|
|
|
|
|
;
|
|
|
|
|
*--to = '\0';
|
|
|
|
|
|
|
|
|
|
/* Set the pointer ahead of the name which we just read. */
|
|
|
|
|
*pp = from;
|
|
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
|
/* The following hack is clearly wrong, because it doesn't
|
|
|
|
|
check whether we are in a baseclass. I tried to reproduce
|
|
|
|
|
the case that it is trying to fix, but I couldn't get
|
|
|
|
|
g++ to put out a cross reference to a basetype. Perhaps
|
|
|
|
|
it doesn't do it anymore. */
|
|
|
|
|
/* Note: for C++, the cross reference may be to a base type which
|
|
|
|
|
has not yet been seen. In this case, we skip to the comma,
|
|
|
|
|
which will mark the end of the base class name. (The ':'
|
|
|
|
|
at the end of the base class name will be skipped as well.)
|
|
|
|
|
But sometimes (ie. when the cross ref is the last thing on
|
|
|
|
|
the line) there will be no ','. */
|
|
|
|
|
from = (char *) strchr (*pp, ',');
|
|
|
|
|
if (from)
|
|
|
|
|
*pp = from;
|
|
|
|
|
#endif /* 0 */
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Now check to see whether the type has already been declared. */
|
|
|
|
|
/* This is necessary at least in the case where the
|
|
|
|
|
program says something like
|
|
|
|
|
struct foo bar[5];
|
|
|
|
|
The compiler puts out a cross-reference; we better find
|
|
|
|
|
set the length of the structure correctly so we can
|
|
|
|
|
set the length of the array. */
|
|
|
|
|
for (ppt = file_symbols; ppt; ppt = ppt->next)
|
|
|
|
|
for (i = 0; i < ppt->nsyms; i++)
|
|
|
|
|
{
|
|
|
|
|
struct symbol *sym = ppt->symbol[i];
|
|
|
|
|
|
|
|
|
|
if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
|
|
|
|
|
&& SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
|
|
|
|
|
&& (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
|
|
|
|
|
&& !strcmp (SYMBOL_NAME (sym), type_name_only))
|
|
|
|
|
{
|
|
|
|
|
obstack_free (&objfile -> type_obstack, type_name);
|
|
|
|
|
type = SYMBOL_TYPE (sym);
|
|
|
|
|
return type;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Didn't find the type to which this refers, so we must
|
|
|
|
|
be dealing with a forward reference. Allocate a type
|
|
|
|
|
structure for it, and keep track of it so we can
|
|
|
|
|
fill in the rest of the fields when we get the full
|
|
|
|
|
type. */
|
|
|
|
|
type = dbx_alloc_type (typenums, objfile);
|
|
|
|
|
TYPE_CODE (type) = code;
|
|
|
|
|
TYPE_NAME (type) = type_name;
|
|
|
|
|
INIT_CPLUS_SPECIFIC(type);
|
|
|
|
|
TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
|
|
|
|
|
|
|
|
|
|
add_undefined_type (type);
|
|
|
|
|
return type;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
case '-': /* RS/6000 built-in type */
|
|
|
|
|
(*pp)--;
|
|
|
|
|
type = builtin_type (pp); /* (in xcoffread.c) */
|
|
|
|
|
goto after_digits;
|
|
|
|
|
|
|
|
|
|
case '0':
|
|
|
|
|
case '1':
|
|
|
|
|
case '2':
|
|
|
|
|
case '3':
|
|
|
|
|
case '4':
|
|
|
|
|
case '5':
|
|
|
|
|
case '6':
|
|
|
|
|
case '7':
|
|
|
|
|
case '8':
|
|
|
|
|
case '9':
|
|
|
|
|
case '(':
|
|
|
|
|
(*pp)--;
|
|
|
|
|
read_type_number (pp, xtypenums);
|
|
|
|
|
type = *dbx_lookup_type (xtypenums);
|
|
|
|
|
/* fall through */
|
|
|
|
|
|
|
|
|
|
after_digits:
|
|
|
|
|
if (type == 0)
|
|
|
|
|
type = lookup_fundamental_type (objfile, FT_VOID);
|
|
|
|
|
if (typenums[0] != -1)
|
|
|
|
|
*dbx_lookup_type (typenums) = type;
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
/* In the following types, we must be sure to overwrite any existing
|
|
|
|
|
type that the typenums refer to, rather than allocating a new one
|
|
|
|
|
and making the typenums point to the new one. This is because there
|
|
|
|
|
may already be pointers to the existing type (if it had been
|
|
|
|
|
forward-referenced), and we must change it to a pointer, function,
|
|
|
|
|
reference, or whatever, *in-place*. */
|
|
|
|
|
|
|
|
|
|
case '*':
|
|
|
|
|
type1 = read_type (pp, objfile);
|
|
|
|
|
type = make_pointer_type (type1, dbx_lookup_type (typenums));
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case '&': /* Reference to another type */
|
|
|
|
|
type1 = read_type (pp, objfile);
|
|
|
|
|
type = make_reference_type (type1, dbx_lookup_type (typenums));
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case 'f': /* Function returning another type */
|
|
|
|
|
type1 = read_type (pp, objfile);
|
|
|
|
|
type = make_function_type (type1, dbx_lookup_type (typenums));
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case 'k': /* Const qualifier on some type (Sun) */
|
|
|
|
|
type = read_type (pp, objfile);
|
|
|
|
|
/* FIXME! For now, we ignore const and volatile qualifiers. */
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case 'B': /* Volatile qual on some type (Sun) */
|
|
|
|
|
type = read_type (pp, objfile);
|
|
|
|
|
/* FIXME! For now, we ignore const and volatile qualifiers. */
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
/* FIXME -- we should be doing smash_to_XXX types here. */
|
|
|
|
|
case '@': /* Member (class & variable) type */
|
|
|
|
|
{
|
|
|
|
|
struct type *domain = read_type (pp, objfile);
|
|
|
|
|
struct type *memtype;
|
|
|
|
|
|
|
|
|
|
if (**pp != ',')
|
|
|
|
|
/* Invalid member type data format. */
|
|
|
|
|
return error_type (pp);
|
|
|
|
|
++*pp;
|
|
|
|
|
|
|
|
|
|
memtype = read_type (pp, objfile);
|
|
|
|
|
type = dbx_alloc_type (typenums, objfile);
|
|
|
|
|
smash_to_member_type (type, domain, memtype);
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case '#': /* Method (class & fn) type */
|
|
|
|
|
if ((*pp)[0] == '#')
|
|
|
|
|
{
|
1992-09-10 00:07:06 +00:00
|
|
|
|
/* We'll get the parameter types from the name. */
|
1992-07-28 04:22:18 +00:00
|
|
|
|
struct type *return_type;
|
|
|
|
|
|
|
|
|
|
*pp += 1;
|
|
|
|
|
return_type = read_type (pp, objfile);
|
|
|
|
|
if (*(*pp)++ != ';')
|
|
|
|
|
complain (&invalid_member_complaint, (char *) symnum);
|
|
|
|
|
type = allocate_stub_method (return_type);
|
|
|
|
|
if (typenums[0] != -1)
|
|
|
|
|
*dbx_lookup_type (typenums) = type;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
struct type *domain = read_type (pp, objfile);
|
|
|
|
|
struct type *return_type;
|
|
|
|
|
struct type **args;
|
|
|
|
|
|
|
|
|
|
if (*(*pp)++ != ',')
|
|
|
|
|
error ("invalid member type data format, at symtab pos %d.",
|
|
|
|
|
symnum);
|
|
|
|
|
|
|
|
|
|
return_type = read_type (pp, objfile);
|
|
|
|
|
args = read_args (pp, ';', objfile);
|
|
|
|
|
type = dbx_alloc_type (typenums, objfile);
|
|
|
|
|
smash_to_method_type (type, domain, return_type, args);
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case 'r': /* Range type */
|
|
|
|
|
type = read_range_type (pp, typenums, objfile);
|
|
|
|
|
if (typenums[0] != -1)
|
|
|
|
|
*dbx_lookup_type (typenums) = type;
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case 'b': /* Sun ACC builtin int type */
|
|
|
|
|
type = read_sun_builtin_type (pp, typenums, objfile);
|
|
|
|
|
if (typenums[0] != -1)
|
|
|
|
|
*dbx_lookup_type (typenums) = type;
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case 'R': /* Sun ACC builtin float type */
|
|
|
|
|
type = read_sun_floating_type (pp, typenums, objfile);
|
|
|
|
|
if (typenums[0] != -1)
|
|
|
|
|
*dbx_lookup_type (typenums) = type;
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case 'e': /* Enumeration type */
|
|
|
|
|
type = dbx_alloc_type (typenums, objfile);
|
|
|
|
|
type = read_enum_type (pp, type, objfile);
|
|
|
|
|
*dbx_lookup_type (typenums) = type;
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case 's': /* Struct type */
|
|
|
|
|
type = dbx_alloc_type (typenums, objfile);
|
|
|
|
|
if (!TYPE_NAME (type))
|
|
|
|
|
TYPE_NAME (type) = type_synonym_name;
|
|
|
|
|
type_synonym_name = 0;
|
|
|
|
|
type = read_struct_type (pp, type, objfile);
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case 'u': /* Union type */
|
|
|
|
|
type = dbx_alloc_type (typenums, objfile);
|
|
|
|
|
if (!TYPE_NAME (type))
|
|
|
|
|
TYPE_NAME (type) = type_synonym_name;
|
|
|
|
|
type_synonym_name = 0;
|
|
|
|
|
type = read_struct_type (pp, type, objfile);
|
|
|
|
|
TYPE_CODE (type) = TYPE_CODE_UNION;
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case 'a': /* Array type */
|
|
|
|
|
if (**pp != 'r')
|
|
|
|
|
return error_type (pp);
|
|
|
|
|
++*pp;
|
|
|
|
|
|
|
|
|
|
type = dbx_alloc_type (typenums, objfile);
|
|
|
|
|
type = read_array_type (pp, type, objfile);
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
default:
|
|
|
|
|
--*pp; /* Go back to the symbol in error */
|
|
|
|
|
/* Particularly important if it was \0! */
|
|
|
|
|
return error_type (pp);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (type == 0)
|
|
|
|
|
abort ();
|
|
|
|
|
|
|
|
|
|
return type;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* This page contains subroutines of read_type. */
|
|
|
|
|
|
|
|
|
|
/* Read the description of a structure (or union type)
|
|
|
|
|
and return an object describing the type. */
|
|
|
|
|
|
|
|
|
|
static struct type *
|
|
|
|
|
read_struct_type (pp, type, objfile)
|
|
|
|
|
char **pp;
|
|
|
|
|
register struct type *type;
|
|
|
|
|
struct objfile *objfile;
|
|
|
|
|
{
|
|
|
|
|
/* Total number of methods defined in this class.
|
|
|
|
|
If the class defines two `f' methods, and one `g' method,
|
|
|
|
|
then this will have the value 3. */
|
|
|
|
|
int total_length = 0;
|
|
|
|
|
|
|
|
|
|
struct nextfield
|
|
|
|
|
{
|
|
|
|
|
struct nextfield *next;
|
|
|
|
|
int visibility; /* 0=public, 1=protected, 2=public */
|
|
|
|
|
struct field field;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
struct next_fnfield
|
|
|
|
|
{
|
|
|
|
|
struct next_fnfield *next;
|
|
|
|
|
struct fn_field fn_field;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
struct next_fnfieldlist
|
|
|
|
|
{
|
|
|
|
|
struct next_fnfieldlist *next;
|
|
|
|
|
struct fn_fieldlist fn_fieldlist;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
register struct nextfield *list = 0;
|
|
|
|
|
struct nextfield *new;
|
|
|
|
|
register char *p;
|
|
|
|
|
int nfields = 0;
|
|
|
|
|
int non_public_fields = 0;
|
|
|
|
|
register int n;
|
|
|
|
|
|
|
|
|
|
register struct next_fnfieldlist *mainlist = 0;
|
|
|
|
|
int nfn_fields = 0;
|
|
|
|
|
|
|
|
|
|
TYPE_CODE (type) = TYPE_CODE_STRUCT;
|
|
|
|
|
INIT_CPLUS_SPECIFIC(type);
|
|
|
|
|
TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
|
|
|
|
|
|
|
|
|
|
/* First comes the total size in bytes. */
|
|
|
|
|
|
|
|
|
|
TYPE_LENGTH (type) = read_number (pp, 0);
|
|
|
|
|
|
|
|
|
|
/* C++: Now, if the class is a derived class, then the next character
|
|
|
|
|
will be a '!', followed by the number of base classes derived from.
|
|
|
|
|
Each element in the list contains visibility information,
|
|
|
|
|
the offset of this base class in the derived structure,
|
|
|
|
|
and then the base type. */
|
|
|
|
|
if (**pp == '!')
|
|
|
|
|
{
|
|
|
|
|
int i, n_baseclasses, offset;
|
|
|
|
|
struct type *baseclass;
|
|
|
|
|
int via_public;
|
|
|
|
|
|
|
|
|
|
/* Nonzero if it is a virtual baseclass, i.e.,
|
|
|
|
|
|
|
|
|
|
struct A{};
|
|
|
|
|
struct B{};
|
|
|
|
|
struct C : public B, public virtual A {};
|
|
|
|
|
|
|
|
|
|
B is a baseclass of C; A is a virtual baseclass for C. This is a C++
|
|
|
|
|
2.0 language feature. */
|
|
|
|
|
int via_virtual;
|
|
|
|
|
|
|
|
|
|
*pp += 1;
|
|
|
|
|
|
|
|
|
|
ALLOCATE_CPLUS_STRUCT_TYPE(type);
|
|
|
|
|
|
|
|
|
|
n_baseclasses = read_number (pp, ',');
|
1992-09-22 02:33:11 +00:00
|
|
|
|
/* Some stupid compilers have trouble with the following, so break
|
|
|
|
|
it up into simpler expressions. */
|
|
|
|
|
#if 0
|
1992-08-06 21:44:36 +00:00
|
|
|
|
TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
|
* coffread.c (decode_type): Call alloc_type to alloc new
types.
* stabsread.c (read_array_type, read_range_type, define_symbol):
Call alloc_type to alloc new types.
* stabsread.c (define_symbol): Move dbl_valu symbol field data
from type_obstack to symbol_obstack.
* stabsread.c (define_symbol): Move typedef_sym from type_obstack
to symbol_obstack.
* gdbtypes.h (TYPE_ALLOC): New macro to allocate space for data
associated with a type, using the same mechanism as was used to
allocate space for the type structure itself.
* coffread.c (patch_type, coff_read_struct_type,
coff_read_enum_type): Use TYPE_ALLOC.
* dwarfread.c (struct_type): Use TYPE_ALLOC.
* gdbtypes.c (create_array_type, check_stub_method,
allocate_cplus_struct_type): Use TYPE_ALLOC.
* mipsread.c (parse_symbol, parse_type): Use TYPE_ALLOC.
* stabsread.c (read_struct_type, read_array_type, read_enum_type,
read_range_type): Use TYPE_ALLOC.
1992-08-24 00:13:11 +00:00
|
|
|
|
TYPE_ALLOC (type, B_BYTES (n_baseclasses));
|
1992-09-22 02:33:11 +00:00
|
|
|
|
#else
|
|
|
|
|
{
|
|
|
|
|
int num_bytes = B_BYTES (n_baseclasses);
|
|
|
|
|
char *pointer;
|
|
|
|
|
|
|
|
|
|
pointer = (char *) TYPE_ALLOC (type, num_bytes);
|
|
|
|
|
TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
|
|
|
|
|
}
|
|
|
|
|
#endif /* 0 */
|
|
|
|
|
|
1992-07-28 04:22:18 +00:00
|
|
|
|
B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), n_baseclasses);
|
|
|
|
|
|
|
|
|
|
for (i = 0; i < n_baseclasses; i++)
|
|
|
|
|
{
|
|
|
|
|
if (**pp == '\\')
|
|
|
|
|
*pp = next_symbol_text ();
|
|
|
|
|
|
|
|
|
|
switch (**pp)
|
|
|
|
|
{
|
|
|
|
|
case '0':
|
|
|
|
|
via_virtual = 0;
|
|
|
|
|
break;
|
|
|
|
|
case '1':
|
|
|
|
|
via_virtual = 1;
|
|
|
|
|
break;
|
|
|
|
|
default:
|
|
|
|
|
/* Bad visibility format. */
|
|
|
|
|
return error_type (pp);
|
|
|
|
|
}
|
|
|
|
|
++*pp;
|
|
|
|
|
|
|
|
|
|
switch (**pp)
|
|
|
|
|
{
|
|
|
|
|
case '0':
|
|
|
|
|
via_public = 0;
|
|
|
|
|
non_public_fields++;
|
|
|
|
|
break;
|
|
|
|
|
case '2':
|
|
|
|
|
via_public = 2;
|
|
|
|
|
break;
|
|
|
|
|
default:
|
|
|
|
|
/* Bad visibility format. */
|
|
|
|
|
return error_type (pp);
|
|
|
|
|
}
|
|
|
|
|
if (via_virtual)
|
|
|
|
|
SET_TYPE_FIELD_VIRTUAL (type, i);
|
|
|
|
|
++*pp;
|
|
|
|
|
|
|
|
|
|
/* Offset of the portion of the object corresponding to
|
|
|
|
|
this baseclass. Always zero in the absence of
|
|
|
|
|
multiple inheritance. */
|
|
|
|
|
offset = read_number (pp, ',');
|
|
|
|
|
baseclass = read_type (pp, objfile);
|
|
|
|
|
*pp += 1; /* skip trailing ';' */
|
|
|
|
|
|
|
|
|
|
/* Make this baseclass visible for structure-printing purposes. */
|
|
|
|
|
new = (struct nextfield *) alloca (sizeof (struct nextfield));
|
|
|
|
|
memset (new, 0, sizeof (struct nextfield));
|
|
|
|
|
new->next = list;
|
|
|
|
|
list = new;
|
|
|
|
|
list->visibility = via_public;
|
|
|
|
|
list->field.type = baseclass;
|
|
|
|
|
list->field.name = type_name_no_tag (baseclass);
|
|
|
|
|
list->field.bitpos = offset;
|
|
|
|
|
list->field.bitsize = 0; /* this should be an unpacked field! */
|
|
|
|
|
nfields++;
|
|
|
|
|
}
|
|
|
|
|
TYPE_N_BASECLASSES (type) = n_baseclasses;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Now come the fields, as NAME:?TYPENUM,BITPOS,BITSIZE; for each one.
|
|
|
|
|
At the end, we see a semicolon instead of a field.
|
|
|
|
|
|
|
|
|
|
In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
|
|
|
|
|
a static field.
|
|
|
|
|
|
|
|
|
|
The `?' is a placeholder for one of '/2' (public visibility),
|
|
|
|
|
'/1' (protected visibility), '/0' (private visibility), or nothing
|
|
|
|
|
(C style symbol table, public visibility). */
|
|
|
|
|
|
|
|
|
|
/* We better set p right now, in case there are no fields at all... */
|
|
|
|
|
p = *pp;
|
|
|
|
|
|
|
|
|
|
while (**pp != ';')
|
|
|
|
|
{
|
|
|
|
|
/* Check for and handle cretinous dbx symbol name continuation! */
|
|
|
|
|
if (**pp == '\\') *pp = next_symbol_text ();
|
|
|
|
|
|
|
|
|
|
/* Get space to record the next field's data. */
|
|
|
|
|
new = (struct nextfield *) alloca (sizeof (struct nextfield));
|
|
|
|
|
memset (new, 0, sizeof (struct nextfield));
|
|
|
|
|
new->next = list;
|
|
|
|
|
list = new;
|
|
|
|
|
|
|
|
|
|
/* Get the field name. */
|
|
|
|
|
p = *pp;
|
|
|
|
|
if (*p == CPLUS_MARKER)
|
|
|
|
|
{
|
A bunch of changes mostly to improve debugging of C++ programs.
Specifically, the calling of inferiors methods is improved.
* value.h: New macros METHOD_PTR_IS_VIRTUAL,
METHOD_PTR_FROM_VOFFSET, METHOD_PTR_TO_VOFFSET to partially
hide the implementation details of pointer-to-method objects.
How to tell if the pointer points to a virtual method is
still very dependent on the particular compiler, but this
should make it easier to find the places to change.
* eval.c (evaluate_subexp [case OP_FUNCALL]), valprint.c
(val_print [case TYPE_CODE_PTR]): Use the new METHOD_PTR_*
macros, instead of a hard-wired-in code that incorrectly
assumed a no-longerused representation of pointer-to-method
values. And otherwise fix the relevant bit-rotted code.
* valprint.c (type_print_base [case TYPE_CODE_STRUCT]):
If there are both fields and methods, put a space between.
* stabsread.c (read_struct_type): Fix bug in handling of
GNU C++ anonymous type (indicated by CPLUS_MARKER followed
by '_'). (It used to prematurely exit the loop reading in
the fields, so it would think it should start reading
methods while still in the fields. This could crash gdb
given a gcc that can emit nested type information.)
* valops.c (search_struct_method): Pass 'this' value by
reference instead of by value. This provides a more
consistent interface through a recursive search where the
"bottom" functions may need to adjust offsets (due to multiple
inheritance).
* valops.c, value.h, values.c: Pass extra parameters to
value_fn_field and value_virtual_fn_field so we can
correctly adjust offset for multiple inheritance.
* eval.c (evaluate_subexp [case OP_FUNCALL]): Simplify
virtual function calls by using value_virtual_fn_field().
* values.c: New function baseclass_offset, derived from
baseclass_addr (which perhaps can be made obsolete?).
It returns an offset rather than an address. This is a
cleaner interface since it doesn't mess around allocating
new values.
* valops.c (search_struct_method): Use baseclass_offset
rather than baseclass_addr.
1992-10-06 09:22:43 +00:00
|
|
|
|
if (*p == '_') /* GNU C++ anonymous type. */
|
|
|
|
|
;
|
1992-07-28 04:22:18 +00:00
|
|
|
|
/* Special GNU C++ name. */
|
A bunch of changes mostly to improve debugging of C++ programs.
Specifically, the calling of inferiors methods is improved.
* value.h: New macros METHOD_PTR_IS_VIRTUAL,
METHOD_PTR_FROM_VOFFSET, METHOD_PTR_TO_VOFFSET to partially
hide the implementation details of pointer-to-method objects.
How to tell if the pointer points to a virtual method is
still very dependent on the particular compiler, but this
should make it easier to find the places to change.
* eval.c (evaluate_subexp [case OP_FUNCALL]), valprint.c
(val_print [case TYPE_CODE_PTR]): Use the new METHOD_PTR_*
macros, instead of a hard-wired-in code that incorrectly
assumed a no-longerused representation of pointer-to-method
values. And otherwise fix the relevant bit-rotted code.
* valprint.c (type_print_base [case TYPE_CODE_STRUCT]):
If there are both fields and methods, put a space between.
* stabsread.c (read_struct_type): Fix bug in handling of
GNU C++ anonymous type (indicated by CPLUS_MARKER followed
by '_'). (It used to prematurely exit the loop reading in
the fields, so it would think it should start reading
methods while still in the fields. This could crash gdb
given a gcc that can emit nested type information.)
* valops.c (search_struct_method): Pass 'this' value by
reference instead of by value. This provides a more
consistent interface through a recursive search where the
"bottom" functions may need to adjust offsets (due to multiple
inheritance).
* valops.c, value.h, values.c: Pass extra parameters to
value_fn_field and value_virtual_fn_field so we can
correctly adjust offset for multiple inheritance.
* eval.c (evaluate_subexp [case OP_FUNCALL]): Simplify
virtual function calls by using value_virtual_fn_field().
* values.c: New function baseclass_offset, derived from
baseclass_addr (which perhaps can be made obsolete?).
It returns an offset rather than an address. This is a
cleaner interface since it doesn't mess around allocating
new values.
* valops.c (search_struct_method): Use baseclass_offset
rather than baseclass_addr.
1992-10-06 09:22:43 +00:00
|
|
|
|
else if (*++p == 'v')
|
1992-07-28 04:22:18 +00:00
|
|
|
|
{
|
|
|
|
|
const char *prefix;
|
|
|
|
|
char *name = 0;
|
|
|
|
|
struct type *context;
|
|
|
|
|
|
|
|
|
|
switch (*++p)
|
|
|
|
|
{
|
|
|
|
|
case 'f':
|
|
|
|
|
prefix = vptr_name;
|
|
|
|
|
break;
|
|
|
|
|
case 'b':
|
|
|
|
|
prefix = vb_name;
|
|
|
|
|
break;
|
|
|
|
|
default:
|
|
|
|
|
complain (&invalid_cpp_abbrev_complaint, *pp);
|
|
|
|
|
prefix = "INVALID_C++_ABBREV";
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
*pp = p + 1;
|
|
|
|
|
context = read_type (pp, objfile);
|
|
|
|
|
name = type_name_no_tag (context);
|
|
|
|
|
if (name == 0)
|
|
|
|
|
{
|
|
|
|
|
complain (&invalid_cpp_type_complaint, (char *) symnum);
|
|
|
|
|
name = "FOO";
|
|
|
|
|
}
|
|
|
|
|
list->field.name = obconcat (&objfile -> type_obstack,
|
|
|
|
|
prefix, name, "");
|
|
|
|
|
p = ++(*pp);
|
|
|
|
|
if (p[-1] != ':')
|
|
|
|
|
complain (&invalid_cpp_abbrev_complaint, *pp);
|
|
|
|
|
list->field.type = read_type (pp, objfile);
|
|
|
|
|
(*pp)++; /* Skip the comma. */
|
|
|
|
|
list->field.bitpos = read_number (pp, ';');
|
|
|
|
|
/* This field is unpacked. */
|
|
|
|
|
list->field.bitsize = 0;
|
|
|
|
|
list->visibility = 0; /* private */
|
|
|
|
|
non_public_fields++;
|
A bunch of changes mostly to improve debugging of C++ programs.
Specifically, the calling of inferiors methods is improved.
* value.h: New macros METHOD_PTR_IS_VIRTUAL,
METHOD_PTR_FROM_VOFFSET, METHOD_PTR_TO_VOFFSET to partially
hide the implementation details of pointer-to-method objects.
How to tell if the pointer points to a virtual method is
still very dependent on the particular compiler, but this
should make it easier to find the places to change.
* eval.c (evaluate_subexp [case OP_FUNCALL]), valprint.c
(val_print [case TYPE_CODE_PTR]): Use the new METHOD_PTR_*
macros, instead of a hard-wired-in code that incorrectly
assumed a no-longerused representation of pointer-to-method
values. And otherwise fix the relevant bit-rotted code.
* valprint.c (type_print_base [case TYPE_CODE_STRUCT]):
If there are both fields and methods, put a space between.
* stabsread.c (read_struct_type): Fix bug in handling of
GNU C++ anonymous type (indicated by CPLUS_MARKER followed
by '_'). (It used to prematurely exit the loop reading in
the fields, so it would think it should start reading
methods while still in the fields. This could crash gdb
given a gcc that can emit nested type information.)
* valops.c (search_struct_method): Pass 'this' value by
reference instead of by value. This provides a more
consistent interface through a recursive search where the
"bottom" functions may need to adjust offsets (due to multiple
inheritance).
* valops.c, value.h, values.c: Pass extra parameters to
value_fn_field and value_virtual_fn_field so we can
correctly adjust offset for multiple inheritance.
* eval.c (evaluate_subexp [case OP_FUNCALL]): Simplify
virtual function calls by using value_virtual_fn_field().
* values.c: New function baseclass_offset, derived from
baseclass_addr (which perhaps can be made obsolete?).
It returns an offset rather than an address. This is a
cleaner interface since it doesn't mess around allocating
new values.
* valops.c (search_struct_method): Use baseclass_offset
rather than baseclass_addr.
1992-10-06 09:22:43 +00:00
|
|
|
|
|
|
|
|
|
nfields++;
|
|
|
|
|
continue;
|
1992-07-28 04:22:18 +00:00
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
complain (&invalid_cpp_abbrev_complaint, *pp);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
while (*p != ':') p++;
|
|
|
|
|
list->field.name = obsavestring (*pp, p - *pp,
|
|
|
|
|
&objfile -> type_obstack);
|
|
|
|
|
|
|
|
|
|
/* C++: Check to see if we have hit the methods yet. */
|
|
|
|
|
if (p[1] == ':')
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
*pp = p + 1;
|
|
|
|
|
|
|
|
|
|
/* This means we have a visibility for a field coming. */
|
|
|
|
|
if (**pp == '/')
|
|
|
|
|
{
|
|
|
|
|
switch (*++*pp)
|
|
|
|
|
{
|
|
|
|
|
case '0':
|
|
|
|
|
list->visibility = 0; /* private */
|
|
|
|
|
non_public_fields++;
|
|
|
|
|
*pp += 1;
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case '1':
|
|
|
|
|
list->visibility = 1; /* protected */
|
|
|
|
|
non_public_fields++;
|
|
|
|
|
*pp += 1;
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case '2':
|
|
|
|
|
list->visibility = 2; /* public */
|
|
|
|
|
*pp += 1;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else /* normal dbx-style format. */
|
|
|
|
|
list->visibility = 2; /* public */
|
|
|
|
|
|
|
|
|
|
list->field.type = read_type (pp, objfile);
|
|
|
|
|
if (**pp == ':')
|
|
|
|
|
{
|
|
|
|
|
p = ++(*pp);
|
1992-09-10 00:07:06 +00:00
|
|
|
|
#if 0
|
|
|
|
|
/* Possible future hook for nested types. */
|
1992-07-28 04:22:18 +00:00
|
|
|
|
if (**pp == '!')
|
1992-09-10 00:07:06 +00:00
|
|
|
|
{
|
|
|
|
|
list->field.bitpos = (long)-2; /* nested type */
|
1992-07-28 04:22:18 +00:00
|
|
|
|
p = ++(*pp);
|
|
|
|
|
}
|
|
|
|
|
else
|
1992-09-10 00:07:06 +00:00
|
|
|
|
#endif
|
1992-07-28 04:22:18 +00:00
|
|
|
|
{ /* Static class member. */
|
1992-09-10 00:07:06 +00:00
|
|
|
|
list->field.bitpos = (long)-1;
|
1992-07-28 04:22:18 +00:00
|
|
|
|
}
|
1992-09-10 00:07:06 +00:00
|
|
|
|
while (*p != ';') p++;
|
|
|
|
|
list->field.bitsize = (long) savestring (*pp, p - *pp);
|
|
|
|
|
*pp = p + 1;
|
1992-07-28 04:22:18 +00:00
|
|
|
|
nfields++;
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
else if (**pp != ',')
|
|
|
|
|
/* Bad structure-type format. */
|
|
|
|
|
return error_type (pp);
|
|
|
|
|
|
|
|
|
|
(*pp)++; /* Skip the comma. */
|
|
|
|
|
list->field.bitpos = read_number (pp, ',');
|
|
|
|
|
list->field.bitsize = read_number (pp, ';');
|
|
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
|
/* FIXME-tiemann: Can't the compiler put out something which
|
|
|
|
|
lets us distinguish these? (or maybe just not put out anything
|
|
|
|
|
for the field). What is the story here? What does the compiler
|
|
|
|
|
really do? Also, patch gdb.texinfo for this case; I document
|
|
|
|
|
it as a possible problem there. Search for "DBX-style". */
|
|
|
|
|
|
|
|
|
|
/* This is wrong because this is identical to the symbols
|
|
|
|
|
produced for GCC 0-size arrays. For example:
|
|
|
|
|
typedef union {
|
|
|
|
|
int num;
|
|
|
|
|
char str[0];
|
|
|
|
|
} foo;
|
|
|
|
|
The code which dumped core in such circumstances should be
|
|
|
|
|
fixed not to dump core. */
|
|
|
|
|
|
|
|
|
|
/* g++ -g0 can put out bitpos & bitsize zero for a static
|
|
|
|
|
field. This does not give us any way of getting its
|
|
|
|
|
class, so we can't know its name. But we can just
|
|
|
|
|
ignore the field so we don't dump core and other nasty
|
|
|
|
|
stuff. */
|
|
|
|
|
if (list->field.bitpos == 0
|
|
|
|
|
&& list->field.bitsize == 0)
|
|
|
|
|
{
|
|
|
|
|
complain (&dbx_class_complaint, 0);
|
|
|
|
|
/* Ignore this field. */
|
|
|
|
|
list = list->next;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
#endif /* 0 */
|
|
|
|
|
{
|
|
|
|
|
/* Detect an unpacked field and mark it as such.
|
|
|
|
|
dbx gives a bit size for all fields.
|
|
|
|
|
Note that forward refs cannot be packed,
|
|
|
|
|
and treat enums as if they had the width of ints. */
|
|
|
|
|
if (TYPE_CODE (list->field.type) != TYPE_CODE_INT
|
|
|
|
|
&& TYPE_CODE (list->field.type) != TYPE_CODE_ENUM)
|
|
|
|
|
list->field.bitsize = 0;
|
|
|
|
|
if ((list->field.bitsize == 8 * TYPE_LENGTH (list->field.type)
|
|
|
|
|
|| (TYPE_CODE (list->field.type) == TYPE_CODE_ENUM
|
|
|
|
|
&& (list->field.bitsize
|
|
|
|
|
== 8 * TYPE_LENGTH (lookup_fundamental_type (objfile, FT_INTEGER)))
|
|
|
|
|
)
|
|
|
|
|
)
|
|
|
|
|
&&
|
|
|
|
|
list->field.bitpos % 8 == 0)
|
|
|
|
|
list->field.bitsize = 0;
|
|
|
|
|
nfields++;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (p[1] == ':')
|
|
|
|
|
/* chill the list of fields: the last entry (at the head)
|
|
|
|
|
is a partially constructed entry which we now scrub. */
|
|
|
|
|
list = list->next;
|
|
|
|
|
|
|
|
|
|
/* Now create the vector of fields, and record how big it is.
|
|
|
|
|
We need this info to record proper virtual function table information
|
|
|
|
|
for this class's virtual functions. */
|
|
|
|
|
|
|
|
|
|
TYPE_NFIELDS (type) = nfields;
|
|
|
|
|
TYPE_FIELDS (type) = (struct field *)
|
* coffread.c (decode_type): Call alloc_type to alloc new
types.
* stabsread.c (read_array_type, read_range_type, define_symbol):
Call alloc_type to alloc new types.
* stabsread.c (define_symbol): Move dbl_valu symbol field data
from type_obstack to symbol_obstack.
* stabsread.c (define_symbol): Move typedef_sym from type_obstack
to symbol_obstack.
* gdbtypes.h (TYPE_ALLOC): New macro to allocate space for data
associated with a type, using the same mechanism as was used to
allocate space for the type structure itself.
* coffread.c (patch_type, coff_read_struct_type,
coff_read_enum_type): Use TYPE_ALLOC.
* dwarfread.c (struct_type): Use TYPE_ALLOC.
* gdbtypes.c (create_array_type, check_stub_method,
allocate_cplus_struct_type): Use TYPE_ALLOC.
* mipsread.c (parse_symbol, parse_type): Use TYPE_ALLOC.
* stabsread.c (read_struct_type, read_array_type, read_enum_type,
read_range_type): Use TYPE_ALLOC.
1992-08-24 00:13:11 +00:00
|
|
|
|
TYPE_ALLOC (type, sizeof (struct field) * nfields);
|
1992-08-06 21:44:36 +00:00
|
|
|
|
memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
|
1992-07-28 04:22:18 +00:00
|
|
|
|
|
|
|
|
|
if (non_public_fields)
|
|
|
|
|
{
|
|
|
|
|
ALLOCATE_CPLUS_STRUCT_TYPE (type);
|
|
|
|
|
|
1992-08-06 21:44:36 +00:00
|
|
|
|
TYPE_FIELD_PRIVATE_BITS (type) = (B_TYPE *)
|
* coffread.c (decode_type): Call alloc_type to alloc new
types.
* stabsread.c (read_array_type, read_range_type, define_symbol):
Call alloc_type to alloc new types.
* stabsread.c (define_symbol): Move dbl_valu symbol field data
from type_obstack to symbol_obstack.
* stabsread.c (define_symbol): Move typedef_sym from type_obstack
to symbol_obstack.
* gdbtypes.h (TYPE_ALLOC): New macro to allocate space for data
associated with a type, using the same mechanism as was used to
allocate space for the type structure itself.
* coffread.c (patch_type, coff_read_struct_type,
coff_read_enum_type): Use TYPE_ALLOC.
* dwarfread.c (struct_type): Use TYPE_ALLOC.
* gdbtypes.c (create_array_type, check_stub_method,
allocate_cplus_struct_type): Use TYPE_ALLOC.
* mipsread.c (parse_symbol, parse_type): Use TYPE_ALLOC.
* stabsread.c (read_struct_type, read_array_type, read_enum_type,
read_range_type): Use TYPE_ALLOC.
1992-08-24 00:13:11 +00:00
|
|
|
|
TYPE_ALLOC (type, B_BYTES (nfields));
|
1992-07-28 04:22:18 +00:00
|
|
|
|
B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
|
|
|
|
|
|
1992-08-06 21:44:36 +00:00
|
|
|
|
TYPE_FIELD_PROTECTED_BITS (type) = (B_TYPE *)
|
* coffread.c (decode_type): Call alloc_type to alloc new
types.
* stabsread.c (read_array_type, read_range_type, define_symbol):
Call alloc_type to alloc new types.
* stabsread.c (define_symbol): Move dbl_valu symbol field data
from type_obstack to symbol_obstack.
* stabsread.c (define_symbol): Move typedef_sym from type_obstack
to symbol_obstack.
* gdbtypes.h (TYPE_ALLOC): New macro to allocate space for data
associated with a type, using the same mechanism as was used to
allocate space for the type structure itself.
* coffread.c (patch_type, coff_read_struct_type,
coff_read_enum_type): Use TYPE_ALLOC.
* dwarfread.c (struct_type): Use TYPE_ALLOC.
* gdbtypes.c (create_array_type, check_stub_method,
allocate_cplus_struct_type): Use TYPE_ALLOC.
* mipsread.c (parse_symbol, parse_type): Use TYPE_ALLOC.
* stabsread.c (read_struct_type, read_array_type, read_enum_type,
read_range_type): Use TYPE_ALLOC.
1992-08-24 00:13:11 +00:00
|
|
|
|
TYPE_ALLOC (type, B_BYTES (nfields));
|
1992-07-28 04:22:18 +00:00
|
|
|
|
B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Copy the saved-up fields into the field vector. */
|
|
|
|
|
|
|
|
|
|
for (n = nfields; list; list = list->next)
|
|
|
|
|
{
|
|
|
|
|
n -= 1;
|
|
|
|
|
TYPE_FIELD (type, n) = list->field;
|
|
|
|
|
if (list->visibility == 0)
|
|
|
|
|
SET_TYPE_FIELD_PRIVATE (type, n);
|
|
|
|
|
else if (list->visibility == 1)
|
|
|
|
|
SET_TYPE_FIELD_PROTECTED (type, n);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Now come the method fields, as NAME::methods
|
|
|
|
|
where each method is of the form TYPENUM,ARGS,...:PHYSNAME;
|
|
|
|
|
At the end, we see a semicolon instead of a field.
|
|
|
|
|
|
|
|
|
|
For the case of overloaded operators, the format is
|
|
|
|
|
op$::*.methods, where $ is the CPLUS_MARKER (usually '$'),
|
|
|
|
|
`*' holds the place for an operator name (such as `+=')
|
|
|
|
|
and `.' marks the end of the operator name. */
|
|
|
|
|
if (p[1] == ':')
|
|
|
|
|
{
|
|
|
|
|
/* Now, read in the methods. To simplify matters, we
|
|
|
|
|
"unread" the name that has been read, so that we can
|
|
|
|
|
start from the top. */
|
|
|
|
|
|
|
|
|
|
ALLOCATE_CPLUS_STRUCT_TYPE (type);
|
|
|
|
|
/* For each list of method lists... */
|
|
|
|
|
do
|
|
|
|
|
{
|
|
|
|
|
int i;
|
|
|
|
|
struct next_fnfield *sublist = 0;
|
|
|
|
|
struct type *look_ahead_type = NULL;
|
|
|
|
|
int length = 0;
|
|
|
|
|
struct next_fnfieldlist *new_mainlist;
|
|
|
|
|
char *main_fn_name;
|
|
|
|
|
|
|
|
|
|
new_mainlist = (struct next_fnfieldlist *)
|
|
|
|
|
alloca (sizeof (struct next_fnfieldlist));
|
|
|
|
|
memset (new_mainlist, 0, sizeof (struct next_fnfieldlist));
|
|
|
|
|
|
|
|
|
|
p = *pp;
|
|
|
|
|
|
|
|
|
|
/* read in the name. */
|
|
|
|
|
while (*p != ':') p++;
|
|
|
|
|
if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && (*pp)[2] == CPLUS_MARKER)
|
|
|
|
|
{
|
|
|
|
|
/* This is a completely wierd case. In order to stuff in the
|
|
|
|
|
names that might contain colons (the usual name delimiter),
|
|
|
|
|
Mike Tiemann defined a different name format which is
|
|
|
|
|
signalled if the identifier is "op$". In that case, the
|
|
|
|
|
format is "op$::XXXX." where XXXX is the name. This is
|
|
|
|
|
used for names like "+" or "=". YUUUUUUUK! FIXME! */
|
|
|
|
|
/* This lets the user type "break operator+".
|
|
|
|
|
We could just put in "+" as the name, but that wouldn't
|
|
|
|
|
work for "*". */
|
|
|
|
|
static char opname[32] = {'o', 'p', CPLUS_MARKER};
|
|
|
|
|
char *o = opname + 3;
|
|
|
|
|
|
|
|
|
|
/* Skip past '::'. */
|
|
|
|
|
*pp = p + 2;
|
|
|
|
|
if (**pp == '\\') *pp = next_symbol_text ();
|
|
|
|
|
p = *pp;
|
|
|
|
|
while (*p != '.')
|
|
|
|
|
*o++ = *p++;
|
|
|
|
|
main_fn_name = savestring (opname, o - opname);
|
|
|
|
|
/* Skip past '.' */
|
|
|
|
|
*pp = p + 1;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
main_fn_name = savestring (*pp, p - *pp);
|
|
|
|
|
/* Skip past '::'. */
|
|
|
|
|
*pp = p + 2;
|
|
|
|
|
}
|
|
|
|
|
new_mainlist->fn_fieldlist.name = main_fn_name;
|
|
|
|
|
|
|
|
|
|
do
|
|
|
|
|
{
|
|
|
|
|
struct next_fnfield *new_sublist =
|
|
|
|
|
(struct next_fnfield *) alloca (sizeof (struct next_fnfield));
|
|
|
|
|
memset (new_sublist, 0, sizeof (struct next_fnfield));
|
|
|
|
|
|
|
|
|
|
/* Check for and handle cretinous dbx symbol name continuation! */
|
|
|
|
|
if (look_ahead_type == NULL) /* Normal case. */
|
|
|
|
|
{
|
|
|
|
|
if (**pp == '\\') *pp = next_symbol_text ();
|
|
|
|
|
|
|
|
|
|
new_sublist->fn_field.type = read_type (pp, objfile);
|
|
|
|
|
if (**pp != ':')
|
|
|
|
|
/* Invalid symtab info for method. */
|
|
|
|
|
return error_type (pp);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{ /* g++ version 1 kludge */
|
|
|
|
|
new_sublist->fn_field.type = look_ahead_type;
|
|
|
|
|
look_ahead_type = NULL;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
*pp += 1;
|
|
|
|
|
p = *pp;
|
|
|
|
|
while (*p != ';') p++;
|
|
|
|
|
|
|
|
|
|
/* If this is just a stub, then we don't have the
|
|
|
|
|
real name here. */
|
|
|
|
|
if (TYPE_FLAGS (new_sublist->fn_field.type) & TYPE_FLAG_STUB)
|
|
|
|
|
new_sublist->fn_field.is_stub = 1;
|
|
|
|
|
new_sublist->fn_field.physname = savestring (*pp, p - *pp);
|
|
|
|
|
*pp = p + 1;
|
|
|
|
|
|
|
|
|
|
/* Set this method's visibility fields. */
|
|
|
|
|
switch (*(*pp)++ - '0')
|
|
|
|
|
{
|
|
|
|
|
case 0:
|
|
|
|
|
new_sublist->fn_field.is_private = 1;
|
|
|
|
|
break;
|
|
|
|
|
case 1:
|
|
|
|
|
new_sublist->fn_field.is_protected = 1;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (**pp == '\\') *pp = next_symbol_text ();
|
|
|
|
|
switch (**pp)
|
|
|
|
|
{
|
|
|
|
|
case 'A': /* Normal functions. */
|
|
|
|
|
new_sublist->fn_field.is_const = 0;
|
|
|
|
|
new_sublist->fn_field.is_volatile = 0;
|
|
|
|
|
(*pp)++;
|
|
|
|
|
break;
|
|
|
|
|
case 'B': /* `const' member functions. */
|
|
|
|
|
new_sublist->fn_field.is_const = 1;
|
|
|
|
|
new_sublist->fn_field.is_volatile = 0;
|
|
|
|
|
(*pp)++;
|
|
|
|
|
break;
|
|
|
|
|
case 'C': /* `volatile' member function. */
|
|
|
|
|
new_sublist->fn_field.is_const = 0;
|
|
|
|
|
new_sublist->fn_field.is_volatile = 1;
|
|
|
|
|
(*pp)++;
|
|
|
|
|
break;
|
|
|
|
|
case 'D': /* `const volatile' member function. */
|
|
|
|
|
new_sublist->fn_field.is_const = 1;
|
|
|
|
|
new_sublist->fn_field.is_volatile = 1;
|
|
|
|
|
(*pp)++;
|
|
|
|
|
break;
|
|
|
|
|
case '*': /* File compiled with g++ version 1 -- no info */
|
|
|
|
|
case '?':
|
|
|
|
|
case '.':
|
|
|
|
|
break;
|
|
|
|
|
default:
|
|
|
|
|
complain (&const_vol_complaint, (char *) (long) **pp);
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
switch (*(*pp)++)
|
|
|
|
|
{
|
|
|
|
|
case '*':
|
|
|
|
|
/* virtual member function, followed by index. */
|
|
|
|
|
/* The sign bit is set to distinguish pointers-to-methods
|
|
|
|
|
from virtual function indicies. Since the array is
|
|
|
|
|
in words, the quantity must be shifted left by 1
|
|
|
|
|
on 16 bit machine, and by 2 on 32 bit machine, forcing
|
|
|
|
|
the sign bit out, and usable as a valid index into
|
|
|
|
|
the array. Remove the sign bit here. */
|
|
|
|
|
new_sublist->fn_field.voffset =
|
|
|
|
|
(0x7fffffff & read_number (pp, ';')) + 2;
|
|
|
|
|
|
|
|
|
|
if (**pp == '\\') *pp = next_symbol_text ();
|
|
|
|
|
|
|
|
|
|
if (**pp == ';' || **pp == '\0')
|
|
|
|
|
/* Must be g++ version 1. */
|
|
|
|
|
new_sublist->fn_field.fcontext = 0;
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* Figure out from whence this virtual function came.
|
|
|
|
|
It may belong to virtual function table of
|
|
|
|
|
one of its baseclasses. */
|
|
|
|
|
look_ahead_type = read_type (pp, objfile);
|
|
|
|
|
if (**pp == ':')
|
|
|
|
|
{ /* g++ version 1 overloaded methods. */ }
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
new_sublist->fn_field.fcontext = look_ahead_type;
|
|
|
|
|
if (**pp != ';')
|
|
|
|
|
return error_type (pp);
|
|
|
|
|
else
|
|
|
|
|
++*pp;
|
|
|
|
|
look_ahead_type = NULL;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case '?':
|
|
|
|
|
/* static member function. */
|
|
|
|
|
new_sublist->fn_field.voffset = VOFFSET_STATIC;
|
|
|
|
|
if (strncmp (new_sublist->fn_field.physname,
|
|
|
|
|
main_fn_name, strlen (main_fn_name)))
|
|
|
|
|
new_sublist->fn_field.is_stub = 1;
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
default:
|
|
|
|
|
/* error */
|
|
|
|
|
complain (&member_fn_complaint, (char *) (long) (*pp)[-1]);
|
|
|
|
|
/* Fall through into normal member function. */
|
|
|
|
|
|
|
|
|
|
case '.':
|
|
|
|
|
/* normal member function. */
|
|
|
|
|
new_sublist->fn_field.voffset = 0;
|
|
|
|
|
new_sublist->fn_field.fcontext = 0;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
new_sublist->next = sublist;
|
|
|
|
|
sublist = new_sublist;
|
|
|
|
|
length++;
|
|
|
|
|
if (**pp == '\\') *pp = next_symbol_text ();
|
|
|
|
|
}
|
|
|
|
|
while (**pp != ';' && **pp != '\0');
|
|
|
|
|
|
|
|
|
|
*pp += 1;
|
|
|
|
|
|
1992-08-06 21:44:36 +00:00
|
|
|
|
new_mainlist->fn_fieldlist.fn_fields = (struct fn_field *)
|
|
|
|
|
obstack_alloc (&objfile -> type_obstack,
|
|
|
|
|
sizeof (struct fn_field) * length);
|
|
|
|
|
memset (new_mainlist->fn_fieldlist.fn_fields, 0,
|
|
|
|
|
sizeof (struct fn_field) * length);
|
1992-07-28 04:22:18 +00:00
|
|
|
|
for (i = length; (i--, sublist); sublist = sublist->next)
|
|
|
|
|
new_mainlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
|
|
|
|
|
|
|
|
|
|
new_mainlist->fn_fieldlist.length = length;
|
|
|
|
|
new_mainlist->next = mainlist;
|
|
|
|
|
mainlist = new_mainlist;
|
|
|
|
|
nfn_fields++;
|
|
|
|
|
total_length += length;
|
|
|
|
|
if (**pp == '\\') *pp = next_symbol_text ();
|
|
|
|
|
}
|
|
|
|
|
while (**pp != ';');
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
*pp += 1;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (nfn_fields)
|
|
|
|
|
{
|
|
|
|
|
TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
|
* coffread.c (decode_type): Call alloc_type to alloc new
types.
* stabsread.c (read_array_type, read_range_type, define_symbol):
Call alloc_type to alloc new types.
* stabsread.c (define_symbol): Move dbl_valu symbol field data
from type_obstack to symbol_obstack.
* stabsread.c (define_symbol): Move typedef_sym from type_obstack
to symbol_obstack.
* gdbtypes.h (TYPE_ALLOC): New macro to allocate space for data
associated with a type, using the same mechanism as was used to
allocate space for the type structure itself.
* coffread.c (patch_type, coff_read_struct_type,
coff_read_enum_type): Use TYPE_ALLOC.
* dwarfread.c (struct_type): Use TYPE_ALLOC.
* gdbtypes.c (create_array_type, check_stub_method,
allocate_cplus_struct_type): Use TYPE_ALLOC.
* mipsread.c (parse_symbol, parse_type): Use TYPE_ALLOC.
* stabsread.c (read_struct_type, read_array_type, read_enum_type,
read_range_type): Use TYPE_ALLOC.
1992-08-24 00:13:11 +00:00
|
|
|
|
TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
|
1992-08-06 21:44:36 +00:00
|
|
|
|
memset (TYPE_FN_FIELDLISTS (type), 0,
|
|
|
|
|
sizeof (struct fn_fieldlist) * nfn_fields);
|
1992-07-28 04:22:18 +00:00
|
|
|
|
TYPE_NFN_FIELDS (type) = nfn_fields;
|
|
|
|
|
TYPE_NFN_FIELDS_TOTAL (type) = total_length;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
{
|
|
|
|
|
int i;
|
|
|
|
|
for (i = 0; i < TYPE_N_BASECLASSES (type); ++i)
|
|
|
|
|
{
|
|
|
|
|
if (TYPE_CODE (TYPE_BASECLASS (type, i)) == TYPE_CODE_UNDEF)
|
|
|
|
|
/* @@ Memory leak on objfile->type_obstack? */
|
|
|
|
|
return error_type (pp);
|
|
|
|
|
TYPE_NFN_FIELDS_TOTAL (type) +=
|
|
|
|
|
TYPE_NFN_FIELDS_TOTAL (TYPE_BASECLASS (type, i));
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
for (n = nfn_fields; mainlist; mainlist = mainlist->next) {
|
|
|
|
|
--n; /* Circumvent Sun3 compiler bug */
|
|
|
|
|
TYPE_FN_FIELDLISTS (type)[n] = mainlist->fn_fieldlist;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (**pp == '~')
|
|
|
|
|
{
|
|
|
|
|
*pp += 1;
|
|
|
|
|
|
|
|
|
|
if (**pp == '=' || **pp == '+' || **pp == '-')
|
|
|
|
|
{
|
|
|
|
|
/* Obsolete flags that used to indicate the presence
|
|
|
|
|
of constructors and/or destructors. */
|
|
|
|
|
*pp += 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Read either a '%' or the final ';'. */
|
|
|
|
|
if (*(*pp)++ == '%')
|
|
|
|
|
{
|
|
|
|
|
/* We'd like to be able to derive the vtable pointer field
|
|
|
|
|
from the type information, but when it's inherited, that's
|
|
|
|
|
hard. A reason it's hard is because we may read in the
|
|
|
|
|
info about a derived class before we read in info about
|
|
|
|
|
the base class that provides the vtable pointer field.
|
|
|
|
|
Once the base info has been read, we could fill in the info
|
|
|
|
|
for the derived classes, but for the fact that by then,
|
|
|
|
|
we don't remember who needs what. */
|
|
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
|
int predicted_fieldno = -1;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* Now we must record the virtual function table pointer's
|
|
|
|
|
field information. */
|
|
|
|
|
|
|
|
|
|
struct type *t;
|
|
|
|
|
int i;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
|
{
|
|
|
|
|
/* In version 2, we derive the vfield ourselves. */
|
|
|
|
|
for (n = 0; n < nfields; n++)
|
|
|
|
|
{
|
|
|
|
|
if (! strncmp (TYPE_FIELD_NAME (type, n), vptr_name,
|
|
|
|
|
sizeof (vptr_name) -1))
|
|
|
|
|
{
|
|
|
|
|
predicted_fieldno = n;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
if (predicted_fieldno < 0)
|
|
|
|
|
for (n = 0; n < TYPE_N_BASECLASSES (type); n++)
|
|
|
|
|
if (! TYPE_FIELD_VIRTUAL (type, n)
|
|
|
|
|
&& TYPE_VPTR_FIELDNO (TYPE_BASECLASS (type, n)) >= 0)
|
|
|
|
|
{
|
|
|
|
|
predicted_fieldno = TYPE_VPTR_FIELDNO (TYPE_BASECLASS (type, n));
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
t = read_type (pp, objfile);
|
|
|
|
|
p = (*pp)++;
|
|
|
|
|
while (*p != '\0' && *p != ';')
|
|
|
|
|
p++;
|
|
|
|
|
if (*p == '\0')
|
|
|
|
|
/* Premature end of symbol. */
|
|
|
|
|
return error_type (pp);
|
|
|
|
|
|
|
|
|
|
TYPE_VPTR_BASETYPE (type) = t;
|
|
|
|
|
if (type == t)
|
|
|
|
|
{
|
|
|
|
|
if (TYPE_FIELD_NAME (t, TYPE_N_BASECLASSES (t)) == 0)
|
|
|
|
|
{
|
|
|
|
|
/* FIXME-tiemann: what's this? */
|
|
|
|
|
#if 0
|
|
|
|
|
TYPE_VPTR_FIELDNO (type) = i = TYPE_N_BASECLASSES (t);
|
|
|
|
|
#else
|
|
|
|
|
error_type (pp);
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
else for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); --i)
|
|
|
|
|
if (! strncmp (TYPE_FIELD_NAME (t, i), vptr_name,
|
|
|
|
|
sizeof (vptr_name) - 1))
|
|
|
|
|
{
|
|
|
|
|
TYPE_VPTR_FIELDNO (type) = i;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
if (i < 0)
|
|
|
|
|
/* Virtual function table field not found. */
|
|
|
|
|
return error_type (pp);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
|
|
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
|
if (TYPE_VPTR_FIELDNO (type) != predicted_fieldno)
|
|
|
|
|
error ("TYPE_VPTR_FIELDNO miscalculated");
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
*pp = p + 1;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return type;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Read a definition of an array type,
|
|
|
|
|
and create and return a suitable type object.
|
|
|
|
|
Also creates a range type which represents the bounds of that
|
|
|
|
|
array. */
|
|
|
|
|
|
|
|
|
|
static struct type *
|
|
|
|
|
read_array_type (pp, type, objfile)
|
|
|
|
|
register char **pp;
|
|
|
|
|
register struct type *type;
|
|
|
|
|
struct objfile *objfile;
|
|
|
|
|
{
|
|
|
|
|
struct type *index_type, *element_type, *range_type;
|
|
|
|
|
int lower, upper;
|
|
|
|
|
int adjustable = 0;
|
|
|
|
|
|
|
|
|
|
/* Format of an array type:
|
|
|
|
|
"ar<index type>;lower;upper;<array_contents_type>". Put code in
|
|
|
|
|
to handle this.
|
|
|
|
|
|
|
|
|
|
Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
|
|
|
|
|
for these, produce a type like float[][]. */
|
|
|
|
|
|
|
|
|
|
index_type = read_type (pp, objfile);
|
|
|
|
|
if (**pp != ';')
|
|
|
|
|
/* Improper format of array type decl. */
|
|
|
|
|
return error_type (pp);
|
|
|
|
|
++*pp;
|
|
|
|
|
|
|
|
|
|
if (!(**pp >= '0' && **pp <= '9'))
|
|
|
|
|
{
|
|
|
|
|
*pp += 1;
|
|
|
|
|
adjustable = 1;
|
|
|
|
|
}
|
|
|
|
|
lower = read_number (pp, ';');
|
|
|
|
|
|
|
|
|
|
if (!(**pp >= '0' && **pp <= '9'))
|
|
|
|
|
{
|
|
|
|
|
*pp += 1;
|
|
|
|
|
adjustable = 1;
|
|
|
|
|
}
|
|
|
|
|
upper = read_number (pp, ';');
|
|
|
|
|
|
|
|
|
|
element_type = read_type (pp, objfile);
|
|
|
|
|
|
|
|
|
|
if (adjustable)
|
|
|
|
|
{
|
|
|
|
|
lower = 0;
|
|
|
|
|
upper = -1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
{
|
|
|
|
|
/* Create range type. */
|
* coffread.c (decode_type): Call alloc_type to alloc new
types.
* stabsread.c (read_array_type, read_range_type, define_symbol):
Call alloc_type to alloc new types.
* stabsread.c (define_symbol): Move dbl_valu symbol field data
from type_obstack to symbol_obstack.
* stabsread.c (define_symbol): Move typedef_sym from type_obstack
to symbol_obstack.
* gdbtypes.h (TYPE_ALLOC): New macro to allocate space for data
associated with a type, using the same mechanism as was used to
allocate space for the type structure itself.
* coffread.c (patch_type, coff_read_struct_type,
coff_read_enum_type): Use TYPE_ALLOC.
* dwarfread.c (struct_type): Use TYPE_ALLOC.
* gdbtypes.c (create_array_type, check_stub_method,
allocate_cplus_struct_type): Use TYPE_ALLOC.
* mipsread.c (parse_symbol, parse_type): Use TYPE_ALLOC.
* stabsread.c (read_struct_type, read_array_type, read_enum_type,
read_range_type): Use TYPE_ALLOC.
1992-08-24 00:13:11 +00:00
|
|
|
|
range_type = alloc_type (objfile);
|
1992-07-28 04:22:18 +00:00
|
|
|
|
TYPE_CODE (range_type) = TYPE_CODE_RANGE;
|
|
|
|
|
TYPE_TARGET_TYPE (range_type) = index_type;
|
|
|
|
|
|
|
|
|
|
/* This should never be needed. */
|
|
|
|
|
TYPE_LENGTH (range_type) = sizeof (int);
|
|
|
|
|
|
|
|
|
|
TYPE_NFIELDS (range_type) = 2;
|
1992-08-06 21:44:36 +00:00
|
|
|
|
TYPE_FIELDS (range_type) = (struct field *)
|
* coffread.c (decode_type): Call alloc_type to alloc new
types.
* stabsread.c (read_array_type, read_range_type, define_symbol):
Call alloc_type to alloc new types.
* stabsread.c (define_symbol): Move dbl_valu symbol field data
from type_obstack to symbol_obstack.
* stabsread.c (define_symbol): Move typedef_sym from type_obstack
to symbol_obstack.
* gdbtypes.h (TYPE_ALLOC): New macro to allocate space for data
associated with a type, using the same mechanism as was used to
allocate space for the type structure itself.
* coffread.c (patch_type, coff_read_struct_type,
coff_read_enum_type): Use TYPE_ALLOC.
* dwarfread.c (struct_type): Use TYPE_ALLOC.
* gdbtypes.c (create_array_type, check_stub_method,
allocate_cplus_struct_type): Use TYPE_ALLOC.
* mipsread.c (parse_symbol, parse_type): Use TYPE_ALLOC.
* stabsread.c (read_struct_type, read_array_type, read_enum_type,
read_range_type): Use TYPE_ALLOC.
1992-08-24 00:13:11 +00:00
|
|
|
|
TYPE_ALLOC (range_type, 2 * sizeof (struct field));
|
1992-08-06 21:44:36 +00:00
|
|
|
|
memset (TYPE_FIELDS (range_type), 0, 2 * sizeof (struct field));
|
1992-07-28 04:22:18 +00:00
|
|
|
|
TYPE_FIELD_BITPOS (range_type, 0) = lower;
|
|
|
|
|
TYPE_FIELD_BITPOS (range_type, 1) = upper;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TYPE_CODE (type) = TYPE_CODE_ARRAY;
|
|
|
|
|
TYPE_TARGET_TYPE (type) = element_type;
|
|
|
|
|
TYPE_LENGTH (type) = (upper - lower + 1) * TYPE_LENGTH (element_type);
|
|
|
|
|
TYPE_NFIELDS (type) = 1;
|
1992-08-06 21:44:36 +00:00
|
|
|
|
TYPE_FIELDS (type) = (struct field *)
|
* coffread.c (decode_type): Call alloc_type to alloc new
types.
* stabsread.c (read_array_type, read_range_type, define_symbol):
Call alloc_type to alloc new types.
* stabsread.c (define_symbol): Move dbl_valu symbol field data
from type_obstack to symbol_obstack.
* stabsread.c (define_symbol): Move typedef_sym from type_obstack
to symbol_obstack.
* gdbtypes.h (TYPE_ALLOC): New macro to allocate space for data
associated with a type, using the same mechanism as was used to
allocate space for the type structure itself.
* coffread.c (patch_type, coff_read_struct_type,
coff_read_enum_type): Use TYPE_ALLOC.
* dwarfread.c (struct_type): Use TYPE_ALLOC.
* gdbtypes.c (create_array_type, check_stub_method,
allocate_cplus_struct_type): Use TYPE_ALLOC.
* mipsread.c (parse_symbol, parse_type): Use TYPE_ALLOC.
* stabsread.c (read_struct_type, read_array_type, read_enum_type,
read_range_type): Use TYPE_ALLOC.
1992-08-24 00:13:11 +00:00
|
|
|
|
TYPE_ALLOC (type, sizeof (struct field));
|
1992-08-06 21:44:36 +00:00
|
|
|
|
memset (TYPE_FIELDS (type), 0, sizeof (struct field));
|
1992-07-28 04:22:18 +00:00
|
|
|
|
TYPE_FIELD_TYPE (type, 0) = range_type;
|
|
|
|
|
|
|
|
|
|
/* If we have an array whose element type is not yet known, but whose
|
|
|
|
|
bounds *are* known, record it to be adjusted at the end of the file. */
|
|
|
|
|
if (TYPE_LENGTH (element_type) == 0 && !adjustable)
|
|
|
|
|
add_undefined_type (type);
|
|
|
|
|
|
|
|
|
|
return type;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* Read a definition of an enumeration type,
|
|
|
|
|
and create and return a suitable type object.
|
|
|
|
|
Also defines the symbols that represent the values of the type. */
|
|
|
|
|
|
|
|
|
|
static struct type *
|
|
|
|
|
read_enum_type (pp, type, objfile)
|
|
|
|
|
register char **pp;
|
|
|
|
|
register struct type *type;
|
|
|
|
|
struct objfile *objfile;
|
|
|
|
|
{
|
|
|
|
|
register char *p;
|
|
|
|
|
char *name;
|
|
|
|
|
register long n;
|
|
|
|
|
register struct symbol *sym;
|
|
|
|
|
int nsyms = 0;
|
|
|
|
|
struct pending **symlist;
|
|
|
|
|
struct pending *osyms, *syms;
|
|
|
|
|
int o_nsyms;
|
|
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
|
/* FIXME! The stabs produced by Sun CC merrily define things that ought
|
|
|
|
|
to be file-scope, between N_FN entries, using N_LSYM. What's a mother
|
|
|
|
|
to do? For now, force all enum values to file scope. */
|
|
|
|
|
if (within_function)
|
|
|
|
|
symlist = &local_symbols;
|
|
|
|
|
else
|
|
|
|
|
#endif
|
|
|
|
|
symlist = &file_symbols;
|
|
|
|
|
osyms = *symlist;
|
|
|
|
|
o_nsyms = osyms ? osyms->nsyms : 0;
|
|
|
|
|
|
|
|
|
|
/* Read the value-names and their values.
|
|
|
|
|
The input syntax is NAME:VALUE,NAME:VALUE, and so on.
|
|
|
|
|
A semicolon or comma instead of a NAME means the end. */
|
|
|
|
|
while (**pp && **pp != ';' && **pp != ',')
|
|
|
|
|
{
|
|
|
|
|
/* Check for and handle cretinous dbx symbol name continuation! */
|
|
|
|
|
if (**pp == '\\') *pp = next_symbol_text ();
|
|
|
|
|
|
|
|
|
|
p = *pp;
|
|
|
|
|
while (*p != ':') p++;
|
|
|
|
|
name = obsavestring (*pp, p - *pp, &objfile -> symbol_obstack);
|
|
|
|
|
*pp = p + 1;
|
|
|
|
|
n = read_number (pp, ',');
|
|
|
|
|
|
1992-08-06 21:44:36 +00:00
|
|
|
|
sym = (struct symbol *)
|
|
|
|
|
obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
|
1992-07-28 04:22:18 +00:00
|
|
|
|
memset (sym, 0, sizeof (struct symbol));
|
|
|
|
|
SYMBOL_NAME (sym) = name;
|
|
|
|
|
SYMBOL_CLASS (sym) = LOC_CONST;
|
|
|
|
|
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
|
|
|
|
|
SYMBOL_VALUE (sym) = n;
|
|
|
|
|
add_symbol_to_list (sym, symlist);
|
|
|
|
|
nsyms++;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (**pp == ';')
|
|
|
|
|
(*pp)++; /* Skip the semicolon. */
|
|
|
|
|
|
|
|
|
|
/* Now fill in the fields of the type-structure. */
|
|
|
|
|
|
|
|
|
|
TYPE_LENGTH (type) = sizeof (int);
|
|
|
|
|
TYPE_CODE (type) = TYPE_CODE_ENUM;
|
|
|
|
|
TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
|
|
|
|
|
TYPE_NFIELDS (type) = nsyms;
|
|
|
|
|
TYPE_FIELDS (type) = (struct field *)
|
* coffread.c (decode_type): Call alloc_type to alloc new
types.
* stabsread.c (read_array_type, read_range_type, define_symbol):
Call alloc_type to alloc new types.
* stabsread.c (define_symbol): Move dbl_valu symbol field data
from type_obstack to symbol_obstack.
* stabsread.c (define_symbol): Move typedef_sym from type_obstack
to symbol_obstack.
* gdbtypes.h (TYPE_ALLOC): New macro to allocate space for data
associated with a type, using the same mechanism as was used to
allocate space for the type structure itself.
* coffread.c (patch_type, coff_read_struct_type,
coff_read_enum_type): Use TYPE_ALLOC.
* dwarfread.c (struct_type): Use TYPE_ALLOC.
* gdbtypes.c (create_array_type, check_stub_method,
allocate_cplus_struct_type): Use TYPE_ALLOC.
* mipsread.c (parse_symbol, parse_type): Use TYPE_ALLOC.
* stabsread.c (read_struct_type, read_array_type, read_enum_type,
read_range_type): Use TYPE_ALLOC.
1992-08-24 00:13:11 +00:00
|
|
|
|
TYPE_ALLOC (type, sizeof (struct field) * nsyms);
|
1992-08-06 21:44:36 +00:00
|
|
|
|
memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
|
1992-07-28 04:22:18 +00:00
|
|
|
|
|
|
|
|
|
/* Find the symbols for the values and put them into the type.
|
|
|
|
|
The symbols can be found in the symlist that we put them on
|
|
|
|
|
to cause them to be defined. osyms contains the old value
|
|
|
|
|
of that symlist; everything up to there was defined by us. */
|
|
|
|
|
/* Note that we preserve the order of the enum constants, so
|
|
|
|
|
that in something like "enum {FOO, LAST_THING=FOO}" we print
|
|
|
|
|
FOO, not LAST_THING. */
|
|
|
|
|
|
|
|
|
|
for (syms = *symlist, n = 0; syms; syms = syms->next)
|
|
|
|
|
{
|
|
|
|
|
int j = 0;
|
|
|
|
|
if (syms == osyms)
|
|
|
|
|
j = o_nsyms;
|
|
|
|
|
for (; j < syms->nsyms; j++,n++)
|
|
|
|
|
{
|
|
|
|
|
struct symbol *xsym = syms->symbol[j];
|
|
|
|
|
SYMBOL_TYPE (xsym) = type;
|
|
|
|
|
TYPE_FIELD_NAME (type, n) = SYMBOL_NAME (xsym);
|
|
|
|
|
TYPE_FIELD_VALUE (type, n) = 0;
|
|
|
|
|
TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
|
|
|
|
|
TYPE_FIELD_BITSIZE (type, n) = 0;
|
|
|
|
|
}
|
|
|
|
|
if (syms == osyms)
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
|
/* This screws up perfectly good C programs with enums. FIXME. */
|
|
|
|
|
/* Is this Modula-2's BOOLEAN type? Flag it as such if so. */
|
|
|
|
|
if(TYPE_NFIELDS(type) == 2 &&
|
|
|
|
|
((!strcmp(TYPE_FIELD_NAME(type,0),"TRUE") &&
|
|
|
|
|
!strcmp(TYPE_FIELD_NAME(type,1),"FALSE")) ||
|
|
|
|
|
(!strcmp(TYPE_FIELD_NAME(type,1),"TRUE") &&
|
|
|
|
|
!strcmp(TYPE_FIELD_NAME(type,0),"FALSE"))))
|
|
|
|
|
TYPE_CODE(type) = TYPE_CODE_BOOL;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
return type;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Sun's ACC uses a somewhat saner method for specifying the builtin
|
|
|
|
|
typedefs in every file (for int, long, etc):
|
|
|
|
|
|
|
|
|
|
type = b <signed> <width>; <offset>; <nbits>
|
|
|
|
|
signed = u or s. Possible c in addition to u or s (for char?).
|
|
|
|
|
offset = offset from high order bit to start bit of type.
|
|
|
|
|
width is # bytes in object of this type, nbits is # bits in type.
|
|
|
|
|
|
|
|
|
|
The width/offset stuff appears to be for small objects stored in
|
|
|
|
|
larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
|
|
|
|
|
FIXME. */
|
|
|
|
|
|
|
|
|
|
static struct type *
|
|
|
|
|
read_sun_builtin_type (pp, typenums, objfile)
|
|
|
|
|
char **pp;
|
|
|
|
|
int typenums[2];
|
|
|
|
|
struct objfile *objfile;
|
|
|
|
|
{
|
|
|
|
|
int nbits;
|
|
|
|
|
int signed_type;
|
|
|
|
|
|
|
|
|
|
switch (**pp)
|
|
|
|
|
{
|
|
|
|
|
case 's':
|
|
|
|
|
signed_type = 1;
|
|
|
|
|
break;
|
|
|
|
|
case 'u':
|
|
|
|
|
signed_type = 0;
|
|
|
|
|
break;
|
|
|
|
|
default:
|
|
|
|
|
return error_type (pp);
|
|
|
|
|
}
|
|
|
|
|
(*pp)++;
|
|
|
|
|
|
|
|
|
|
/* For some odd reason, all forms of char put a c here. This is strange
|
|
|
|
|
because no other type has this honor. We can safely ignore this because
|
|
|
|
|
we actually determine 'char'acterness by the number of bits specified in
|
|
|
|
|
the descriptor. */
|
|
|
|
|
|
|
|
|
|
if (**pp == 'c')
|
|
|
|
|
(*pp)++;
|
|
|
|
|
|
|
|
|
|
/* The first number appears to be the number of bytes occupied
|
|
|
|
|
by this type, except that unsigned short is 4 instead of 2.
|
|
|
|
|
Since this information is redundant with the third number,
|
|
|
|
|
we will ignore it. */
|
|
|
|
|
read_number (pp, ';');
|
|
|
|
|
|
|
|
|
|
/* The second number is always 0, so ignore it too. */
|
|
|
|
|
read_number (pp, ';');
|
|
|
|
|
|
|
|
|
|
/* The third number is the number of bits for this type. */
|
|
|
|
|
nbits = read_number (pp, 0);
|
|
|
|
|
|
|
|
|
|
/* FIXME. Here we should just be able to make a type of the right
|
|
|
|
|
number of bits and signedness. FIXME. */
|
|
|
|
|
|
|
|
|
|
if (nbits == TARGET_LONG_LONG_BIT)
|
|
|
|
|
return (lookup_fundamental_type (objfile,
|
|
|
|
|
signed_type? FT_LONG_LONG: FT_UNSIGNED_LONG_LONG));
|
|
|
|
|
|
|
|
|
|
if (nbits == TARGET_INT_BIT)
|
|
|
|
|
{
|
|
|
|
|
/* FIXME -- the only way to distinguish `int' from `long'
|
|
|
|
|
is to look at its name! */
|
|
|
|
|
if (signed_type)
|
|
|
|
|
{
|
|
|
|
|
if (long_kludge_name && long_kludge_name[0] == 'l' /* long */)
|
|
|
|
|
return lookup_fundamental_type (objfile, FT_LONG);
|
|
|
|
|
else
|
|
|
|
|
return lookup_fundamental_type (objfile, FT_INTEGER);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
if (long_kludge_name
|
|
|
|
|
&& ((long_kludge_name[0] == 'u' /* unsigned */ &&
|
|
|
|
|
long_kludge_name[9] == 'l' /* long */)
|
|
|
|
|
|| (long_kludge_name[0] == 'l' /* long unsigned */)))
|
|
|
|
|
return lookup_fundamental_type (objfile, FT_UNSIGNED_LONG);
|
|
|
|
|
else
|
|
|
|
|
return lookup_fundamental_type (objfile, FT_UNSIGNED_INTEGER);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (nbits == TARGET_SHORT_BIT)
|
|
|
|
|
return (lookup_fundamental_type (objfile,
|
|
|
|
|
signed_type? FT_SHORT: FT_UNSIGNED_SHORT));
|
|
|
|
|
|
|
|
|
|
if (nbits == TARGET_CHAR_BIT)
|
|
|
|
|
return (lookup_fundamental_type (objfile,
|
|
|
|
|
signed_type? FT_CHAR: FT_UNSIGNED_CHAR));
|
|
|
|
|
|
|
|
|
|
if (nbits == 0)
|
|
|
|
|
return lookup_fundamental_type (objfile, FT_VOID);
|
|
|
|
|
|
|
|
|
|
return error_type (pp);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static struct type *
|
|
|
|
|
read_sun_floating_type (pp, typenums, objfile)
|
|
|
|
|
char **pp;
|
|
|
|
|
int typenums[2];
|
|
|
|
|
struct objfile *objfile;
|
|
|
|
|
{
|
|
|
|
|
int nbytes;
|
|
|
|
|
|
|
|
|
|
/* The first number has more details about the type, for example
|
|
|
|
|
FN_COMPLEX. See the sun stab.h. */
|
|
|
|
|
read_number (pp, ';');
|
|
|
|
|
|
|
|
|
|
/* The second number is the number of bytes occupied by this type */
|
|
|
|
|
nbytes = read_number (pp, ';');
|
|
|
|
|
|
|
|
|
|
if (**pp != 0)
|
|
|
|
|
return error_type (pp);
|
|
|
|
|
|
|
|
|
|
if (nbytes == TARGET_FLOAT_BIT / TARGET_CHAR_BIT)
|
|
|
|
|
return lookup_fundamental_type (objfile, FT_FLOAT);
|
|
|
|
|
|
|
|
|
|
if (nbytes == TARGET_DOUBLE_BIT / TARGET_CHAR_BIT)
|
|
|
|
|
return lookup_fundamental_type (objfile, FT_DBL_PREC_FLOAT);
|
|
|
|
|
|
|
|
|
|
if (nbytes == TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT)
|
|
|
|
|
return lookup_fundamental_type (objfile, FT_EXT_PREC_FLOAT);
|
|
|
|
|
|
|
|
|
|
return error_type (pp);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Read a number from the string pointed to by *PP.
|
|
|
|
|
The value of *PP is advanced over the number.
|
|
|
|
|
If END is nonzero, the character that ends the
|
|
|
|
|
number must match END, or an error happens;
|
|
|
|
|
and that character is skipped if it does match.
|
|
|
|
|
If END is zero, *PP is left pointing to that character.
|
|
|
|
|
|
|
|
|
|
If the number fits in a long, set *VALUE and set *BITS to 0.
|
|
|
|
|
If not, set *BITS to be the number of bits in the number.
|
|
|
|
|
|
|
|
|
|
If encounter garbage, set *BITS to -1. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
read_huge_number (pp, end, valu, bits)
|
|
|
|
|
char **pp;
|
|
|
|
|
int end;
|
|
|
|
|
long *valu;
|
|
|
|
|
int *bits;
|
|
|
|
|
{
|
|
|
|
|
char *p = *pp;
|
|
|
|
|
int sign = 1;
|
|
|
|
|
long n = 0;
|
|
|
|
|
int radix = 10;
|
|
|
|
|
char overflow = 0;
|
|
|
|
|
int nbits = 0;
|
|
|
|
|
int c;
|
|
|
|
|
long upper_limit;
|
|
|
|
|
|
|
|
|
|
if (*p == '-')
|
|
|
|
|
{
|
|
|
|
|
sign = -1;
|
|
|
|
|
p++;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Leading zero means octal. GCC uses this to output values larger
|
|
|
|
|
than an int (because that would be hard in decimal). */
|
|
|
|
|
if (*p == '0')
|
|
|
|
|
{
|
|
|
|
|
radix = 8;
|
|
|
|
|
p++;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
upper_limit = LONG_MAX / radix;
|
|
|
|
|
while ((c = *p++) >= '0' && c <= ('0' + radix))
|
|
|
|
|
{
|
|
|
|
|
if (n <= upper_limit)
|
|
|
|
|
{
|
|
|
|
|
n *= radix;
|
|
|
|
|
n += c - '0'; /* FIXME this overflows anyway */
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
overflow = 1;
|
|
|
|
|
|
|
|
|
|
/* This depends on large values being output in octal, which is
|
|
|
|
|
what GCC does. */
|
|
|
|
|
if (radix == 8)
|
|
|
|
|
{
|
|
|
|
|
if (nbits == 0)
|
|
|
|
|
{
|
|
|
|
|
if (c == '0')
|
|
|
|
|
/* Ignore leading zeroes. */
|
|
|
|
|
;
|
|
|
|
|
else if (c == '1')
|
|
|
|
|
nbits = 1;
|
|
|
|
|
else if (c == '2' || c == '3')
|
|
|
|
|
nbits = 2;
|
|
|
|
|
else
|
|
|
|
|
nbits = 3;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
nbits += 3;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
if (end)
|
|
|
|
|
{
|
|
|
|
|
if (c && c != end)
|
|
|
|
|
{
|
|
|
|
|
if (bits != NULL)
|
|
|
|
|
*bits = -1;
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
--p;
|
|
|
|
|
|
|
|
|
|
*pp = p;
|
|
|
|
|
if (overflow)
|
|
|
|
|
{
|
|
|
|
|
if (nbits == 0)
|
|
|
|
|
{
|
|
|
|
|
/* Large decimal constants are an error (because it is hard to
|
|
|
|
|
count how many bits are in them). */
|
|
|
|
|
if (bits != NULL)
|
|
|
|
|
*bits = -1;
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* -0x7f is the same as 0x80. So deal with it by adding one to
|
|
|
|
|
the number of bits. */
|
|
|
|
|
if (sign == -1)
|
|
|
|
|
++nbits;
|
|
|
|
|
if (bits)
|
|
|
|
|
*bits = nbits;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
if (valu)
|
|
|
|
|
*valu = n * sign;
|
|
|
|
|
if (bits)
|
|
|
|
|
*bits = 0;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static struct type *
|
|
|
|
|
read_range_type (pp, typenums, objfile)
|
|
|
|
|
char **pp;
|
|
|
|
|
int typenums[2];
|
|
|
|
|
struct objfile *objfile;
|
|
|
|
|
{
|
|
|
|
|
int rangenums[2];
|
|
|
|
|
long n2, n3;
|
|
|
|
|
int n2bits, n3bits;
|
|
|
|
|
int self_subrange;
|
|
|
|
|
struct type *result_type;
|
|
|
|
|
|
|
|
|
|
/* First comes a type we are a subrange of.
|
|
|
|
|
In C it is usually 0, 1 or the type being defined. */
|
|
|
|
|
read_type_number (pp, rangenums);
|
|
|
|
|
self_subrange = (rangenums[0] == typenums[0] &&
|
|
|
|
|
rangenums[1] == typenums[1]);
|
|
|
|
|
|
|
|
|
|
/* A semicolon should now follow; skip it. */
|
|
|
|
|
if (**pp == ';')
|
|
|
|
|
(*pp)++;
|
|
|
|
|
|
|
|
|
|
/* The remaining two operands are usually lower and upper bounds
|
|
|
|
|
of the range. But in some special cases they mean something else. */
|
|
|
|
|
read_huge_number (pp, ';', &n2, &n2bits);
|
|
|
|
|
read_huge_number (pp, ';', &n3, &n3bits);
|
|
|
|
|
|
|
|
|
|
if (n2bits == -1 || n3bits == -1)
|
|
|
|
|
return error_type (pp);
|
|
|
|
|
|
|
|
|
|
/* If limits are huge, must be large integral type. */
|
|
|
|
|
if (n2bits != 0 || n3bits != 0)
|
|
|
|
|
{
|
|
|
|
|
char got_signed = 0;
|
|
|
|
|
char got_unsigned = 0;
|
|
|
|
|
/* Number of bits in the type. */
|
|
|
|
|
int nbits;
|
|
|
|
|
|
|
|
|
|
/* Range from 0 to <large number> is an unsigned large integral type. */
|
|
|
|
|
if ((n2bits == 0 && n2 == 0) && n3bits != 0)
|
|
|
|
|
{
|
|
|
|
|
got_unsigned = 1;
|
|
|
|
|
nbits = n3bits;
|
|
|
|
|
}
|
|
|
|
|
/* Range from <large number> to <large number>-1 is a large signed
|
|
|
|
|
integral type. */
|
|
|
|
|
else if (n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
|
|
|
|
|
{
|
|
|
|
|
got_signed = 1;
|
|
|
|
|
nbits = n2bits;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Check for "long long". */
|
|
|
|
|
if (got_signed && nbits == TARGET_LONG_LONG_BIT)
|
|
|
|
|
return (lookup_fundamental_type (objfile, FT_LONG_LONG));
|
|
|
|
|
if (got_unsigned && nbits == TARGET_LONG_LONG_BIT)
|
|
|
|
|
return (lookup_fundamental_type (objfile, FT_UNSIGNED_LONG_LONG));
|
|
|
|
|
|
|
|
|
|
if (got_signed || got_unsigned)
|
|
|
|
|
{
|
* coffread.c (decode_type): Call alloc_type to alloc new
types.
* stabsread.c (read_array_type, read_range_type, define_symbol):
Call alloc_type to alloc new types.
* stabsread.c (define_symbol): Move dbl_valu symbol field data
from type_obstack to symbol_obstack.
* stabsread.c (define_symbol): Move typedef_sym from type_obstack
to symbol_obstack.
* gdbtypes.h (TYPE_ALLOC): New macro to allocate space for data
associated with a type, using the same mechanism as was used to
allocate space for the type structure itself.
* coffread.c (patch_type, coff_read_struct_type,
coff_read_enum_type): Use TYPE_ALLOC.
* dwarfread.c (struct_type): Use TYPE_ALLOC.
* gdbtypes.c (create_array_type, check_stub_method,
allocate_cplus_struct_type): Use TYPE_ALLOC.
* mipsread.c (parse_symbol, parse_type): Use TYPE_ALLOC.
* stabsread.c (read_struct_type, read_array_type, read_enum_type,
read_range_type): Use TYPE_ALLOC.
1992-08-24 00:13:11 +00:00
|
|
|
|
result_type = alloc_type (objfile);
|
1992-07-28 04:22:18 +00:00
|
|
|
|
TYPE_LENGTH (result_type) = nbits / TARGET_CHAR_BIT;
|
|
|
|
|
TYPE_CODE (result_type) = TYPE_CODE_INT;
|
|
|
|
|
if (got_unsigned)
|
|
|
|
|
TYPE_FLAGS (result_type) |= TYPE_FLAG_UNSIGNED;
|
|
|
|
|
return result_type;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
return error_type (pp);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* A type defined as a subrange of itself, with bounds both 0, is void. */
|
|
|
|
|
if (self_subrange && n2 == 0 && n3 == 0)
|
|
|
|
|
return (lookup_fundamental_type (objfile, FT_VOID));
|
|
|
|
|
|
|
|
|
|
/* If n3 is zero and n2 is not, we want a floating type,
|
|
|
|
|
and n2 is the width in bytes.
|
|
|
|
|
|
|
|
|
|
Fortran programs appear to use this for complex types also,
|
|
|
|
|
and they give no way to distinguish between double and single-complex!
|
|
|
|
|
We don't have complex types, so we would lose on all fortran files!
|
|
|
|
|
So return type `double' for all of those. It won't work right
|
|
|
|
|
for the complex values, but at least it makes the file loadable.
|
|
|
|
|
|
|
|
|
|
FIXME, we may be able to distinguish these by their names. FIXME. */
|
|
|
|
|
|
|
|
|
|
if (n3 == 0 && n2 > 0)
|
|
|
|
|
{
|
|
|
|
|
if (n2 == sizeof (float))
|
|
|
|
|
return (lookup_fundamental_type (objfile, FT_FLOAT));
|
|
|
|
|
return (lookup_fundamental_type (objfile, FT_DBL_PREC_FLOAT));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* If the upper bound is -1, it must really be an unsigned int. */
|
|
|
|
|
|
|
|
|
|
else if (n2 == 0 && n3 == -1)
|
|
|
|
|
{
|
|
|
|
|
/* FIXME -- the only way to distinguish `unsigned int' from `unsigned
|
|
|
|
|
long' is to look at its name! */
|
|
|
|
|
if (
|
|
|
|
|
long_kludge_name && ((long_kludge_name[0] == 'u' /* unsigned */ &&
|
|
|
|
|
long_kludge_name[9] == 'l' /* long */)
|
|
|
|
|
|| (long_kludge_name[0] == 'l' /* long unsigned */)))
|
|
|
|
|
return (lookup_fundamental_type (objfile, FT_UNSIGNED_LONG));
|
|
|
|
|
else
|
|
|
|
|
return (lookup_fundamental_type (objfile, FT_UNSIGNED_INTEGER));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Special case: char is defined (Who knows why) as a subrange of
|
|
|
|
|
itself with range 0-127. */
|
|
|
|
|
else if (self_subrange && n2 == 0 && n3 == 127)
|
|
|
|
|
return (lookup_fundamental_type (objfile, FT_CHAR));
|
|
|
|
|
|
|
|
|
|
/* Assumptions made here: Subrange of self is equivalent to subrange
|
|
|
|
|
of int. FIXME: Host and target type-sizes assumed the same. */
|
|
|
|
|
/* FIXME: This is the *only* place in GDB that depends on comparing
|
|
|
|
|
some type to a builtin type with ==. Fix it! */
|
|
|
|
|
else if (n2 == 0
|
|
|
|
|
&& (self_subrange ||
|
|
|
|
|
*dbx_lookup_type (rangenums) == lookup_fundamental_type (objfile, FT_INTEGER)))
|
|
|
|
|
{
|
|
|
|
|
/* an unsigned type */
|
|
|
|
|
#ifdef LONG_LONG
|
|
|
|
|
if (n3 == - sizeof (long long))
|
|
|
|
|
return (lookup_fundamental_type (objfile, FT_UNSIGNED_LONG_LONG));
|
|
|
|
|
#endif
|
|
|
|
|
/* FIXME -- the only way to distinguish `unsigned int' from `unsigned
|
|
|
|
|
long' is to look at its name! */
|
|
|
|
|
if (n3 == (unsigned long)~0L &&
|
|
|
|
|
long_kludge_name && ((long_kludge_name[0] == 'u' /* unsigned */ &&
|
|
|
|
|
long_kludge_name[9] == 'l' /* long */)
|
|
|
|
|
|| (long_kludge_name[0] == 'l' /* long unsigned */)))
|
|
|
|
|
return (lookup_fundamental_type (objfile, FT_UNSIGNED_LONG));
|
|
|
|
|
if (n3 == (unsigned int)~0L)
|
|
|
|
|
return (lookup_fundamental_type (objfile, FT_UNSIGNED_INTEGER));
|
|
|
|
|
if (n3 == (unsigned short)~0L)
|
|
|
|
|
return (lookup_fundamental_type (objfile, FT_UNSIGNED_SHORT));
|
|
|
|
|
if (n3 == (unsigned char)~0L)
|
|
|
|
|
return (lookup_fundamental_type (objfile, FT_UNSIGNED_CHAR));
|
|
|
|
|
}
|
|
|
|
|
#ifdef LONG_LONG
|
|
|
|
|
else if (n3 == 0 && n2 == -sizeof (long long))
|
|
|
|
|
return (lookup_fundamental_type (objfile, FT_LONG_LONG));
|
|
|
|
|
#endif
|
|
|
|
|
else if (n2 == -n3 -1)
|
|
|
|
|
{
|
|
|
|
|
/* a signed type */
|
|
|
|
|
/* FIXME -- the only way to distinguish `int' from `long' is to look
|
|
|
|
|
at its name! */
|
|
|
|
|
if ((n3 ==(long)(((unsigned long)1 << (8 * sizeof (long) - 1)) - 1)) &&
|
|
|
|
|
long_kludge_name && long_kludge_name[0] == 'l' /* long */)
|
|
|
|
|
return (lookup_fundamental_type (objfile, FT_LONG));
|
|
|
|
|
if (n3 == (long)(((unsigned long)1 << (8 * sizeof (int) - 1)) - 1))
|
|
|
|
|
return (lookup_fundamental_type (objfile, FT_INTEGER));
|
|
|
|
|
if (n3 == ( 1 << (8 * sizeof (short) - 1)) - 1)
|
|
|
|
|
return (lookup_fundamental_type (objfile, FT_SHORT));
|
|
|
|
|
if (n3 == ( 1 << (8 * sizeof (char) - 1)) - 1)
|
|
|
|
|
return (lookup_fundamental_type (objfile, FT_SIGNED_CHAR));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* We have a real range type on our hands. Allocate space and
|
|
|
|
|
return a real pointer. */
|
|
|
|
|
|
|
|
|
|
/* At this point I don't have the faintest idea how to deal with
|
|
|
|
|
a self_subrange type; I'm going to assume that this is used
|
|
|
|
|
as an idiom, and that all of them are special cases. So . . . */
|
|
|
|
|
if (self_subrange)
|
|
|
|
|
return error_type (pp);
|
|
|
|
|
|
* coffread.c (decode_type): Call alloc_type to alloc new
types.
* stabsread.c (read_array_type, read_range_type, define_symbol):
Call alloc_type to alloc new types.
* stabsread.c (define_symbol): Move dbl_valu symbol field data
from type_obstack to symbol_obstack.
* stabsread.c (define_symbol): Move typedef_sym from type_obstack
to symbol_obstack.
* gdbtypes.h (TYPE_ALLOC): New macro to allocate space for data
associated with a type, using the same mechanism as was used to
allocate space for the type structure itself.
* coffread.c (patch_type, coff_read_struct_type,
coff_read_enum_type): Use TYPE_ALLOC.
* dwarfread.c (struct_type): Use TYPE_ALLOC.
* gdbtypes.c (create_array_type, check_stub_method,
allocate_cplus_struct_type): Use TYPE_ALLOC.
* mipsread.c (parse_symbol, parse_type): Use TYPE_ALLOC.
* stabsread.c (read_struct_type, read_array_type, read_enum_type,
read_range_type): Use TYPE_ALLOC.
1992-08-24 00:13:11 +00:00
|
|
|
|
result_type = alloc_type (objfile);
|
1992-07-28 04:22:18 +00:00
|
|
|
|
|
|
|
|
|
TYPE_CODE (result_type) = TYPE_CODE_RANGE;
|
|
|
|
|
|
|
|
|
|
TYPE_TARGET_TYPE (result_type) = *dbx_lookup_type(rangenums);
|
|
|
|
|
if (TYPE_TARGET_TYPE (result_type) == 0) {
|
|
|
|
|
complain (&range_type_base_complaint, (char *) rangenums[1]);
|
|
|
|
|
TYPE_TARGET_TYPE (result_type) = lookup_fundamental_type (objfile, FT_INTEGER);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TYPE_NFIELDS (result_type) = 2;
|
1992-08-06 21:44:36 +00:00
|
|
|
|
TYPE_FIELDS (result_type) = (struct field *)
|
* coffread.c (decode_type): Call alloc_type to alloc new
types.
* stabsread.c (read_array_type, read_range_type, define_symbol):
Call alloc_type to alloc new types.
* stabsread.c (define_symbol): Move dbl_valu symbol field data
from type_obstack to symbol_obstack.
* stabsread.c (define_symbol): Move typedef_sym from type_obstack
to symbol_obstack.
* gdbtypes.h (TYPE_ALLOC): New macro to allocate space for data
associated with a type, using the same mechanism as was used to
allocate space for the type structure itself.
* coffread.c (patch_type, coff_read_struct_type,
coff_read_enum_type): Use TYPE_ALLOC.
* dwarfread.c (struct_type): Use TYPE_ALLOC.
* gdbtypes.c (create_array_type, check_stub_method,
allocate_cplus_struct_type): Use TYPE_ALLOC.
* mipsread.c (parse_symbol, parse_type): Use TYPE_ALLOC.
* stabsread.c (read_struct_type, read_array_type, read_enum_type,
read_range_type): Use TYPE_ALLOC.
1992-08-24 00:13:11 +00:00
|
|
|
|
TYPE_ALLOC (result_type, 2 * sizeof (struct field));
|
1992-07-28 04:22:18 +00:00
|
|
|
|
memset (TYPE_FIELDS (result_type), 0, 2 * sizeof (struct field));
|
|
|
|
|
TYPE_FIELD_BITPOS (result_type, 0) = n2;
|
|
|
|
|
TYPE_FIELD_BITPOS (result_type, 1) = n3;
|
|
|
|
|
|
|
|
|
|
TYPE_LENGTH (result_type) = TYPE_LENGTH (TYPE_TARGET_TYPE (result_type));
|
|
|
|
|
|
|
|
|
|
return result_type;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Read a number from the string pointed to by *PP.
|
|
|
|
|
The value of *PP is advanced over the number.
|
|
|
|
|
If END is nonzero, the character that ends the
|
|
|
|
|
number must match END, or an error happens;
|
|
|
|
|
and that character is skipped if it does match.
|
|
|
|
|
If END is zero, *PP is left pointing to that character. */
|
|
|
|
|
|
|
|
|
|
long
|
|
|
|
|
read_number (pp, end)
|
|
|
|
|
char **pp;
|
|
|
|
|
int end;
|
|
|
|
|
{
|
|
|
|
|
register char *p = *pp;
|
|
|
|
|
register long n = 0;
|
|
|
|
|
register int c;
|
|
|
|
|
int sign = 1;
|
|
|
|
|
|
|
|
|
|
/* Handle an optional leading minus sign. */
|
|
|
|
|
|
|
|
|
|
if (*p == '-')
|
|
|
|
|
{
|
|
|
|
|
sign = -1;
|
|
|
|
|
p++;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Read the digits, as far as they go. */
|
|
|
|
|
|
|
|
|
|
while ((c = *p++) >= '0' && c <= '9')
|
|
|
|
|
{
|
|
|
|
|
n *= 10;
|
|
|
|
|
n += c - '0';
|
|
|
|
|
}
|
|
|
|
|
if (end)
|
|
|
|
|
{
|
|
|
|
|
if (c && c != end)
|
|
|
|
|
error ("Invalid symbol data: invalid character \\%03o at symbol pos %d.", c, symnum);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
--p;
|
|
|
|
|
|
|
|
|
|
*pp = p;
|
|
|
|
|
return n * sign;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Read in an argument list. This is a list of types, separated by commas
|
|
|
|
|
and terminated with END. Return the list of types read in, or (struct type
|
|
|
|
|
**)-1 if there is an error. */
|
|
|
|
|
|
|
|
|
|
static struct type **
|
|
|
|
|
read_args (pp, end, objfile)
|
|
|
|
|
char **pp;
|
|
|
|
|
int end;
|
|
|
|
|
struct objfile *objfile;
|
|
|
|
|
{
|
|
|
|
|
/* FIXME! Remove this arbitrary limit! */
|
|
|
|
|
struct type *types[1024], **rval; /* allow for fns of 1023 parameters */
|
|
|
|
|
int n = 0;
|
|
|
|
|
|
|
|
|
|
while (**pp != end)
|
|
|
|
|
{
|
|
|
|
|
if (**pp != ',')
|
|
|
|
|
/* Invalid argument list: no ','. */
|
|
|
|
|
return (struct type **)-1;
|
|
|
|
|
*pp += 1;
|
|
|
|
|
|
|
|
|
|
/* Check for and handle cretinous dbx symbol name continuation! */
|
|
|
|
|
if (**pp == '\\')
|
|
|
|
|
*pp = next_symbol_text ();
|
|
|
|
|
|
|
|
|
|
types[n++] = read_type (pp, objfile);
|
|
|
|
|
}
|
|
|
|
|
*pp += 1; /* get past `end' (the ':' character) */
|
|
|
|
|
|
|
|
|
|
if (n == 1)
|
|
|
|
|
{
|
|
|
|
|
rval = (struct type **) xmalloc (2 * sizeof (struct type *));
|
|
|
|
|
}
|
|
|
|
|
else if (TYPE_CODE (types[n-1]) != TYPE_CODE_VOID)
|
|
|
|
|
{
|
|
|
|
|
rval = (struct type **) xmalloc ((n + 1) * sizeof (struct type *));
|
|
|
|
|
memset (rval + n, 0, sizeof (struct type *));
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
rval = (struct type **) xmalloc (n * sizeof (struct type *));
|
|
|
|
|
}
|
|
|
|
|
memcpy (rval, types, n * sizeof (struct type *));
|
|
|
|
|
return rval;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Add a common block's start address to the offset of each symbol
|
|
|
|
|
declared to be in it (by being between a BCOMM/ECOMM pair that uses
|
|
|
|
|
the common block name). */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
fix_common_block (sym, valu)
|
|
|
|
|
struct symbol *sym;
|
|
|
|
|
int valu;
|
|
|
|
|
{
|
|
|
|
|
struct pending *next = (struct pending *) SYMBOL_NAMESPACE (sym);
|
|
|
|
|
for ( ; next; next = next->next)
|
|
|
|
|
{
|
|
|
|
|
register int j;
|
|
|
|
|
for (j = next->nsyms - 1; j >= 0; j--)
|
|
|
|
|
SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* What about types defined as forward references inside of a small lexical
|
|
|
|
|
scope? */
|
|
|
|
|
/* Add a type to the list of undefined types to be checked through
|
|
|
|
|
once this file has been read in. */
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
add_undefined_type (type)
|
|
|
|
|
struct type *type;
|
|
|
|
|
{
|
|
|
|
|
if (undef_types_length == undef_types_allocated)
|
|
|
|
|
{
|
|
|
|
|
undef_types_allocated *= 2;
|
|
|
|
|
undef_types = (struct type **)
|
|
|
|
|
xrealloc ((char *) undef_types,
|
|
|
|
|
undef_types_allocated * sizeof (struct type *));
|
|
|
|
|
}
|
|
|
|
|
undef_types[undef_types_length++] = type;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Go through each undefined type, see if it's still undefined, and fix it
|
|
|
|
|
up if possible. We have two kinds of undefined types:
|
|
|
|
|
|
|
|
|
|
TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
|
|
|
|
|
Fix: update array length using the element bounds
|
|
|
|
|
and the target type's length.
|
|
|
|
|
TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
|
|
|
|
|
yet defined at the time a pointer to it was made.
|
|
|
|
|
Fix: Do a full lookup on the struct/union tag. */
|
|
|
|
|
void
|
|
|
|
|
cleanup_undefined_types ()
|
|
|
|
|
{
|
|
|
|
|
struct type **type;
|
|
|
|
|
|
|
|
|
|
for (type = undef_types; type < undef_types + undef_types_length; type++)
|
|
|
|
|
{
|
|
|
|
|
switch (TYPE_CODE (*type))
|
|
|
|
|
{
|
|
|
|
|
|
|
|
|
|
case TYPE_CODE_STRUCT:
|
|
|
|
|
case TYPE_CODE_UNION:
|
|
|
|
|
case TYPE_CODE_ENUM:
|
|
|
|
|
{
|
|
|
|
|
/* Check if it has been defined since. */
|
|
|
|
|
if (TYPE_FLAGS (*type) & TYPE_FLAG_STUB)
|
|
|
|
|
{
|
|
|
|
|
struct pending *ppt;
|
|
|
|
|
int i;
|
|
|
|
|
/* Name of the type, without "struct" or "union" */
|
|
|
|
|
char *typename = TYPE_NAME (*type);
|
|
|
|
|
|
|
|
|
|
if (!strncmp (typename, "struct ", 7))
|
|
|
|
|
typename += 7;
|
|
|
|
|
if (!strncmp (typename, "union ", 6))
|
|
|
|
|
typename += 6;
|
|
|
|
|
if (!strncmp (typename, "enum ", 5))
|
|
|
|
|
typename += 5;
|
|
|
|
|
|
|
|
|
|
for (ppt = file_symbols; ppt; ppt = ppt->next)
|
|
|
|
|
{
|
|
|
|
|
for (i = 0; i < ppt->nsyms; i++)
|
|
|
|
|
{
|
|
|
|
|
struct symbol *sym = ppt->symbol[i];
|
|
|
|
|
|
|
|
|
|
if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
|
|
|
|
|
&& SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
|
|
|
|
|
&& (TYPE_CODE (SYMBOL_TYPE (sym)) ==
|
|
|
|
|
TYPE_CODE (*type))
|
|
|
|
|
&& !strcmp (SYMBOL_NAME (sym), typename))
|
|
|
|
|
{
|
|
|
|
|
memcpy (*type, SYMBOL_TYPE (sym),
|
|
|
|
|
sizeof (struct type));
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case TYPE_CODE_ARRAY:
|
|
|
|
|
{
|
|
|
|
|
struct type *range_type;
|
|
|
|
|
int lower, upper;
|
|
|
|
|
|
|
|
|
|
if (TYPE_LENGTH (*type) != 0) /* Better be unknown */
|
|
|
|
|
goto badtype;
|
|
|
|
|
if (TYPE_NFIELDS (*type) != 1)
|
|
|
|
|
goto badtype;
|
|
|
|
|
range_type = TYPE_FIELD_TYPE (*type, 0);
|
|
|
|
|
if (TYPE_CODE (range_type) != TYPE_CODE_RANGE)
|
|
|
|
|
goto badtype;
|
|
|
|
|
|
|
|
|
|
/* Now recompute the length of the array type, based on its
|
|
|
|
|
number of elements and the target type's length. */
|
|
|
|
|
lower = TYPE_FIELD_BITPOS (range_type, 0);
|
|
|
|
|
upper = TYPE_FIELD_BITPOS (range_type, 1);
|
|
|
|
|
TYPE_LENGTH (*type) = (upper - lower + 1)
|
|
|
|
|
* TYPE_LENGTH (TYPE_TARGET_TYPE (*type));
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
default:
|
|
|
|
|
badtype:
|
|
|
|
|
error ("GDB internal error. cleanup_undefined_types with bad type %d.", TYPE_CODE (*type));
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
undef_types_length = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Scan through all of the global symbols defined in the object file,
|
|
|
|
|
assigning values to the debugging symbols that need to be assigned
|
|
|
|
|
to. Get these symbols from the minimal symbol table. */
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
scan_file_globals (objfile)
|
|
|
|
|
struct objfile *objfile;
|
|
|
|
|
{
|
|
|
|
|
int hash;
|
|
|
|
|
struct minimal_symbol *msymbol;
|
|
|
|
|
struct symbol *sym, *prev;
|
|
|
|
|
|
|
|
|
|
if (objfile->msymbols == 0) /* Beware the null file. */
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
for (msymbol = objfile -> msymbols; msymbol -> name != NULL; msymbol++)
|
|
|
|
|
{
|
|
|
|
|
QUIT;
|
|
|
|
|
|
|
|
|
|
prev = NULL;
|
|
|
|
|
|
|
|
|
|
/* Get the hash index and check all the symbols
|
|
|
|
|
under that hash index. */
|
|
|
|
|
|
|
|
|
|
hash = hashname (msymbol -> name);
|
|
|
|
|
|
|
|
|
|
for (sym = global_sym_chain[hash]; sym;)
|
|
|
|
|
{
|
|
|
|
|
if (*(msymbol -> name) == SYMBOL_NAME (sym)[0]
|
|
|
|
|
&& !strcmp(msymbol -> name + 1, SYMBOL_NAME (sym) + 1))
|
|
|
|
|
{
|
|
|
|
|
/* Splice this symbol out of the hash chain and
|
|
|
|
|
assign the value we have to it. */
|
|
|
|
|
if (prev)
|
|
|
|
|
{
|
|
|
|
|
SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Check to see whether we need to fix up a common block. */
|
|
|
|
|
/* Note: this code might be executed several times for
|
|
|
|
|
the same symbol if there are multiple references. */
|
|
|
|
|
|
|
|
|
|
if (SYMBOL_CLASS (sym) == LOC_BLOCK)
|
|
|
|
|
{
|
|
|
|
|
fix_common_block (sym, msymbol -> address);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
SYMBOL_VALUE_ADDRESS (sym) = msymbol -> address;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (prev)
|
|
|
|
|
{
|
|
|
|
|
sym = SYMBOL_VALUE_CHAIN (prev);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
sym = global_sym_chain[hash];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
prev = sym;
|
|
|
|
|
sym = SYMBOL_VALUE_CHAIN (sym);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Initialize anything that needs initializing when starting to read
|
|
|
|
|
a fresh piece of a symbol file, e.g. reading in the stuff corresponding
|
|
|
|
|
to a psymtab. */
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
stabsread_init ()
|
|
|
|
|
{
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Initialize anything that needs initializing when a completely new
|
|
|
|
|
symbol file is specified (not just adding some symbols from another
|
|
|
|
|
file, e.g. a shared library). */
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
stabsread_new_init ()
|
|
|
|
|
{
|
|
|
|
|
/* Empty the hash table of global syms looking for values. */
|
|
|
|
|
memset (global_sym_chain, 0, sizeof (global_sym_chain));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Initialize anything that needs initializing at the same time as
|
|
|
|
|
start_symtab() is called. */
|
|
|
|
|
|
|
|
|
|
void start_stabs ()
|
|
|
|
|
{
|
|
|
|
|
global_stabs = NULL; /* AIX COFF */
|
|
|
|
|
/* Leave FILENUM of 0 free for builtin types and this file's types. */
|
|
|
|
|
n_this_object_header_files = 1;
|
|
|
|
|
type_vector_length = 0;
|
|
|
|
|
type_vector = (struct type **) 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Call after end_symtab() */
|
|
|
|
|
|
|
|
|
|
void end_stabs ()
|
|
|
|
|
{
|
|
|
|
|
if (type_vector)
|
|
|
|
|
{
|
|
|
|
|
free ((char *) type_vector);
|
|
|
|
|
}
|
|
|
|
|
type_vector = 0;
|
|
|
|
|
type_vector_length = 0;
|
|
|
|
|
previous_stab_code = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
finish_global_stabs (objfile)
|
|
|
|
|
struct objfile *objfile;
|
|
|
|
|
{
|
|
|
|
|
if (global_stabs)
|
|
|
|
|
{
|
|
|
|
|
patch_block_stabs (global_symbols, global_stabs, objfile);
|
|
|
|
|
free ((PTR) global_stabs);
|
|
|
|
|
global_stabs = NULL;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Initializer for this module */
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
_initialize_stabsread ()
|
|
|
|
|
{
|
|
|
|
|
undef_types_allocated = 20;
|
|
|
|
|
undef_types_length = 0;
|
|
|
|
|
undef_types = (struct type **)
|
|
|
|
|
xmalloc (undef_types_allocated * sizeof (struct type *));
|
|
|
|
|
}
|