932 lines
24 KiB
C
932 lines
24 KiB
C
|
/* frv trap support
|
|||
|
Copyright (C) 1999, 2000, 2001 Free Software Foundation, Inc.
|
|||
|
Contributed by Red Hat.
|
|||
|
|
|||
|
This file is part of the GNU simulators.
|
|||
|
|
|||
|
This program is free software; you can redistribute it and/or modify
|
|||
|
it under the terms of the GNU General Public License as published by
|
|||
|
the Free Software Foundation; either version 2, or (at your option)
|
|||
|
any later version.
|
|||
|
|
|||
|
This program is distributed in the hope that it will be useful,
|
|||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|||
|
GNU General Public License for more details.
|
|||
|
|
|||
|
You should have received a copy of the GNU General Public License along
|
|||
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
|||
|
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
|||
|
|
|||
|
#define WANT_CPU frvbf
|
|||
|
#define WANT_CPU_FRVBF
|
|||
|
|
|||
|
#include "sim-main.h"
|
|||
|
#include "targ-vals.h"
|
|||
|
#include "cgen-engine.h"
|
|||
|
#include "cgen-par.h"
|
|||
|
#include "sim-fpu.h"
|
|||
|
|
|||
|
#include "bfd.h"
|
|||
|
#include "libiberty.h"
|
|||
|
|
|||
|
/* The semantic code invokes this for invalid (unrecognized) instructions. */
|
|||
|
|
|||
|
SEM_PC
|
|||
|
sim_engine_invalid_insn (SIM_CPU *current_cpu, IADDR cia, SEM_PC vpc)
|
|||
|
{
|
|||
|
frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
|
|||
|
return vpc;
|
|||
|
}
|
|||
|
|
|||
|
/* Process an address exception. */
|
|||
|
|
|||
|
void
|
|||
|
frv_core_signal (SIM_DESC sd, SIM_CPU *current_cpu, sim_cia cia,
|
|||
|
unsigned int map, int nr_bytes, address_word addr,
|
|||
|
transfer_type transfer, sim_core_signals sig)
|
|||
|
{
|
|||
|
if (sig == sim_core_unaligned_signal)
|
|||
|
{
|
|||
|
if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr400)
|
|||
|
frv_queue_data_access_error_interrupt (current_cpu, addr);
|
|||
|
else
|
|||
|
frv_queue_mem_address_not_aligned_interrupt (current_cpu, addr);
|
|||
|
}
|
|||
|
|
|||
|
frv_term (sd);
|
|||
|
sim_core_signal (sd, current_cpu, cia, map, nr_bytes, addr, transfer, sig);
|
|||
|
}
|
|||
|
|
|||
|
void
|
|||
|
frv_sim_engine_halt_hook (SIM_DESC sd, SIM_CPU *current_cpu, sim_cia cia)
|
|||
|
{
|
|||
|
int i;
|
|||
|
if (current_cpu != NULL)
|
|||
|
CIA_SET (current_cpu, cia);
|
|||
|
|
|||
|
/* Invalidate the insn and data caches of all cpus. */
|
|||
|
for (i = 0; i < MAX_NR_PROCESSORS; ++i)
|
|||
|
{
|
|||
|
current_cpu = STATE_CPU (sd, i);
|
|||
|
frv_cache_invalidate_all (CPU_INSN_CACHE (current_cpu), 0);
|
|||
|
frv_cache_invalidate_all (CPU_DATA_CACHE (current_cpu), 1);
|
|||
|
}
|
|||
|
frv_term (sd);
|
|||
|
}
|
|||
|
|
|||
|
/* Read/write functions for system call interface. */
|
|||
|
|
|||
|
static int
|
|||
|
syscall_read_mem (host_callback *cb, struct cb_syscall *sc,
|
|||
|
unsigned long taddr, char *buf, int bytes)
|
|||
|
{
|
|||
|
SIM_DESC sd = (SIM_DESC) sc->p1;
|
|||
|
SIM_CPU *cpu = (SIM_CPU *) sc->p2;
|
|||
|
|
|||
|
frv_cache_invalidate_all (CPU_DATA_CACHE (cpu), 1);
|
|||
|
return sim_core_read_buffer (sd, cpu, read_map, buf, taddr, bytes);
|
|||
|
}
|
|||
|
|
|||
|
static int
|
|||
|
syscall_write_mem (host_callback *cb, struct cb_syscall *sc,
|
|||
|
unsigned long taddr, const char *buf, int bytes)
|
|||
|
{
|
|||
|
SIM_DESC sd = (SIM_DESC) sc->p1;
|
|||
|
SIM_CPU *cpu = (SIM_CPU *) sc->p2;
|
|||
|
|
|||
|
frv_cache_invalidate_all (CPU_INSN_CACHE (cpu), 0);
|
|||
|
frv_cache_invalidate_all (CPU_DATA_CACHE (cpu), 1);
|
|||
|
return sim_core_write_buffer (sd, cpu, write_map, buf, taddr, bytes);
|
|||
|
}
|
|||
|
|
|||
|
/* Handle TRA and TIRA insns. */
|
|||
|
void
|
|||
|
frv_itrap (SIM_CPU *current_cpu, PCADDR pc, USI base, SI offset)
|
|||
|
{
|
|||
|
SIM_DESC sd = CPU_STATE (current_cpu);
|
|||
|
host_callback *cb = STATE_CALLBACK (sd);
|
|||
|
USI num = ((base + offset) & 0x7f) + 0x80;
|
|||
|
|
|||
|
#ifdef SIM_HAVE_BREAKPOINTS
|
|||
|
/* Check for breakpoints "owned" by the simulator first, regardless
|
|||
|
of --environment. */
|
|||
|
if (num == TRAP_BREAKPOINT)
|
|||
|
{
|
|||
|
/* First try sim-break.c. If it's a breakpoint the simulator "owns"
|
|||
|
it doesn't return. Otherwise it returns and let's us try. */
|
|||
|
sim_handle_breakpoint (sd, current_cpu, pc);
|
|||
|
/* Fall through. */
|
|||
|
}
|
|||
|
#endif
|
|||
|
|
|||
|
if (STATE_ENVIRONMENT (sd) == OPERATING_ENVIRONMENT)
|
|||
|
{
|
|||
|
frv_queue_software_interrupt (current_cpu, num);
|
|||
|
return;
|
|||
|
}
|
|||
|
|
|||
|
switch (num)
|
|||
|
{
|
|||
|
case TRAP_SYSCALL :
|
|||
|
{
|
|||
|
CB_SYSCALL s;
|
|||
|
CB_SYSCALL_INIT (&s);
|
|||
|
s.func = GET_H_GR (7);
|
|||
|
s.arg1 = GET_H_GR (8);
|
|||
|
s.arg2 = GET_H_GR (9);
|
|||
|
s.arg3 = GET_H_GR (10);
|
|||
|
|
|||
|
if (s.func == TARGET_SYS_exit)
|
|||
|
{
|
|||
|
sim_engine_halt (sd, current_cpu, NULL, pc, sim_exited, s.arg1);
|
|||
|
}
|
|||
|
|
|||
|
s.p1 = (PTR) sd;
|
|||
|
s.p2 = (PTR) current_cpu;
|
|||
|
s.read_mem = syscall_read_mem;
|
|||
|
s.write_mem = syscall_write_mem;
|
|||
|
cb_syscall (cb, &s);
|
|||
|
SET_H_GR (8, s.result);
|
|||
|
SET_H_GR (9, s.result2);
|
|||
|
SET_H_GR (10, s.errcode);
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
case TRAP_BREAKPOINT:
|
|||
|
sim_engine_halt (sd, current_cpu, NULL, pc, sim_stopped, SIM_SIGTRAP);
|
|||
|
break;
|
|||
|
|
|||
|
/* Add support for dumping registers, either at fixed traps, or all
|
|||
|
unknown traps if configured with --enable-sim-trapdump. */
|
|||
|
default:
|
|||
|
#if !TRAPDUMP
|
|||
|
frv_queue_software_interrupt (current_cpu, num);
|
|||
|
return;
|
|||
|
#endif
|
|||
|
|
|||
|
#ifdef TRAP_REGDUMP1
|
|||
|
case TRAP_REGDUMP1:
|
|||
|
#endif
|
|||
|
|
|||
|
#ifdef TRAP_REGDUMP2
|
|||
|
case TRAP_REGDUMP2:
|
|||
|
#endif
|
|||
|
|
|||
|
#if TRAPDUMP || (defined (TRAP_REGDUMP1)) || (defined (TRAP_REGDUMP2))
|
|||
|
{
|
|||
|
char buf[256];
|
|||
|
int i, j;
|
|||
|
|
|||
|
buf[0] = 0;
|
|||
|
if (STATE_TEXT_SECTION (sd)
|
|||
|
&& pc >= STATE_TEXT_START (sd)
|
|||
|
&& pc < STATE_TEXT_END (sd))
|
|||
|
{
|
|||
|
const char *pc_filename = (const char *)0;
|
|||
|
const char *pc_function = (const char *)0;
|
|||
|
unsigned int pc_linenum = 0;
|
|||
|
|
|||
|
if (bfd_find_nearest_line (STATE_PROG_BFD (sd),
|
|||
|
STATE_TEXT_SECTION (sd),
|
|||
|
(struct symbol_cache_entry **) 0,
|
|||
|
pc - STATE_TEXT_START (sd),
|
|||
|
&pc_filename, &pc_function, &pc_linenum)
|
|||
|
&& (pc_function || pc_filename))
|
|||
|
{
|
|||
|
char *p = buf+2;
|
|||
|
buf[0] = ' ';
|
|||
|
buf[1] = '(';
|
|||
|
if (pc_function)
|
|||
|
{
|
|||
|
strcpy (p, pc_function);
|
|||
|
p += strlen (p);
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
char *q = (char *) strrchr (pc_filename, '/');
|
|||
|
strcpy (p, (q) ? q+1 : pc_filename);
|
|||
|
p += strlen (p);
|
|||
|
}
|
|||
|
|
|||
|
if (pc_linenum)
|
|||
|
{
|
|||
|
sprintf (p, " line %d", pc_linenum);
|
|||
|
p += strlen (p);
|
|||
|
}
|
|||
|
|
|||
|
p[0] = ')';
|
|||
|
p[1] = '\0';
|
|||
|
if ((p+1) - buf > sizeof (buf))
|
|||
|
abort ();
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
sim_io_printf (sd,
|
|||
|
"\nRegister dump, pc = 0x%.8x%s, base = %u, offset = %d\n",
|
|||
|
(unsigned)pc, buf, (unsigned)base, (int)offset);
|
|||
|
|
|||
|
for (i = 0; i < 64; i += 8)
|
|||
|
{
|
|||
|
long g0 = (long)GET_H_GR (i);
|
|||
|
long g1 = (long)GET_H_GR (i+1);
|
|||
|
long g2 = (long)GET_H_GR (i+2);
|
|||
|
long g3 = (long)GET_H_GR (i+3);
|
|||
|
long g4 = (long)GET_H_GR (i+4);
|
|||
|
long g5 = (long)GET_H_GR (i+5);
|
|||
|
long g6 = (long)GET_H_GR (i+6);
|
|||
|
long g7 = (long)GET_H_GR (i+7);
|
|||
|
|
|||
|
if ((g0 | g1 | g2 | g3 | g4 | g5 | g6 | g7) != 0)
|
|||
|
sim_io_printf (sd,
|
|||
|
"\tgr%02d - gr%02d: 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx\n",
|
|||
|
i, i+7, g0, g1, g2, g3, g4, g5, g6, g7);
|
|||
|
}
|
|||
|
|
|||
|
for (i = 0; i < 64; i += 8)
|
|||
|
{
|
|||
|
long f0 = (long)GET_H_FR (i);
|
|||
|
long f1 = (long)GET_H_FR (i+1);
|
|||
|
long f2 = (long)GET_H_FR (i+2);
|
|||
|
long f3 = (long)GET_H_FR (i+3);
|
|||
|
long f4 = (long)GET_H_FR (i+4);
|
|||
|
long f5 = (long)GET_H_FR (i+5);
|
|||
|
long f6 = (long)GET_H_FR (i+6);
|
|||
|
long f7 = (long)GET_H_FR (i+7);
|
|||
|
|
|||
|
if ((f0 | f1 | f2 | f3 | f4 | f5 | f6 | f7) != 0)
|
|||
|
sim_io_printf (sd,
|
|||
|
"\tfr%02d - fr%02d: 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx\n",
|
|||
|
i, i+7, f0, f1, f2, f3, f4, f5, f6, f7);
|
|||
|
}
|
|||
|
|
|||
|
sim_io_printf (sd,
|
|||
|
"\tlr/lcr/cc/ccc: 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx\n",
|
|||
|
(long)GET_H_SPR (272),
|
|||
|
(long)GET_H_SPR (273),
|
|||
|
(long)GET_H_SPR (256),
|
|||
|
(long)GET_H_SPR (263));
|
|||
|
}
|
|||
|
break;
|
|||
|
#endif
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Handle the MTRAP insn. */
|
|||
|
void
|
|||
|
frv_mtrap (SIM_CPU *current_cpu)
|
|||
|
{
|
|||
|
/* Check the status of media exceptions in MSR0. */
|
|||
|
SI msr = GET_MSR (0);
|
|||
|
if (GET_MSR_AOVF (msr) || GET_MSR_MTT (msr))
|
|||
|
frv_queue_program_interrupt (current_cpu, FRV_MP_EXCEPTION);
|
|||
|
}
|
|||
|
|
|||
|
/* Handle the BREAK insn. */
|
|||
|
void
|
|||
|
frv_break (SIM_CPU *current_cpu)
|
|||
|
{
|
|||
|
IADDR pc;
|
|||
|
SIM_DESC sd = CPU_STATE (current_cpu);
|
|||
|
|
|||
|
#ifdef SIM_HAVE_BREAKPOINTS
|
|||
|
/* First try sim-break.c. If it's a breakpoint the simulator "owns"
|
|||
|
it doesn't return. Otherwise it returns and let's us try. */
|
|||
|
pc = GET_H_PC ();
|
|||
|
sim_handle_breakpoint (sd, current_cpu, pc);
|
|||
|
/* Fall through. */
|
|||
|
#endif
|
|||
|
|
|||
|
if (STATE_ENVIRONMENT (sd) != OPERATING_ENVIRONMENT)
|
|||
|
{
|
|||
|
/* Invalidate the insn cache because the debugger will presumably
|
|||
|
replace the breakpoint insn with the real one. */
|
|||
|
#ifndef SIM_HAVE_BREAKPOINTS
|
|||
|
pc = GET_H_PC ();
|
|||
|
#endif
|
|||
|
sim_engine_halt (sd, current_cpu, NULL, pc, sim_stopped, SIM_SIGTRAP);
|
|||
|
}
|
|||
|
|
|||
|
frv_queue_break_interrupt (current_cpu);
|
|||
|
}
|
|||
|
|
|||
|
/* Return from trap. */
|
|||
|
USI
|
|||
|
frv_rett (SIM_CPU *current_cpu, PCADDR pc, BI debug_field)
|
|||
|
{
|
|||
|
USI new_pc;
|
|||
|
/* if (normal running mode and debug_field==0
|
|||
|
PC=PCSR
|
|||
|
PSR.ET=1
|
|||
|
PSR.S=PSR.PS
|
|||
|
else if (debug running mode and debug_field==1)
|
|||
|
PC=(BPCSR)
|
|||
|
PSR.ET=BPSR.BET
|
|||
|
PSR.S=BPSR.BS
|
|||
|
change to normal running mode
|
|||
|
*/
|
|||
|
int psr_s = GET_H_PSR_S ();
|
|||
|
int psr_et = GET_H_PSR_ET ();
|
|||
|
|
|||
|
/* Check for exceptions in the priority order listed in the FRV Architecture
|
|||
|
Volume 2. */
|
|||
|
if (! psr_s)
|
|||
|
{
|
|||
|
/* Halt if PSR.ET is not set. See chapter 6 of the LSI. */
|
|||
|
if (! psr_et)
|
|||
|
{
|
|||
|
SIM_DESC sd = CPU_STATE (current_cpu);
|
|||
|
sim_engine_halt (sd, current_cpu, NULL, pc, sim_stopped, SIM_SIGTRAP);
|
|||
|
}
|
|||
|
|
|||
|
/* privileged_instruction interrupt will have already been queued by
|
|||
|
frv_detect_insn_access_interrupts. */
|
|||
|
new_pc = pc + 4;
|
|||
|
}
|
|||
|
else if (psr_et)
|
|||
|
{
|
|||
|
/* Halt if PSR.S is set. See chapter 6 of the LSI. */
|
|||
|
if (psr_s)
|
|||
|
{
|
|||
|
SIM_DESC sd = CPU_STATE (current_cpu);
|
|||
|
sim_engine_halt (sd, current_cpu, NULL, pc, sim_stopped, SIM_SIGTRAP);
|
|||
|
}
|
|||
|
|
|||
|
frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
|
|||
|
new_pc = pc + 4;
|
|||
|
}
|
|||
|
else if (! CPU_DEBUG_STATE (current_cpu) && debug_field == 0)
|
|||
|
{
|
|||
|
USI psr = GET_PSR ();
|
|||
|
/* Return from normal running state. */
|
|||
|
new_pc = GET_H_SPR (H_SPR_PCSR);
|
|||
|
SET_PSR_ET (psr, 1);
|
|||
|
SET_PSR_S (psr, GET_PSR_PS (psr));
|
|||
|
sim_queue_fn_si_write (current_cpu, frvbf_h_spr_set, H_SPR_PSR, psr);
|
|||
|
}
|
|||
|
else if (CPU_DEBUG_STATE (current_cpu) && debug_field == 1)
|
|||
|
{
|
|||
|
USI psr = GET_PSR ();
|
|||
|
/* Return from debug state. */
|
|||
|
new_pc = GET_H_SPR (H_SPR_BPCSR);
|
|||
|
SET_PSR_ET (psr, GET_H_BPSR_BET ());
|
|||
|
SET_PSR_S (psr, GET_H_BPSR_BS ());
|
|||
|
sim_queue_fn_si_write (current_cpu, frvbf_h_spr_set, H_SPR_PSR, psr);
|
|||
|
CPU_DEBUG_STATE (current_cpu) = 0;
|
|||
|
}
|
|||
|
else
|
|||
|
new_pc = pc + 4;
|
|||
|
|
|||
|
return new_pc;
|
|||
|
}
|
|||
|
|
|||
|
/* Functions for handling non-excepting instruction side effects. */
|
|||
|
static SI next_available_nesr (SIM_CPU *current_cpu, SI current_index)
|
|||
|
{
|
|||
|
FRV_REGISTER_CONTROL *control = CPU_REGISTER_CONTROL (current_cpu);
|
|||
|
if (control->spr[H_SPR_NECR].implemented)
|
|||
|
{
|
|||
|
int limit;
|
|||
|
USI necr = GET_NECR ();
|
|||
|
|
|||
|
/* See if any NESRs are implemented. First need to check the validity of
|
|||
|
the NECR. */
|
|||
|
if (! GET_NECR_VALID (necr))
|
|||
|
return NO_NESR;
|
|||
|
|
|||
|
limit = GET_NECR_NEN (necr);
|
|||
|
for (++current_index; current_index < limit; ++current_index)
|
|||
|
{
|
|||
|
SI nesr = GET_NESR (current_index);
|
|||
|
if (! GET_NESR_VALID (nesr))
|
|||
|
return current_index;
|
|||
|
}
|
|||
|
}
|
|||
|
return NO_NESR;
|
|||
|
}
|
|||
|
|
|||
|
static SI next_valid_nesr (SIM_CPU *current_cpu, SI current_index)
|
|||
|
{
|
|||
|
FRV_REGISTER_CONTROL *control = CPU_REGISTER_CONTROL (current_cpu);
|
|||
|
if (control->spr[H_SPR_NECR].implemented)
|
|||
|
{
|
|||
|
int limit;
|
|||
|
USI necr = GET_NECR ();
|
|||
|
|
|||
|
/* See if any NESRs are implemented. First need to check the validity of
|
|||
|
the NECR. */
|
|||
|
if (! GET_NECR_VALID (necr))
|
|||
|
return NO_NESR;
|
|||
|
|
|||
|
limit = GET_NECR_NEN (necr);
|
|||
|
for (++current_index; current_index < limit; ++current_index)
|
|||
|
{
|
|||
|
SI nesr = GET_NESR (current_index);
|
|||
|
if (GET_NESR_VALID (nesr))
|
|||
|
return current_index;
|
|||
|
}
|
|||
|
}
|
|||
|
return NO_NESR;
|
|||
|
}
|
|||
|
|
|||
|
BI
|
|||
|
frvbf_check_non_excepting_load (
|
|||
|
SIM_CPU *current_cpu, SI base_index, SI disp_index, SI target_index,
|
|||
|
SI immediate_disp, QI data_size, BI is_float
|
|||
|
)
|
|||
|
{
|
|||
|
BI rc = 1; /* perform the load. */
|
|||
|
SIM_DESC sd = CPU_STATE (current_cpu);
|
|||
|
int daec = 0;
|
|||
|
int rec = 0;
|
|||
|
int ec = 0;
|
|||
|
USI necr;
|
|||
|
int do_elos;
|
|||
|
SI NE_flags[2];
|
|||
|
SI NE_base;
|
|||
|
SI nesr;
|
|||
|
SI ne_index;
|
|||
|
FRV_REGISTER_CONTROL *control;
|
|||
|
|
|||
|
SI address = GET_H_GR (base_index);
|
|||
|
if (disp_index >= 0)
|
|||
|
address += GET_H_GR (disp_index);
|
|||
|
else
|
|||
|
address += immediate_disp;
|
|||
|
|
|||
|
/* Check for interrupt factors. */
|
|||
|
switch (data_size)
|
|||
|
{
|
|||
|
case NESR_UQI_SIZE:
|
|||
|
case NESR_QI_SIZE:
|
|||
|
break;
|
|||
|
case NESR_UHI_SIZE:
|
|||
|
case NESR_HI_SIZE:
|
|||
|
if (address & 1)
|
|||
|
ec = 1;
|
|||
|
break;
|
|||
|
case NESR_SI_SIZE:
|
|||
|
if (address & 3)
|
|||
|
ec = 1;
|
|||
|
break;
|
|||
|
case NESR_DI_SIZE:
|
|||
|
if (address & 7)
|
|||
|
ec = 1;
|
|||
|
if (target_index & 1)
|
|||
|
rec = 1;
|
|||
|
break;
|
|||
|
case NESR_XI_SIZE:
|
|||
|
if (address & 0xf)
|
|||
|
ec = 1;
|
|||
|
if (target_index & 3)
|
|||
|
rec = 1;
|
|||
|
break;
|
|||
|
default:
|
|||
|
{
|
|||
|
IADDR pc = GET_H_PC ();
|
|||
|
sim_engine_abort (sd, current_cpu, pc,
|
|||
|
"check_non_excepting_load: Incorrect data_size\n");
|
|||
|
break;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
control = CPU_REGISTER_CONTROL (current_cpu);
|
|||
|
if (control->spr[H_SPR_NECR].implemented)
|
|||
|
{
|
|||
|
necr = GET_NECR ();
|
|||
|
do_elos = GET_NECR_VALID (necr) && GET_NECR_ELOS (necr);
|
|||
|
}
|
|||
|
else
|
|||
|
do_elos = 0;
|
|||
|
|
|||
|
/* NECR, NESR, NEEAR are only implemented for the full frv machine. */
|
|||
|
if (do_elos)
|
|||
|
{
|
|||
|
ne_index = next_available_nesr (current_cpu, NO_NESR);
|
|||
|
if (ne_index == NO_NESR)
|
|||
|
{
|
|||
|
IADDR pc = GET_H_PC ();
|
|||
|
sim_engine_abort (sd, current_cpu, pc,
|
|||
|
"No available NESR register\n");
|
|||
|
}
|
|||
|
|
|||
|
/* Fill in the basic fields of the NESR. */
|
|||
|
nesr = GET_NESR (ne_index);
|
|||
|
SET_NESR_VALID (nesr);
|
|||
|
SET_NESR_EAV (nesr);
|
|||
|
SET_NESR_DRN (nesr, target_index);
|
|||
|
SET_NESR_SIZE (nesr, data_size);
|
|||
|
SET_NESR_NEAN (nesr, ne_index);
|
|||
|
if (is_float)
|
|||
|
SET_NESR_FR (nesr);
|
|||
|
else
|
|||
|
CLEAR_NESR_FR (nesr);
|
|||
|
|
|||
|
/* Set the corresponding NEEAR. */
|
|||
|
SET_NEEAR (ne_index, address);
|
|||
|
|
|||
|
SET_NESR_DAEC (nesr, 0);
|
|||
|
SET_NESR_REC (nesr, 0);
|
|||
|
SET_NESR_EC (nesr, 0);
|
|||
|
}
|
|||
|
|
|||
|
/* Set the NE flag corresponding to the target register if an interrupt
|
|||
|
factor was detected.
|
|||
|
daec is not checked here yet, but is declared for future reference. */
|
|||
|
if (is_float)
|
|||
|
NE_base = H_SPR_FNER0;
|
|||
|
else
|
|||
|
NE_base = H_SPR_GNER0;
|
|||
|
|
|||
|
GET_NE_FLAGS (NE_flags, NE_base);
|
|||
|
if (rec)
|
|||
|
{
|
|||
|
SET_NE_FLAG (NE_flags, target_index);
|
|||
|
if (do_elos)
|
|||
|
SET_NESR_REC (nesr, NESR_REGISTER_NOT_ALIGNED);
|
|||
|
}
|
|||
|
|
|||
|
if (ec)
|
|||
|
{
|
|||
|
SET_NE_FLAG (NE_flags, target_index);
|
|||
|
if (do_elos)
|
|||
|
SET_NESR_EC (nesr, NESR_MEM_ADDRESS_NOT_ALIGNED);
|
|||
|
}
|
|||
|
|
|||
|
if (do_elos)
|
|||
|
SET_NESR (ne_index, nesr);
|
|||
|
|
|||
|
/* If no interrupt factor was detected then set the NE flag on the
|
|||
|
target register if the NE flag on one of the input registers
|
|||
|
is already set. */
|
|||
|
if (! rec && ! ec && ! daec)
|
|||
|
{
|
|||
|
BI ne_flag = GET_NE_FLAG (NE_flags, base_index);
|
|||
|
if (disp_index >= 0)
|
|||
|
ne_flag |= GET_NE_FLAG (NE_flags, disp_index);
|
|||
|
if (ne_flag)
|
|||
|
{
|
|||
|
SET_NE_FLAG (NE_flags, target_index);
|
|||
|
rc = 0; /* Do not perform the load. */
|
|||
|
}
|
|||
|
else
|
|||
|
CLEAR_NE_FLAG (NE_flags, target_index);
|
|||
|
}
|
|||
|
|
|||
|
SET_NE_FLAGS (NE_base, NE_flags);
|
|||
|
|
|||
|
return rc; /* perform the load? */
|
|||
|
}
|
|||
|
|
|||
|
/* Record state for media exception: media_cr_not_aligned. */
|
|||
|
void
|
|||
|
frvbf_media_cr_not_aligned (SIM_CPU *current_cpu)
|
|||
|
{
|
|||
|
SIM_DESC sd = CPU_STATE (current_cpu);
|
|||
|
|
|||
|
/* On the fr400 this generates an illegal_instruction interrupt. */
|
|||
|
if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr400)
|
|||
|
frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
|
|||
|
else
|
|||
|
frv_set_mp_exception_registers (current_cpu, MTT_CR_NOT_ALIGNED, 0);
|
|||
|
}
|
|||
|
|
|||
|
/* Record state for media exception: media_acc_not_aligned. */
|
|||
|
void
|
|||
|
frvbf_media_acc_not_aligned (SIM_CPU *current_cpu)
|
|||
|
{
|
|||
|
SIM_DESC sd = CPU_STATE (current_cpu);
|
|||
|
|
|||
|
/* On the fr400 this generates an illegal_instruction interrupt. */
|
|||
|
if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr400)
|
|||
|
frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
|
|||
|
else
|
|||
|
frv_set_mp_exception_registers (current_cpu, MTT_ACC_NOT_ALIGNED, 0);
|
|||
|
}
|
|||
|
|
|||
|
/* Record state for media exception: media_register_not_aligned. */
|
|||
|
void
|
|||
|
frvbf_media_register_not_aligned (SIM_CPU *current_cpu)
|
|||
|
{
|
|||
|
SIM_DESC sd = CPU_STATE (current_cpu);
|
|||
|
|
|||
|
/* On the fr400 this generates an illegal_instruction interrupt. */
|
|||
|
if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr400)
|
|||
|
frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
|
|||
|
else
|
|||
|
frv_set_mp_exception_registers (current_cpu, MTT_INVALID_FR, 0);
|
|||
|
}
|
|||
|
|
|||
|
/* Record state for media exception: media_overflow. */
|
|||
|
void
|
|||
|
frvbf_media_overflow (SIM_CPU *current_cpu, int sie)
|
|||
|
{
|
|||
|
frv_set_mp_exception_registers (current_cpu, MTT_OVERFLOW, sie);
|
|||
|
}
|
|||
|
|
|||
|
/* Queue a division exception. */
|
|||
|
enum frv_dtt
|
|||
|
frvbf_division_exception (SIM_CPU *current_cpu, enum frv_dtt dtt,
|
|||
|
int target_index, int non_excepting)
|
|||
|
{
|
|||
|
/* If there was an overflow and it is masked, then record it in
|
|||
|
ISR.AEXC. */
|
|||
|
USI isr = GET_ISR ();
|
|||
|
if ((dtt & FRV_DTT_OVERFLOW) && GET_ISR_EDE (isr))
|
|||
|
{
|
|||
|
dtt &= ~FRV_DTT_OVERFLOW;
|
|||
|
SET_ISR_AEXC (isr);
|
|||
|
SET_ISR (isr);
|
|||
|
}
|
|||
|
if (dtt != FRV_DTT_NO_EXCEPTION)
|
|||
|
{
|
|||
|
if (non_excepting)
|
|||
|
{
|
|||
|
/* Non excepting instruction, simply set the NE flag for the target
|
|||
|
register. */
|
|||
|
SI NE_flags[2];
|
|||
|
GET_NE_FLAGS (NE_flags, H_SPR_GNER0);
|
|||
|
SET_NE_FLAG (NE_flags, target_index);
|
|||
|
SET_NE_FLAGS (H_SPR_GNER0, NE_flags);
|
|||
|
}
|
|||
|
else
|
|||
|
frv_queue_division_exception_interrupt (current_cpu, dtt);
|
|||
|
}
|
|||
|
return dtt;
|
|||
|
}
|
|||
|
|
|||
|
void
|
|||
|
frvbf_check_recovering_store (
|
|||
|
SIM_CPU *current_cpu, PCADDR address, SI regno, int size, int is_float
|
|||
|
)
|
|||
|
{
|
|||
|
FRV_CACHE *cache = CPU_DATA_CACHE (current_cpu);
|
|||
|
int reg_ix;
|
|||
|
|
|||
|
CPU_RSTR_INVALIDATE(current_cpu) = 0;
|
|||
|
|
|||
|
for (reg_ix = next_valid_nesr (current_cpu, NO_NESR);
|
|||
|
reg_ix != NO_NESR;
|
|||
|
reg_ix = next_valid_nesr (current_cpu, reg_ix))
|
|||
|
{
|
|||
|
if (address == GET_H_SPR (H_SPR_NEEAR0 + reg_ix))
|
|||
|
{
|
|||
|
SI nesr = GET_NESR (reg_ix);
|
|||
|
int nesr_drn = GET_NESR_DRN (nesr);
|
|||
|
BI nesr_fr = GET_NESR_FR (nesr);
|
|||
|
SI remain;
|
|||
|
|
|||
|
/* Invalidate cache block containing this address.
|
|||
|
If we need to count cycles, then the cache operation will be
|
|||
|
initiated from the model profiling functions.
|
|||
|
See frvbf_model_.... */
|
|||
|
if (model_insn)
|
|||
|
{
|
|||
|
CPU_RSTR_INVALIDATE(current_cpu) = 1;
|
|||
|
CPU_LOAD_ADDRESS (current_cpu) = address;
|
|||
|
}
|
|||
|
else
|
|||
|
frv_cache_invalidate (cache, address, 1/* flush */);
|
|||
|
|
|||
|
/* Copy the stored value to the register indicated by NESR.DRN. */
|
|||
|
for (remain = size; remain > 0; remain -= 4)
|
|||
|
{
|
|||
|
SI value;
|
|||
|
|
|||
|
if (is_float)
|
|||
|
value = GET_H_FR (regno);
|
|||
|
else
|
|||
|
value = GET_H_GR (regno);
|
|||
|
|
|||
|
switch (size)
|
|||
|
{
|
|||
|
case 1:
|
|||
|
value &= 0xff;
|
|||
|
break;
|
|||
|
case 2:
|
|||
|
value &= 0xffff;
|
|||
|
break;
|
|||
|
default:
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
if (nesr_fr)
|
|||
|
sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, nesr_drn,
|
|||
|
value);
|
|||
|
else
|
|||
|
sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, nesr_drn,
|
|||
|
value);
|
|||
|
|
|||
|
nesr_drn++;
|
|||
|
regno++;
|
|||
|
}
|
|||
|
break; /* Only consider the first matching register. */
|
|||
|
}
|
|||
|
} /* loop over active neear registers. */
|
|||
|
}
|
|||
|
|
|||
|
static void
|
|||
|
clear_nesr_neear (SIM_CPU *current_cpu, SI target_index, BI is_float)
|
|||
|
{
|
|||
|
int reg_ix;
|
|||
|
|
|||
|
/* Only implemented for full frv. */
|
|||
|
SIM_DESC sd = CPU_STATE (current_cpu);
|
|||
|
if (STATE_ARCHITECTURE (sd)->mach != bfd_mach_frv)
|
|||
|
return;
|
|||
|
|
|||
|
/* Clear the appropriate NESR and NEEAR registers. */
|
|||
|
for (reg_ix = next_valid_nesr (current_cpu, NO_NESR);
|
|||
|
reg_ix != NO_NESR;
|
|||
|
reg_ix = next_valid_nesr (current_cpu, reg_ix))
|
|||
|
{
|
|||
|
SI nesr;
|
|||
|
/* The register is available, now check if it is active. */
|
|||
|
nesr = GET_NESR (reg_ix);
|
|||
|
if (GET_NESR_FR (nesr) == is_float)
|
|||
|
{
|
|||
|
if (target_index < 0 || GET_NESR_DRN (nesr) == target_index)
|
|||
|
{
|
|||
|
SET_NESR (reg_ix, 0);
|
|||
|
SET_NEEAR (reg_ix, 0);
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
static void
|
|||
|
clear_ne_flags (
|
|||
|
SIM_CPU *current_cpu,
|
|||
|
SI target_index,
|
|||
|
int hi_available,
|
|||
|
int lo_available,
|
|||
|
SI NE_base
|
|||
|
)
|
|||
|
{
|
|||
|
SI NE_flags[2];
|
|||
|
int exception;
|
|||
|
|
|||
|
GET_NE_FLAGS (NE_flags, NE_base);
|
|||
|
if (target_index >= 0)
|
|||
|
CLEAR_NE_FLAG (NE_flags, target_index);
|
|||
|
else
|
|||
|
{
|
|||
|
if (lo_available)
|
|||
|
NE_flags[1] = 0;
|
|||
|
if (hi_available)
|
|||
|
NE_flags[0] = 0;
|
|||
|
}
|
|||
|
SET_NE_FLAGS (NE_base, NE_flags);
|
|||
|
}
|
|||
|
|
|||
|
/* Return 1 if the given register is available, 0 otherwise. TARGET_INDEX==-1
|
|||
|
means to check for any register available. */
|
|||
|
static void
|
|||
|
which_registers_available (
|
|||
|
SIM_CPU *current_cpu, int *hi_available, int *lo_available, int is_float
|
|||
|
)
|
|||
|
{
|
|||
|
if (is_float)
|
|||
|
frv_fr_registers_available (current_cpu, hi_available, lo_available);
|
|||
|
else
|
|||
|
frv_gr_registers_available (current_cpu, hi_available, lo_available);
|
|||
|
}
|
|||
|
|
|||
|
void
|
|||
|
frvbf_clear_ne_flags (SIM_CPU *current_cpu, SI target_index, BI is_float)
|
|||
|
{
|
|||
|
int hi_available;
|
|||
|
int lo_available;
|
|||
|
int exception;
|
|||
|
SI NE_base;
|
|||
|
USI necr;
|
|||
|
FRV_REGISTER_CONTROL *control;
|
|||
|
|
|||
|
/* Check for availability of the target register(s). */
|
|||
|
which_registers_available (current_cpu, & hi_available, & lo_available,
|
|||
|
is_float);
|
|||
|
|
|||
|
/* Check to make sure that the target register is available. */
|
|||
|
if (! frv_check_register_access (current_cpu, target_index,
|
|||
|
hi_available, lo_available))
|
|||
|
return;
|
|||
|
|
|||
|
/* Determine whether we're working with GR or FR registers. */
|
|||
|
if (is_float)
|
|||
|
NE_base = H_SPR_FNER0;
|
|||
|
else
|
|||
|
NE_base = H_SPR_GNER0;
|
|||
|
|
|||
|
/* Always clear the appropriate NE flags. */
|
|||
|
clear_ne_flags (current_cpu, target_index, hi_available, lo_available,
|
|||
|
NE_base);
|
|||
|
|
|||
|
/* Clear the appropriate NESR and NEEAR registers. */
|
|||
|
control = CPU_REGISTER_CONTROL (current_cpu);
|
|||
|
if (control->spr[H_SPR_NECR].implemented)
|
|||
|
{
|
|||
|
necr = GET_NECR ();
|
|||
|
if (GET_NECR_VALID (necr) && GET_NECR_ELOS (necr))
|
|||
|
clear_nesr_neear (current_cpu, target_index, is_float);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
void
|
|||
|
frvbf_commit (SIM_CPU *current_cpu, SI target_index, BI is_float)
|
|||
|
{
|
|||
|
SI NE_base;
|
|||
|
SI NE_flags[2];
|
|||
|
BI NE_flag;
|
|||
|
int exception;
|
|||
|
int hi_available;
|
|||
|
int lo_available;
|
|||
|
USI necr;
|
|||
|
FRV_REGISTER_CONTROL *control;
|
|||
|
|
|||
|
/* Check for availability of the target register(s). */
|
|||
|
which_registers_available (current_cpu, & hi_available, & lo_available,
|
|||
|
is_float);
|
|||
|
|
|||
|
/* Check to make sure that the target register is available. */
|
|||
|
if (! frv_check_register_access (current_cpu, target_index,
|
|||
|
hi_available, lo_available))
|
|||
|
return;
|
|||
|
|
|||
|
/* Determine whether we're working with GR or FR registers. */
|
|||
|
if (is_float)
|
|||
|
NE_base = H_SPR_FNER0;
|
|||
|
else
|
|||
|
NE_base = H_SPR_GNER0;
|
|||
|
|
|||
|
/* Determine whether a ne exception is pending. */
|
|||
|
GET_NE_FLAGS (NE_flags, NE_base);
|
|||
|
if (target_index >= 0)
|
|||
|
NE_flag = GET_NE_FLAG (NE_flags, target_index);
|
|||
|
else
|
|||
|
{
|
|||
|
NE_flag =
|
|||
|
hi_available && NE_flags[0] != 0 || lo_available && NE_flags[1] != 0;
|
|||
|
}
|
|||
|
|
|||
|
/* Always clear the appropriate NE flags. */
|
|||
|
clear_ne_flags (current_cpu, target_index, hi_available, lo_available,
|
|||
|
NE_base);
|
|||
|
|
|||
|
control = CPU_REGISTER_CONTROL (current_cpu);
|
|||
|
if (control->spr[H_SPR_NECR].implemented)
|
|||
|
{
|
|||
|
necr = GET_NECR ();
|
|||
|
if (GET_NECR_VALID (necr) && GET_NECR_ELOS (necr) && NE_flag)
|
|||
|
{
|
|||
|
/* Clear the appropriate NESR and NEEAR registers. */
|
|||
|
clear_nesr_neear (current_cpu, target_index, is_float);
|
|||
|
frv_queue_program_interrupt (current_cpu, FRV_COMMIT_EXCEPTION);
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Generate the appropriate fp_exception(s) based on the given status code. */
|
|||
|
void
|
|||
|
frvbf_fpu_error (CGEN_FPU* fpu, int status)
|
|||
|
{
|
|||
|
struct frv_fp_exception_info fp_info = {
|
|||
|
FSR_NO_EXCEPTION, FTT_IEEE_754_EXCEPTION
|
|||
|
};
|
|||
|
|
|||
|
if (status &
|
|||
|
(sim_fpu_status_invalid_snan |
|
|||
|
sim_fpu_status_invalid_qnan |
|
|||
|
sim_fpu_status_invalid_isi |
|
|||
|
sim_fpu_status_invalid_idi |
|
|||
|
sim_fpu_status_invalid_zdz |
|
|||
|
sim_fpu_status_invalid_imz |
|
|||
|
sim_fpu_status_invalid_cvi |
|
|||
|
sim_fpu_status_invalid_cmp |
|
|||
|
sim_fpu_status_invalid_sqrt))
|
|||
|
fp_info.fsr_mask |= FSR_INVALID_OPERATION;
|
|||
|
|
|||
|
if (status & sim_fpu_status_invalid_div0)
|
|||
|
fp_info.fsr_mask |= FSR_DIVISION_BY_ZERO;
|
|||
|
|
|||
|
if (status & sim_fpu_status_inexact)
|
|||
|
fp_info.fsr_mask |= FSR_INEXACT;
|
|||
|
|
|||
|
if (status & sim_fpu_status_overflow)
|
|||
|
fp_info.fsr_mask |= FSR_OVERFLOW;
|
|||
|
|
|||
|
if (status & sim_fpu_status_underflow)
|
|||
|
fp_info.fsr_mask |= FSR_UNDERFLOW;
|
|||
|
|
|||
|
if (status & sim_fpu_status_denorm)
|
|||
|
{
|
|||
|
fp_info.fsr_mask |= FSR_DENORMAL_INPUT;
|
|||
|
fp_info.ftt = FTT_DENORMAL_INPUT;
|
|||
|
}
|
|||
|
|
|||
|
if (fp_info.fsr_mask != FSR_NO_EXCEPTION)
|
|||
|
{
|
|||
|
SIM_CPU *current_cpu = (SIM_CPU *)fpu->owner;
|
|||
|
frv_queue_fp_exception_interrupt (current_cpu, & fp_info);
|
|||
|
}
|
|||
|
}
|