340 lines
11 KiB
C
340 lines
11 KiB
C
|
/* Definitions to target GDB to a merlin under utek 2.1
|
|||
|
Copyright 1986, 1987, 1989, 1991, 1993 Free Software Foundation, Inc.
|
|||
|
|
|||
|
This file is part of GDB.
|
|||
|
|
|||
|
This program is free software; you can redistribute it and/or modify
|
|||
|
it under the terms of the GNU General Public License as published by
|
|||
|
the Free Software Foundation; either version 2 of the License, or
|
|||
|
(at your option) any later version.
|
|||
|
|
|||
|
This program is distributed in the hope that it will be useful,
|
|||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|||
|
GNU General Public License for more details.
|
|||
|
|
|||
|
You should have received a copy of the GNU General Public License
|
|||
|
along with this program; if not, write to the Free Software
|
|||
|
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
|
|||
|
|
|||
|
#define TARGET_BYTE_ORDER LITTLE_ENDIAN
|
|||
|
|
|||
|
/* Offset from address of function to start of its code.
|
|||
|
Zero on most machines. */
|
|||
|
|
|||
|
#define FUNCTION_START_OFFSET 0
|
|||
|
|
|||
|
/* Advance PC across any function entry prologue instructions
|
|||
|
to reach some "real" code. */
|
|||
|
|
|||
|
#define SKIP_PROLOGUE(pc) \
|
|||
|
{ register int op = read_memory_integer (pc, 1); \
|
|||
|
if (op == 0x82) \
|
|||
|
{ op = read_memory_integer (pc+2,1); \
|
|||
|
if ((op & 0x80) == 0) pc += 3; \
|
|||
|
else if ((op & 0xc0) == 0x80) pc += 4; \
|
|||
|
else pc += 6; \
|
|||
|
}}
|
|||
|
|
|||
|
/* Immediately after a function call, return the saved pc.
|
|||
|
Can't always go through the frames for this because on some machines
|
|||
|
the new frame is not set up until the new function executes
|
|||
|
some instructions. */
|
|||
|
|
|||
|
#define SAVED_PC_AFTER_CALL(frame) \
|
|||
|
read_memory_integer (read_register (SP_REGNUM), 4)
|
|||
|
|
|||
|
/* Address of end of stack space. */
|
|||
|
|
|||
|
#define STACK_END_ADDR (0x800000)
|
|||
|
|
|||
|
/* Stack grows downward. */
|
|||
|
|
|||
|
#define INNER_THAN <
|
|||
|
|
|||
|
/* Sequence of bytes for breakpoint instruction. */
|
|||
|
|
|||
|
#define BREAKPOINT {0xf2}
|
|||
|
|
|||
|
/* Amount PC must be decremented by after a breakpoint.
|
|||
|
This is often the number of bytes in BREAKPOINT
|
|||
|
but not always. */
|
|||
|
|
|||
|
#define DECR_PC_AFTER_BREAK 0
|
|||
|
|
|||
|
/* Nonzero if instruction at PC is a return instruction. */
|
|||
|
|
|||
|
#define ABOUT_TO_RETURN(pc) (read_memory_integer (pc, 1) == 0x12)
|
|||
|
|
|||
|
/* Return 1 if P points to an invalid floating point value. */
|
|||
|
|
|||
|
#define INVALID_FLOAT(p, len) 0
|
|||
|
|
|||
|
/* Define this to say that the "svc" insn is followed by
|
|||
|
codes in memory saying which kind of system call it is. */
|
|||
|
|
|||
|
#define NS32K_SVC_IMMED_OPERANDS
|
|||
|
|
|||
|
/* Say how long (ordinary) registers are. */
|
|||
|
|
|||
|
#define REGISTER_TYPE long
|
|||
|
|
|||
|
/* Number of machine registers */
|
|||
|
|
|||
|
#define NUM_REGS 25
|
|||
|
|
|||
|
#define NUM_GENERAL_REGS 8
|
|||
|
|
|||
|
/* Initializer for an array of names of registers.
|
|||
|
There should be NUM_REGS strings in this initializer. */
|
|||
|
|
|||
|
#define REGISTER_NAMES {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
|
|||
|
"pc", "sp", "fp", "ps", \
|
|||
|
"fsr", \
|
|||
|
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
|
|||
|
"l0", "l1", "l2", "l3", "l4", \
|
|||
|
}
|
|||
|
|
|||
|
/* Register numbers of various important registers.
|
|||
|
Note that some of these values are "real" register numbers,
|
|||
|
and correspond to the general registers of the machine,
|
|||
|
and some are "phony" register numbers which are too large
|
|||
|
to be actual register numbers as far as the user is concerned
|
|||
|
but do serve to get the desired values when passed to read_register. */
|
|||
|
|
|||
|
#define AP_REGNUM FP_REGNUM
|
|||
|
#define FP_REGNUM 10 /* Contains address of executing stack frame */
|
|||
|
#define SP_REGNUM 9 /* Contains address of top of stack */
|
|||
|
#define PC_REGNUM 8 /* Contains program counter */
|
|||
|
#define PS_REGNUM 11 /* Contains processor status */
|
|||
|
#define FPS_REGNUM 12 /* Floating point status register */
|
|||
|
#define FP0_REGNUM 13 /* Floating point register 0 */
|
|||
|
#define LP0_REGNUM 21 /* Double register 0 (same as FP0) */
|
|||
|
|
|||
|
/* Total amount of space needed to store our copies of the machine's
|
|||
|
register state, the array `registers'. */
|
|||
|
#define REGISTER_BYTES ((NUM_REGS - 4) * sizeof (int) + 4 * sizeof (double))
|
|||
|
|
|||
|
/* Index within `registers' of the first byte of the space for
|
|||
|
register N. */
|
|||
|
|
|||
|
#define REGISTER_BYTE(N) ((N) >= LP0_REGNUM ? \
|
|||
|
LP0_REGNUM * 4 + ((N) - LP0_REGNUM) * 8 : (N) * 4)
|
|||
|
|
|||
|
/* Number of bytes of storage in the actual machine representation
|
|||
|
for register N. On the 32000, all regs are 4 bytes
|
|||
|
except for the doubled floating registers. */
|
|||
|
|
|||
|
#define REGISTER_RAW_SIZE(N) ((N) >= LP0_REGNUM ? 8 : 4)
|
|||
|
|
|||
|
/* Number of bytes of storage in the program's representation
|
|||
|
for register N. On the 32000, all regs are 4 bytes
|
|||
|
except for the doubled floating registers. */
|
|||
|
|
|||
|
#define REGISTER_VIRTUAL_SIZE(N) ((N) >= LP0_REGNUM ? 8 : 4)
|
|||
|
|
|||
|
/* Largest value REGISTER_RAW_SIZE can have. */
|
|||
|
|
|||
|
#define MAX_REGISTER_RAW_SIZE 8
|
|||
|
|
|||
|
/* Largest value REGISTER_VIRTUAL_SIZE can have. */
|
|||
|
|
|||
|
#define MAX_REGISTER_VIRTUAL_SIZE 8
|
|||
|
|
|||
|
/* Nonzero if register N requires conversion
|
|||
|
from raw format to virtual format. */
|
|||
|
|
|||
|
#define REGISTER_CONVERTIBLE(N) 0
|
|||
|
|
|||
|
/* Convert data from raw format for register REGNUM
|
|||
|
to virtual format for register REGNUM. */
|
|||
|
|
|||
|
#define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,FROM,TO) \
|
|||
|
bcopy ((FROM), (TO), REGISTER_VIRTUAL_SIZE(REGNUM));
|
|||
|
|
|||
|
/* Convert data from virtual format for register REGNUM
|
|||
|
to raw format for register REGNUM. */
|
|||
|
|
|||
|
#define REGISTER_CONVERT_TO_RAW(REGNUM,FROM,TO) \
|
|||
|
bcopy ((FROM), (TO), REGISTER_VIRTUAL_SIZE(REGNUM));
|
|||
|
|
|||
|
/* Return the GDB type object for the "standard" data type
|
|||
|
of data in register N. */
|
|||
|
|
|||
|
#define REGISTER_VIRTUAL_TYPE(N) \
|
|||
|
((N) >= FP0_REGNUM ? \
|
|||
|
((N) >= LP0_REGNUM ? \
|
|||
|
builtin_type_double \
|
|||
|
: builtin_type_float) \
|
|||
|
: builtin_type_int)
|
|||
|
|
|||
|
/* Store the address of the place in which to copy the structure the
|
|||
|
subroutine will return. This is called from call_function.
|
|||
|
|
|||
|
On this machine this is a no-op, as gcc doesn't run on it yet.
|
|||
|
This calling convention is not used. */
|
|||
|
|
|||
|
#define STORE_STRUCT_RETURN(ADDR, SP)
|
|||
|
|
|||
|
/* Extract from an array REGBUF containing the (raw) register state
|
|||
|
a function return value of type TYPE, and copy that, in virtual format,
|
|||
|
into VALBUF. */
|
|||
|
|
|||
|
#define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
|
|||
|
bcopy (REGBUF, VALBUF, TYPE_LENGTH (TYPE))
|
|||
|
|
|||
|
/* Write into appropriate registers a function return value
|
|||
|
of type TYPE, given in virtual format. */
|
|||
|
|
|||
|
#define STORE_RETURN_VALUE(TYPE,VALBUF) \
|
|||
|
write_register_bytes (0, VALBUF, TYPE_LENGTH (TYPE))
|
|||
|
|
|||
|
/* Extract from an array REGBUF containing the (raw) register state
|
|||
|
the address in which a function should return its structure value,
|
|||
|
as a CORE_ADDR (or an expression that can be used as one). */
|
|||
|
|
|||
|
#define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) (*(int *)(REGBUF))
|
|||
|
|
|||
|
/* Describe the pointer in each stack frame to the previous stack frame
|
|||
|
(its caller). */
|
|||
|
|
|||
|
/* FRAME_CHAIN takes a frame's nominal address
|
|||
|
and produces the frame's chain-pointer. */
|
|||
|
|
|||
|
/* In the case of the Merlin, the frame's nominal address is the FP value,
|
|||
|
and at that address is saved previous FP value as a 4-byte word. */
|
|||
|
|
|||
|
#define FRAME_CHAIN(thisframe) \
|
|||
|
(!inside_entry_file ((thisframe)->pc) ? \
|
|||
|
read_memory_integer ((thisframe)->frame, 4) :\
|
|||
|
0)
|
|||
|
|
|||
|
/* Define other aspects of the stack frame. */
|
|||
|
|
|||
|
#define FRAME_SAVED_PC(FRAME) (read_memory_integer ((FRAME)->frame + 4, 4))
|
|||
|
|
|||
|
/* compute base of arguments */
|
|||
|
#define FRAME_ARGS_ADDRESS(fi) ((fi)->frame)
|
|||
|
|
|||
|
#define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame)
|
|||
|
|
|||
|
/* Return number of args passed to a frame.
|
|||
|
Can return -1, meaning no way to tell. */
|
|||
|
|
|||
|
#define FRAME_NUM_ARGS(numargs, fi) \
|
|||
|
{ CORE_ADDR pc; \
|
|||
|
int insn; \
|
|||
|
int addr_mode; \
|
|||
|
int width; \
|
|||
|
\
|
|||
|
pc = FRAME_SAVED_PC (fi); \
|
|||
|
insn = read_memory_integer (pc,2); \
|
|||
|
addr_mode = (insn >> 11) & 0x1f; \
|
|||
|
insn = insn & 0x7ff; \
|
|||
|
if ((insn & 0x7fc) == 0x57c \
|
|||
|
&& addr_mode == 0x14) /* immediate */ \
|
|||
|
{ if (insn == 0x57c) /* adjspb */ \
|
|||
|
width = 1; \
|
|||
|
else if (insn == 0x57d) /* adjspw */ \
|
|||
|
width = 2; \
|
|||
|
else if (insn == 0x57f) /* adjspd */ \
|
|||
|
width = 4; \
|
|||
|
numargs = read_memory_integer (pc+2,width); \
|
|||
|
if (width > 1) \
|
|||
|
flip_bytes (&numargs, width); \
|
|||
|
numargs = - sign_extend (numargs, width*8) / 4; } \
|
|||
|
else numargs = -1; \
|
|||
|
}
|
|||
|
|
|||
|
/* Return number of bytes at start of arglist that are not really args. */
|
|||
|
|
|||
|
#define FRAME_ARGS_SKIP 8
|
|||
|
|
|||
|
/* Put here the code to store, into a struct frame_saved_regs,
|
|||
|
the addresses of the saved registers of frame described by FRAME_INFO.
|
|||
|
This includes special registers such as pc and fp saved in special
|
|||
|
ways in the stack frame. sp is even more special:
|
|||
|
the address we return for it IS the sp for the next frame. */
|
|||
|
|
|||
|
#define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
|
|||
|
{ int regmask,regnum; \
|
|||
|
int localcount; \
|
|||
|
CORE_ADDR enter_addr; \
|
|||
|
CORE_ADDR next_addr; \
|
|||
|
\
|
|||
|
enter_addr = get_pc_function_start ((frame_info)->pc); \
|
|||
|
regmask = read_memory_integer (enter_addr+1, 1); \
|
|||
|
localcount = ns32k_localcount (enter_addr); \
|
|||
|
next_addr = (frame_info)->frame + localcount; \
|
|||
|
for (regnum = 0; regnum < 8; regnum++, regmask >>= 1) \
|
|||
|
(frame_saved_regs).regs[regnum] \
|
|||
|
= (regmask & 1) ? (next_addr -= 4) : 0; \
|
|||
|
(frame_saved_regs).regs[SP_REGNUM] = (frame_info)->frame + 4; \
|
|||
|
(frame_saved_regs).regs[PC_REGNUM] = (frame_info)->frame + 4; \
|
|||
|
(frame_saved_regs).regs[FP_REGNUM] \
|
|||
|
= read_memory_integer ((frame_info)->frame, 4); }
|
|||
|
|
|||
|
|
|||
|
/* Things needed for making the inferior call functions. */
|
|||
|
|
|||
|
/* Push an empty stack frame, to record the current PC, etc. */
|
|||
|
|
|||
|
#define PUSH_DUMMY_FRAME \
|
|||
|
{ register CORE_ADDR sp = read_register (SP_REGNUM); \
|
|||
|
register int regnum; \
|
|||
|
sp = push_word (sp, read_register (PC_REGNUM)); \
|
|||
|
sp = push_word (sp, read_register (FP_REGNUM)); \
|
|||
|
write_register (FP_REGNUM, sp); \
|
|||
|
for (regnum = 0; regnum < 8; regnum++) \
|
|||
|
sp = push_word (sp, read_register (regnum)); \
|
|||
|
write_register (SP_REGNUM, sp); \
|
|||
|
}
|
|||
|
|
|||
|
/* Discard from the stack the innermost frame, restoring all registers. */
|
|||
|
|
|||
|
#define POP_FRAME \
|
|||
|
{ register FRAME frame = get_current_frame (); \
|
|||
|
register CORE_ADDR fp; \
|
|||
|
register int regnum; \
|
|||
|
struct frame_saved_regs fsr; \
|
|||
|
struct frame_info *fi; \
|
|||
|
fi = get_frame_info (frame); \
|
|||
|
fp = fi->frame; \
|
|||
|
get_frame_saved_regs (fi, &fsr); \
|
|||
|
for (regnum = 0; regnum < 8; regnum++) \
|
|||
|
if (fsr.regs[regnum]) \
|
|||
|
write_register (regnum, read_memory_integer (fsr.regs[regnum], 4)); \
|
|||
|
write_register (FP_REGNUM, read_memory_integer (fp, 4)); \
|
|||
|
write_register (PC_REGNUM, read_memory_integer (fp + 4, 4)); \
|
|||
|
write_register (SP_REGNUM, fp + 8); \
|
|||
|
flush_cached_frames (); \
|
|||
|
set_current_frame (create_new_frame (read_register (FP_REGNUM),\
|
|||
|
read_pc ())); \
|
|||
|
}
|
|||
|
|
|||
|
/* This sequence of words is the instructions
|
|||
|
enter 0xff,0 82 ff 00
|
|||
|
jsr @0x00010203 7f ae c0 01 02 03
|
|||
|
adjspd 0x69696969 7f a5 01 02 03 04
|
|||
|
bpt f2
|
|||
|
Note this is 16 bytes. */
|
|||
|
|
|||
|
#define CALL_DUMMY { 0x7f00ff82, 0x0201c0ae, 0x01a57f03, 0xf2040302 }
|
|||
|
|
|||
|
#define CALL_DUMMY_START_OFFSET 3
|
|||
|
#define CALL_DUMMY_LENGTH 16
|
|||
|
#define CALL_DUMMY_ADDR 5
|
|||
|
#define CALL_DUMMY_NARGS 11
|
|||
|
|
|||
|
/* Insert the specified number of args and function address
|
|||
|
into a call sequence of the above form stored at DUMMYNAME. */
|
|||
|
|
|||
|
#define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, gcc_p) \
|
|||
|
{ int flipped = fun | 0xc0000000; \
|
|||
|
flip_bytes (&flipped, 4); \
|
|||
|
*((int *) (((char *) dummyname)+CALL_DUMMY_ADDR)) = flipped; \
|
|||
|
flipped = - nargs * 4; \
|
|||
|
flip_bytes (&flipped, 4); \
|
|||
|
*((int *) (((char *) dummyname)+CALL_DUMMY_NARGS)) = flipped; \
|
|||
|
}
|