old-cross-binutils/sim/frv/profile-fr400.c

2126 lines
57 KiB
C
Raw Normal View History

/* frv simulator fr400 dependent profiling code.
Copyright (C) 2001, 2007-2012 Free Software Foundation, Inc.
Contributed by Red Hat
This file is part of the GNU simulators.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#define WANT_CPU
#define WANT_CPU_FRVBF
#include "sim-main.h"
#include "bfd.h"
#if WITH_PROFILE_MODEL_P
#include "profile.h"
#include "profile-fr400.h"
/* These functions get and set flags representing the use of
registers/resources. */
static void set_use_not_fp_load (SIM_CPU *, INT);
static void set_use_not_media_p4 (SIM_CPU *, INT);
static void set_use_not_media_p6 (SIM_CPU *, INT);
static void set_acc_use_not_media_p2 (SIM_CPU *, INT);
static void set_acc_use_not_media_p4 (SIM_CPU *, INT);
void
fr400_reset_gr_flags (SIM_CPU *cpu, INT fr)
{
set_use_not_gr_complex (cpu, fr);
}
void
fr400_reset_fr_flags (SIM_CPU *cpu, INT fr)
{
set_use_not_fp_load (cpu, fr);
set_use_not_media_p4 (cpu, fr);
set_use_not_media_p6 (cpu, fr);
}
void
fr400_reset_acc_flags (SIM_CPU *cpu, INT acc)
{
set_acc_use_not_media_p2 (cpu, acc);
set_acc_use_not_media_p4 (cpu, acc);
}
static void
set_use_is_fp_load (SIM_CPU *cpu, INT fr, INT fr_double)
{
MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
if (fr != -1)
{
fr400_reset_fr_flags (cpu, fr);
d->cur_fp_load |= (((DI)1) << fr);
}
if (fr_double != -1)
{
fr400_reset_fr_flags (cpu, fr_double);
d->cur_fp_load |= (((DI)1) << fr_double);
if (fr_double < 63)
{
fr400_reset_fr_flags (cpu, fr_double + 1);
d->cur_fp_load |= (((DI)1) << (fr_double + 1));
}
}
}
static void
set_use_not_fp_load (SIM_CPU *cpu, INT fr)
{
MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
if (fr != -1)
d->cur_fp_load &= ~(((DI)1) << fr);
}
static int
use_is_fp_load (SIM_CPU *cpu, INT fr)
{
MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
if (fr != -1)
return (d->prev_fp_load >> fr) & 1;
return 0;
}
static void
set_acc_use_is_media_p2 (SIM_CPU *cpu, INT acc)
{
MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
if (acc != -1)
{
fr400_reset_acc_flags (cpu, acc);
d->cur_acc_p2 |= (((DI)1) << acc);
}
}
static void
set_acc_use_not_media_p2 (SIM_CPU *cpu, INT acc)
{
MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
if (acc != -1)
d->cur_acc_p2 &= ~(((DI)1) << acc);
}
static int
acc_use_is_media_p2 (SIM_CPU *cpu, INT acc)
{
MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
if (acc != -1)
return d->cur_acc_p2 & (((DI)1) << acc);
return 0;
}
static void
set_use_is_media_p4 (SIM_CPU *cpu, INT fr)
{
MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
if (fr != -1)
{
fr400_reset_fr_flags (cpu, fr);
d->cur_fr_p4 |= (((DI)1) << fr);
}
}
static void
set_use_not_media_p4 (SIM_CPU *cpu, INT fr)
{
MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
if (fr != -1)
d->cur_fr_p4 &= ~(((DI)1) << fr);
}
static int
use_is_media_p4 (SIM_CPU *cpu, INT fr)
{
MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
if (fr != -1)
return d->cur_fr_p4 & (((DI)1) << fr);
return 0;
}
static void
set_acc_use_is_media_p4 (SIM_CPU *cpu, INT acc)
{
MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
if (acc != -1)
{
fr400_reset_acc_flags (cpu, acc);
d->cur_acc_p4 |= (((DI)1) << acc);
}
}
static void
set_acc_use_not_media_p4 (SIM_CPU *cpu, INT acc)
{
MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
if (acc != -1)
d->cur_acc_p4 &= ~(((DI)1) << acc);
}
static int
acc_use_is_media_p4 (SIM_CPU *cpu, INT acc)
{
MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
if (acc != -1)
return d->cur_acc_p4 & (((DI)1) << acc);
return 0;
}
static void
set_use_is_media_p6 (SIM_CPU *cpu, INT fr)
{
MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
if (fr != -1)
{
fr400_reset_fr_flags (cpu, fr);
d->cur_fr_p6 |= (((DI)1) << fr);
}
}
static void
set_use_not_media_p6 (SIM_CPU *cpu, INT fr)
{
MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
if (fr != -1)
d->cur_fr_p6 &= ~(((DI)1) << fr);
}
static int
use_is_media_p6 (SIM_CPU *cpu, INT fr)
{
MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
if (fr != -1)
return d->cur_fr_p6 & (((DI)1) << fr);
return 0;
}
/* Initialize cycle counting for an insn.
FIRST_P is non-zero if this is the first insn in a set of parallel
insns. */
void
fr400_model_insn_before (SIM_CPU *cpu, int first_p)
{
if (first_p)
{
MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu);
ps->cur_gr_complex = ps->prev_gr_complex;
d->cur_fp_load = d->prev_fp_load;
d->cur_fr_p4 = d->prev_fr_p4;
d->cur_fr_p6 = d->prev_fr_p6;
d->cur_acc_p2 = d->prev_acc_p2;
d->cur_acc_p4 = d->prev_acc_p4;
}
}
/* Record the cycles computed for an insn.
LAST_P is non-zero if this is the last insn in a set of parallel insns,
and we update the total cycle count.
CYCLES is the cycle count of the insn. */
void
fr400_model_insn_after (SIM_CPU *cpu, int last_p, int cycles)
{
if (last_p)
{
MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu);
ps->prev_gr_complex = ps->cur_gr_complex;
d->prev_fp_load = d->cur_fp_load;
d->prev_fr_p4 = d->cur_fr_p4;
d->prev_fr_p6 = d->cur_fr_p6;
d->prev_acc_p2 = d->cur_acc_p2;
d->prev_acc_p4 = d->cur_acc_p4;
}
}
int
frvbf_model_fr400_u_exec (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced)
{
return idesc->timing->units[unit_num].done;
}
int
frvbf_model_fr400_u_integer (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_GRi, INT in_GRj, INT out_GRk,
INT out_ICCi_1)
{
/* Modelling for this unit is the same as for fr500. */
return frvbf_model_fr500_u_integer (cpu, idesc, unit_num, referenced,
in_GRi, in_GRj, out_GRk, out_ICCi_1);
}
int
frvbf_model_fr400_u_imul (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_GRi, INT in_GRj, INT out_GRk, INT out_ICCi_1)
{
/* Modelling for this unit is the same as for fr500. */
return frvbf_model_fr500_u_imul (cpu, idesc, unit_num, referenced,
in_GRi, in_GRj, out_GRk, out_ICCi_1);
}
int
frvbf_model_fr400_u_idiv (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_GRi, INT in_GRj, INT out_GRk, INT out_ICCi_1)
{
int cycles;
FRV_VLIW *vliw;
int slot;
/* icc0-icc4 are the upper 4 fields of the CCR. */
if (out_ICCi_1 >= 0)
out_ICCi_1 += 4;
vliw = CPU_VLIW (cpu);
slot = vliw->next_slot - 1;
slot = (*vliw->current_vliw)[slot] - UNIT_I0;
if (model_insn == FRV_INSN_MODEL_PASS_1)
{
/* The entire VLIW insn must wait if there is a dependency on a register
which is not ready yet.
The latency of the registers may be less than previously recorded,
depending on how they were used previously.
See Table 13-8 in the LSI. */
if (in_GRi != out_GRk && in_GRi >= 0)
{
if (use_is_gr_complex (cpu, in_GRi))
decrease_GR_busy (cpu, in_GRi, 1);
}
if (in_GRj != out_GRk && in_GRj != in_GRi && in_GRj >= 0)
{
if (use_is_gr_complex (cpu, in_GRj))
decrease_GR_busy (cpu, in_GRj, 1);
}
vliw_wait_for_GR (cpu, in_GRi);
vliw_wait_for_GR (cpu, in_GRj);
vliw_wait_for_GR (cpu, out_GRk);
vliw_wait_for_CCR (cpu, out_ICCi_1);
vliw_wait_for_idiv_resource (cpu, slot);
handle_resource_wait (cpu);
load_wait_for_GR (cpu, in_GRi);
load_wait_for_GR (cpu, in_GRj);
load_wait_for_GR (cpu, out_GRk);
trace_vliw_wait_cycles (cpu);
return 0;
}
/* GRk has a latency of 19 cycles! */
cycles = idesc->timing->units[unit_num].done;
update_GR_latency (cpu, out_GRk, cycles + 19);
set_use_is_gr_complex (cpu, out_GRk);
/* ICCi_1 has a latency of 18 cycles. */
update_CCR_latency (cpu, out_ICCi_1, cycles + 18);
/* the idiv resource has a latency of 18 cycles! */
update_idiv_resource_latency (cpu, slot, cycles + 18);
return cycles;
}
int
frvbf_model_fr400_u_branch (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_GRi, INT in_GRj,
INT in_ICCi_2, INT in_ICCi_3)
{
#define BRANCH_PREDICTED(ps) ((ps)->branch_hint & 2)
FRV_PROFILE_STATE *ps;
int cycles;
if (model_insn == FRV_INSN_MODEL_PASS_1)
{
/* Modelling for this unit is the same as for fr500 in pass 1. */
return frvbf_model_fr500_u_branch (cpu, idesc, unit_num, referenced,
in_GRi, in_GRj, in_ICCi_2, in_ICCi_3);
}
cycles = idesc->timing->units[unit_num].done;
/* Compute the branch penalty, based on the the prediction and the out
come. When counting branches taken or not taken, don't consider branches
after the first taken branch in a vliw insn. */
ps = CPU_PROFILE_STATE (cpu);
if (! ps->vliw_branch_taken)
{
int penalty;
/* (1 << 4): The pc is the 5th element in inputs, outputs.
??? can be cleaned up */
PROFILE_DATA *p = CPU_PROFILE_DATA (cpu);
int taken = (referenced & (1 << 4)) != 0;
if (taken)
{
++PROFILE_MODEL_TAKEN_COUNT (p);
ps->vliw_branch_taken = 1;
if (BRANCH_PREDICTED (ps))
penalty = 1;
else
penalty = 3;
}
else
{
++PROFILE_MODEL_UNTAKEN_COUNT (p);
if (BRANCH_PREDICTED (ps))
penalty = 3;
else
penalty = 0;
}
if (penalty > 0)
{
/* Additional 1 cycle penalty if the branch address is not 8 byte
aligned. */
if (ps->branch_address & 7)
++penalty;
update_branch_penalty (cpu, penalty);
PROFILE_MODEL_CTI_STALL_CYCLES (p) += penalty;
}
}
return cycles;
}
int
frvbf_model_fr400_u_trap (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_GRi, INT in_GRj,
INT in_ICCi_2, INT in_FCCi_2)
{
/* Modelling for this unit is the same as for fr500. */
return frvbf_model_fr500_u_trap (cpu, idesc, unit_num, referenced,
in_GRi, in_GRj, in_ICCi_2, in_FCCi_2);
}
int
frvbf_model_fr400_u_check (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_ICCi_3, INT in_FCCi_3)
{
/* Modelling for this unit is the same as for fr500. */
return frvbf_model_fr500_u_check (cpu, idesc, unit_num, referenced,
in_ICCi_3, in_FCCi_3);
}
int
frvbf_model_fr400_u_set_hilo (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT out_GRkhi, INT out_GRklo)
{
/* Modelling for this unit is the same as for fr500. */
return frvbf_model_fr500_u_set_hilo (cpu, idesc, unit_num, referenced,
out_GRkhi, out_GRklo);
}
int
frvbf_model_fr400_u_gr_load (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_GRi, INT in_GRj,
INT out_GRk, INT out_GRdoublek)
{
/* Modelling for this unit is the same as for fr500. */
return frvbf_model_fr500_u_gr_load (cpu, idesc, unit_num, referenced,
in_GRi, in_GRj, out_GRk, out_GRdoublek);
}
int
frvbf_model_fr400_u_gr_store (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_GRi, INT in_GRj,
INT in_GRk, INT in_GRdoublek)
{
/* Modelling for this unit is the same as for fr500. */
return frvbf_model_fr500_u_gr_store (cpu, idesc, unit_num, referenced,
in_GRi, in_GRj, in_GRk, in_GRdoublek);
}
int
frvbf_model_fr400_u_fr_load (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_GRi, INT in_GRj,
INT out_FRk, INT out_FRdoublek)
{
int cycles;
if (model_insn == FRV_INSN_MODEL_PASS_1)
{
/* Pass 1 is the same as for fr500. */
return frvbf_model_fr500_u_fr_load (cpu, idesc, unit_num, referenced,
in_GRi, in_GRj, out_FRk,
out_FRdoublek);
}
cycles = idesc->timing->units[unit_num].done;
/* The latency of FRk for a load will depend on how long it takes to retrieve
the the data from the cache or memory. */
update_FR_latency_for_load (cpu, out_FRk, cycles);
update_FRdouble_latency_for_load (cpu, out_FRdoublek, cycles);
set_use_is_fp_load (cpu, out_FRk, out_FRdoublek);
return cycles;
}
int
frvbf_model_fr400_u_fr_store (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_GRi, INT in_GRj,
INT in_FRk, INT in_FRdoublek)
{
int cycles;
if (model_insn == FRV_INSN_MODEL_PASS_1)
{
/* The entire VLIW insn must wait if there is a dependency on a register
which is not ready yet.
The latency of the registers may be less than previously recorded,
depending on how they were used previously.
See Table 13-8 in the LSI. */
if (in_GRi >= 0)
{
if (use_is_gr_complex (cpu, in_GRi))
decrease_GR_busy (cpu, in_GRi, 1);
}
if (in_GRj != in_GRi && in_GRj >= 0)
{
if (use_is_gr_complex (cpu, in_GRj))
decrease_GR_busy (cpu, in_GRj, 1);
}
if (in_FRk >= 0)
{
if (use_is_media_p4 (cpu, in_FRk) || use_is_media_p6 (cpu, in_FRk))
decrease_FR_busy (cpu, in_FRk, 1);
else
enforce_full_fr_latency (cpu, in_FRk);
}
vliw_wait_for_GR (cpu, in_GRi);
vliw_wait_for_GR (cpu, in_GRj);
vliw_wait_for_FR (cpu, in_FRk);
vliw_wait_for_FRdouble (cpu, in_FRdoublek);
handle_resource_wait (cpu);
load_wait_for_GR (cpu, in_GRi);
load_wait_for_GR (cpu, in_GRj);
load_wait_for_FR (cpu, in_FRk);
load_wait_for_FRdouble (cpu, in_FRdoublek);
trace_vliw_wait_cycles (cpu);
return 0;
}
cycles = idesc->timing->units[unit_num].done;
return cycles;
}
int
frvbf_model_fr400_u_swap (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_GRi, INT in_GRj, INT out_GRk)
{
/* Modelling for this unit is the same as for fr500. */
return frvbf_model_fr500_u_swap (cpu, idesc, unit_num, referenced,
in_GRi, in_GRj, out_GRk);
}
int
frvbf_model_fr400_u_fr2gr (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_FRk, INT out_GRj)
{
int cycles;
if (model_insn == FRV_INSN_MODEL_PASS_1)
{
/* The entire VLIW insn must wait if there is a dependency on a register
which is not ready yet.
The latency of the registers may be less than previously recorded,
depending on how they were used previously.
See Table 13-8 in the LSI. */
if (in_FRk >= 0)
{
if (use_is_media_p4 (cpu, in_FRk) || use_is_media_p6 (cpu, in_FRk))
decrease_FR_busy (cpu, in_FRk, 1);
else
enforce_full_fr_latency (cpu, in_FRk);
}
vliw_wait_for_FR (cpu, in_FRk);
vliw_wait_for_GR (cpu, out_GRj);
handle_resource_wait (cpu);
load_wait_for_FR (cpu, in_FRk);
load_wait_for_GR (cpu, out_GRj);
trace_vliw_wait_cycles (cpu);
return 0;
}
/* The latency of GRj is 2 cycles. */
cycles = idesc->timing->units[unit_num].done;
update_GR_latency (cpu, out_GRj, cycles + 2);
set_use_is_gr_complex (cpu, out_GRj);
return cycles;
}
int
frvbf_model_fr400_u_spr2gr (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_spr, INT out_GRj)
{
/* Modelling for this unit is the same as for fr500. */
return frvbf_model_fr500_u_spr2gr (cpu, idesc, unit_num, referenced,
in_spr, out_GRj);
}
int
frvbf_model_fr400_u_gr2fr (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_GRj, INT out_FRk)
{
int cycles;
if (model_insn == FRV_INSN_MODEL_PASS_1)
{
/* Pass 1 is the same as for fr500. */
frvbf_model_fr500_u_gr2fr (cpu, idesc, unit_num, referenced,
in_GRj, out_FRk);
}
/* The latency of FRk is 1 cycles. */
cycles = idesc->timing->units[unit_num].done;
update_FR_latency (cpu, out_FRk, cycles + 1);
return cycles;
}
int
frvbf_model_fr400_u_gr2spr (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_GRj, INT out_spr)
{
/* Modelling for this unit is the same as for fr500. */
return frvbf_model_fr500_u_gr2spr (cpu, idesc, unit_num, referenced,
in_GRj, out_spr);
}
int
frvbf_model_fr400_u_media_1 (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_FRi, INT in_FRj,
INT out_FRk)
{
int cycles;
FRV_PROFILE_STATE *ps;
const CGEN_INSN *insn;
int busy_adjustment[] = {0, 0};
int *fr;
if (model_insn == FRV_INSN_MODEL_PASS_1)
return 0;
/* The preprocessing can execute right away. */
cycles = idesc->timing->units[unit_num].done;
ps = CPU_PROFILE_STATE (cpu);
insn = idesc->idata;
/* The latency of the registers may be less than previously recorded,
depending on how they were used previously.
See Table 13-8 in the LSI. */
if (in_FRi >= 0)
{
if (use_is_fp_load (cpu, in_FRi))
{
busy_adjustment[0] = 1;
decrease_FR_busy (cpu, in_FRi, busy_adjustment[0]);
}
else
enforce_full_fr_latency (cpu, in_FRi);
}
if (in_FRj >= 0 && in_FRj != in_FRi)
{
if (use_is_fp_load (cpu, in_FRj))
{
busy_adjustment[1] = 1;
decrease_FR_busy (cpu, in_FRj, busy_adjustment[1]);
}
else
enforce_full_fr_latency (cpu, in_FRj);
}
/* The post processing must wait if there is a dependency on a FR
which is not ready yet. */
ps->post_wait = cycles;
post_wait_for_FR (cpu, in_FRi);
post_wait_for_FR (cpu, in_FRj);
post_wait_for_FR (cpu, out_FRk);
/* Restore the busy cycles of the registers we used. */
fr = ps->fr_busy;
if (in_FRi >= 0)
fr[in_FRi] += busy_adjustment[0];
if (in_FRj >= 0)
fr[in_FRj] += busy_adjustment[1];
/* The latency of the output register will be at least the latency of the
other inputs. Once initiated, post-processing has no latency. */
if (out_FRk >= 0)
{
update_FR_latency (cpu, out_FRk, ps->post_wait);
update_FR_ptime (cpu, out_FRk, 0);
}
return cycles;
}
int
frvbf_model_fr400_u_media_1_quad (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_FRi, INT in_FRj,
INT out_FRk)
{
int cycles;
INT dual_FRi;
INT dual_FRj;
INT dual_FRk;
FRV_PROFILE_STATE *ps;
int busy_adjustment[] = {0, 0, 0, 0};
int *fr;
if (model_insn == FRV_INSN_MODEL_PASS_1)
return 0;
/* The preprocessing can execute right away. */
cycles = idesc->timing->units[unit_num].done;
ps = CPU_PROFILE_STATE (cpu);
dual_FRi = DUAL_REG (in_FRi);
dual_FRj = DUAL_REG (in_FRj);
dual_FRk = DUAL_REG (out_FRk);
/* The latency of the registers may be less than previously recorded,
depending on how they were used previously.
See Table 13-8 in the LSI. */
if (use_is_fp_load (cpu, in_FRi))
{
busy_adjustment[0] = 1;
decrease_FR_busy (cpu, in_FRi, busy_adjustment[0]);
}
else
enforce_full_fr_latency (cpu, in_FRi);
if (dual_FRi >= 0 && use_is_fp_load (cpu, dual_FRi))
{
busy_adjustment[1] = 1;
decrease_FR_busy (cpu, dual_FRi, busy_adjustment[1]);
}
else
enforce_full_fr_latency (cpu, dual_FRi);
if (in_FRj != in_FRi)
{
if (use_is_fp_load (cpu, in_FRj))
{
busy_adjustment[2] = 1;
decrease_FR_busy (cpu, in_FRj, busy_adjustment[2]);
}
else
enforce_full_fr_latency (cpu, in_FRj);
if (dual_FRj >= 0 && use_is_fp_load (cpu, dual_FRj))
{
busy_adjustment[3] = 1;
decrease_FR_busy (cpu, dual_FRj, busy_adjustment[3]);
}
else
enforce_full_fr_latency (cpu, dual_FRj);
}
/* The post processing must wait if there is a dependency on a FR
which is not ready yet. */
ps->post_wait = cycles;
post_wait_for_FR (cpu, in_FRi);
post_wait_for_FR (cpu, dual_FRi);
post_wait_for_FR (cpu, in_FRj);
post_wait_for_FR (cpu, dual_FRj);
post_wait_for_FR (cpu, out_FRk);
post_wait_for_FR (cpu, dual_FRk);
/* Restore the busy cycles of the registers we used. */
fr = ps->fr_busy;
fr[in_FRi] += busy_adjustment[0];
if (dual_FRi >= 0)
fr[dual_FRi] += busy_adjustment[1];
fr[in_FRj] += busy_adjustment[2];
if (dual_FRj >= 0)
fr[dual_FRj] += busy_adjustment[3];
/* The latency of the output register will be at least the latency of the
other inputs. */
update_FR_latency (cpu, out_FRk, ps->post_wait);
/* Once initiated, post-processing has no latency. */
update_FR_ptime (cpu, out_FRk, 0);
if (dual_FRk >= 0)
{
update_FR_latency (cpu, dual_FRk, ps->post_wait);
update_FR_ptime (cpu, dual_FRk, 0);
}
return cycles;
}
int
frvbf_model_fr400_u_media_hilo (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT out_FRkhi, INT out_FRklo)
{
int cycles;
FRV_PROFILE_STATE *ps;
if (model_insn == FRV_INSN_MODEL_PASS_1)
return 0;
/* The preprocessing can execute right away. */
cycles = idesc->timing->units[unit_num].done;
ps = CPU_PROFILE_STATE (cpu);
/* The post processing must wait if there is a dependency on a FR
which is not ready yet. */
ps->post_wait = cycles;
post_wait_for_FR (cpu, out_FRkhi);
post_wait_for_FR (cpu, out_FRklo);
/* The latency of the output register will be at least the latency of the
other inputs. Once initiated, post-processing has no latency. */
if (out_FRkhi >= 0)
{
update_FR_latency (cpu, out_FRkhi, ps->post_wait);
update_FR_ptime (cpu, out_FRkhi, 0);
}
if (out_FRklo >= 0)
{
update_FR_latency (cpu, out_FRklo, ps->post_wait);
update_FR_ptime (cpu, out_FRklo, 0);
}
return cycles;
}
int
frvbf_model_fr400_u_media_2 (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_FRi, INT in_FRj,
INT out_ACC40Sk, INT out_ACC40Uk)
{
int cycles;
INT dual_ACC40Sk;
INT dual_ACC40Uk;
FRV_PROFILE_STATE *ps;
int busy_adjustment[] = {0, 0, 0, 0, 0, 0};
int *fr;
int *acc;
if (model_insn == FRV_INSN_MODEL_PASS_1)
return 0;
/* The preprocessing can execute right away. */
cycles = idesc->timing->units[unit_num].done;
ps = CPU_PROFILE_STATE (cpu);
dual_ACC40Sk = DUAL_REG (out_ACC40Sk);
dual_ACC40Uk = DUAL_REG (out_ACC40Uk);
/* The latency of the registers may be less than previously recorded,
depending on how they were used previously.
See Table 13-8 in the LSI. */
if (in_FRi >= 0)
{
if (use_is_fp_load (cpu, in_FRi))
{
busy_adjustment[0] = 1;
decrease_FR_busy (cpu, in_FRi, busy_adjustment[0]);
}
else
enforce_full_fr_latency (cpu, in_FRi);
}
if (in_FRj >= 0 && in_FRj != in_FRi)
{
if (use_is_fp_load (cpu, in_FRj))
{
busy_adjustment[1] = 1;
decrease_FR_busy (cpu, in_FRj, busy_adjustment[1]);
}
else
enforce_full_fr_latency (cpu, in_FRj);
}
if (out_ACC40Sk >= 0)
{
if (acc_use_is_media_p2 (cpu, out_ACC40Sk))
{
busy_adjustment[2] = 1;
decrease_ACC_busy (cpu, out_ACC40Sk, busy_adjustment[2]);
}
}
if (dual_ACC40Sk >= 0)
{
if (acc_use_is_media_p2 (cpu, dual_ACC40Sk))
{
busy_adjustment[3] = 1;
decrease_ACC_busy (cpu, dual_ACC40Sk, busy_adjustment[3]);
}
}
if (out_ACC40Uk >= 0)
{
if (acc_use_is_media_p2 (cpu, out_ACC40Uk))
{
busy_adjustment[4] = 1;
decrease_ACC_busy (cpu, out_ACC40Uk, busy_adjustment[4]);
}
}
if (dual_ACC40Uk >= 0)
{
if (acc_use_is_media_p2 (cpu, dual_ACC40Uk))
{
busy_adjustment[5] = 1;
decrease_ACC_busy (cpu, dual_ACC40Uk, busy_adjustment[5]);
}
}
/* The post processing must wait if there is a dependency on a FR
which is not ready yet. */
ps->post_wait = cycles;
post_wait_for_FR (cpu, in_FRi);
post_wait_for_FR (cpu, in_FRj);
post_wait_for_ACC (cpu, out_ACC40Sk);
post_wait_for_ACC (cpu, dual_ACC40Sk);
post_wait_for_ACC (cpu, out_ACC40Uk);
post_wait_for_ACC (cpu, dual_ACC40Uk);
/* Restore the busy cycles of the registers we used. */
fr = ps->fr_busy;
acc = ps->acc_busy;
fr[in_FRi] += busy_adjustment[0];
fr[in_FRj] += busy_adjustment[1];
if (out_ACC40Sk >= 0)
acc[out_ACC40Sk] += busy_adjustment[2];
if (dual_ACC40Sk >= 0)
acc[dual_ACC40Sk] += busy_adjustment[3];
if (out_ACC40Uk >= 0)
acc[out_ACC40Uk] += busy_adjustment[4];
if (dual_ACC40Uk >= 0)
acc[dual_ACC40Uk] += busy_adjustment[5];
/* The latency of the output register will be at least the latency of the
other inputs. Once initiated, post-processing will take 1 cycles. */
if (out_ACC40Sk >= 0)
{
update_ACC_latency (cpu, out_ACC40Sk, ps->post_wait + 1);
set_acc_use_is_media_p2 (cpu, out_ACC40Sk);
}
if (dual_ACC40Sk >= 0)
{
update_ACC_latency (cpu, dual_ACC40Sk, ps->post_wait + 1);
set_acc_use_is_media_p2 (cpu, dual_ACC40Sk);
}
if (out_ACC40Uk >= 0)
{
update_ACC_latency (cpu, out_ACC40Uk, ps->post_wait + 1);
set_acc_use_is_media_p2 (cpu, out_ACC40Uk);
}
if (dual_ACC40Uk >= 0)
{
update_ACC_latency (cpu, dual_ACC40Uk, ps->post_wait + 1);
set_acc_use_is_media_p2 (cpu, dual_ACC40Uk);
}
return cycles;
}
int
frvbf_model_fr400_u_media_2_quad (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_FRi, INT in_FRj,
INT out_ACC40Sk, INT out_ACC40Uk)
{
int cycles;
INT dual_FRi;
INT dual_FRj;
INT ACC40Sk_1;
INT ACC40Sk_2;
INT ACC40Sk_3;
INT ACC40Uk_1;
INT ACC40Uk_2;
INT ACC40Uk_3;
FRV_PROFILE_STATE *ps;
int busy_adjustment[] = {0, 0, 0, 0, 0, 0, 0 ,0};
int *fr;
int *acc;
if (model_insn == FRV_INSN_MODEL_PASS_1)
return 0;
/* The preprocessing can execute right away. */
cycles = idesc->timing->units[unit_num].done;
dual_FRi = DUAL_REG (in_FRi);
dual_FRj = DUAL_REG (in_FRj);
ACC40Sk_1 = DUAL_REG (out_ACC40Sk);
ACC40Sk_2 = DUAL_REG (ACC40Sk_1);
ACC40Sk_3 = DUAL_REG (ACC40Sk_2);
ACC40Uk_1 = DUAL_REG (out_ACC40Uk);
ACC40Uk_2 = DUAL_REG (ACC40Uk_1);
ACC40Uk_3 = DUAL_REG (ACC40Uk_2);
ps = CPU_PROFILE_STATE (cpu);
/* The latency of the registers may be less than previously recorded,
depending on how they were used previously.
See Table 13-8 in the LSI. */
if (use_is_fp_load (cpu, in_FRi))
{
busy_adjustment[0] = 1;
decrease_FR_busy (cpu, in_FRi, busy_adjustment[0]);
}
else
enforce_full_fr_latency (cpu, in_FRi);
if (dual_FRi >= 0 && use_is_fp_load (cpu, dual_FRi))
{
busy_adjustment[1] = 1;
decrease_FR_busy (cpu, dual_FRi, busy_adjustment[1]);
}
else
enforce_full_fr_latency (cpu, dual_FRi);
if (in_FRj != in_FRi)
{
if (use_is_fp_load (cpu, in_FRj))
{
busy_adjustment[2] = 1;
decrease_FR_busy (cpu, in_FRj, busy_adjustment[2]);
}
else
enforce_full_fr_latency (cpu, in_FRj);
if (dual_FRj >= 0 && use_is_fp_load (cpu, dual_FRj))
{
busy_adjustment[3] = 1;
decrease_FR_busy (cpu, dual_FRj, busy_adjustment[3]);
}
else
enforce_full_fr_latency (cpu, dual_FRj);
}
if (out_ACC40Sk >= 0)
{
if (acc_use_is_media_p2 (cpu, out_ACC40Sk))
{
busy_adjustment[4] = 1;
decrease_ACC_busy (cpu, out_ACC40Sk, busy_adjustment[4]);
}
if (ACC40Sk_1 >= 0)
{
if (acc_use_is_media_p2 (cpu, ACC40Sk_1))
{
busy_adjustment[5] = 1;
decrease_ACC_busy (cpu, ACC40Sk_1, busy_adjustment[5]);
}
}
if (ACC40Sk_2 >= 0)
{
if (acc_use_is_media_p2 (cpu, ACC40Sk_2))
{
busy_adjustment[6] = 1;
decrease_ACC_busy (cpu, ACC40Sk_2, busy_adjustment[6]);
}
}
if (ACC40Sk_3 >= 0)
{
if (acc_use_is_media_p2 (cpu, ACC40Sk_3))
{
busy_adjustment[7] = 1;
decrease_ACC_busy (cpu, ACC40Sk_3, busy_adjustment[7]);
}
}
}
else if (out_ACC40Uk >= 0)
{
if (acc_use_is_media_p2 (cpu, out_ACC40Uk))
{
busy_adjustment[4] = 1;
decrease_ACC_busy (cpu, out_ACC40Uk, busy_adjustment[4]);
}
if (ACC40Uk_1 >= 0)
{
if (acc_use_is_media_p2 (cpu, ACC40Uk_1))
{
busy_adjustment[5] = 1;
decrease_ACC_busy (cpu, ACC40Uk_1, busy_adjustment[5]);
}
}
if (ACC40Uk_2 >= 0)
{
if (acc_use_is_media_p2 (cpu, ACC40Uk_2))
{
busy_adjustment[6] = 1;
decrease_ACC_busy (cpu, ACC40Uk_2, busy_adjustment[6]);
}
}
if (ACC40Uk_3 >= 0)
{
if (acc_use_is_media_p2 (cpu, ACC40Uk_3))
{
busy_adjustment[7] = 1;
decrease_ACC_busy (cpu, ACC40Uk_3, busy_adjustment[7]);
}
}
}
/* The post processing must wait if there is a dependency on a FR
which is not ready yet. */
ps->post_wait = cycles;
post_wait_for_FR (cpu, in_FRi);
post_wait_for_FR (cpu, dual_FRi);
post_wait_for_FR (cpu, in_FRj);
post_wait_for_FR (cpu, dual_FRj);
post_wait_for_ACC (cpu, out_ACC40Sk);
post_wait_for_ACC (cpu, ACC40Sk_1);
post_wait_for_ACC (cpu, ACC40Sk_2);
post_wait_for_ACC (cpu, ACC40Sk_3);
post_wait_for_ACC (cpu, out_ACC40Uk);
post_wait_for_ACC (cpu, ACC40Uk_1);
post_wait_for_ACC (cpu, ACC40Uk_2);
post_wait_for_ACC (cpu, ACC40Uk_3);
/* Restore the busy cycles of the registers we used. */
fr = ps->fr_busy;
acc = ps->acc_busy;
fr[in_FRi] += busy_adjustment[0];
if (dual_FRi >= 0)
fr[dual_FRi] += busy_adjustment[1];
fr[in_FRj] += busy_adjustment[2];
if (dual_FRj > 0)
fr[dual_FRj] += busy_adjustment[3];
if (out_ACC40Sk >= 0)
{
acc[out_ACC40Sk] += busy_adjustment[4];
if (ACC40Sk_1 >= 0)
acc[ACC40Sk_1] += busy_adjustment[5];
if (ACC40Sk_2 >= 0)
acc[ACC40Sk_2] += busy_adjustment[6];
if (ACC40Sk_3 >= 0)
acc[ACC40Sk_3] += busy_adjustment[7];
}
else if (out_ACC40Uk >= 0)
{
acc[out_ACC40Uk] += busy_adjustment[4];
if (ACC40Uk_1 >= 0)
acc[ACC40Uk_1] += busy_adjustment[5];
if (ACC40Uk_2 >= 0)
acc[ACC40Uk_2] += busy_adjustment[6];
if (ACC40Uk_3 >= 0)
acc[ACC40Uk_3] += busy_adjustment[7];
}
/* The latency of the output register will be at least the latency of the
other inputs. Once initiated, post-processing will take 1 cycle. */
if (out_ACC40Sk >= 0)
{
update_ACC_latency (cpu, out_ACC40Sk, ps->post_wait + 1);
set_acc_use_is_media_p2 (cpu, out_ACC40Sk);
if (ACC40Sk_1 >= 0)
{
update_ACC_latency (cpu, ACC40Sk_1, ps->post_wait + 1);
set_acc_use_is_media_p2 (cpu, ACC40Sk_1);
}
if (ACC40Sk_2 >= 0)
{
update_ACC_latency (cpu, ACC40Sk_2, ps->post_wait + 1);
set_acc_use_is_media_p2 (cpu, ACC40Sk_2);
}
if (ACC40Sk_3 >= 0)
{
update_ACC_latency (cpu, ACC40Sk_3, ps->post_wait + 1);
set_acc_use_is_media_p2 (cpu, ACC40Sk_3);
}
}
else if (out_ACC40Uk >= 0)
{
update_ACC_latency (cpu, out_ACC40Uk, ps->post_wait + 1);
set_acc_use_is_media_p2 (cpu, out_ACC40Uk);
if (ACC40Uk_1 >= 0)
{
update_ACC_latency (cpu, ACC40Uk_1, ps->post_wait + 1);
set_acc_use_is_media_p2 (cpu, ACC40Uk_1);
}
if (ACC40Uk_2 >= 0)
{
update_ACC_latency (cpu, ACC40Uk_2, ps->post_wait + 1);
set_acc_use_is_media_p2 (cpu, ACC40Uk_2);
}
if (ACC40Uk_3 >= 0)
{
update_ACC_latency (cpu, ACC40Uk_3, ps->post_wait + 1);
set_acc_use_is_media_p2 (cpu, ACC40Uk_3);
}
}
return cycles;
}
int
frvbf_model_fr400_u_media_2_acc (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_ACC40Si, INT out_ACC40Sk)
{
int cycles;
INT ACC40Si_1;
FRV_PROFILE_STATE *ps;
int busy_adjustment[] = {0, 0, 0};
int *acc;
if (model_insn == FRV_INSN_MODEL_PASS_1)
return 0;
/* The preprocessing can execute right away. */
cycles = idesc->timing->units[unit_num].done;
ACC40Si_1 = DUAL_REG (in_ACC40Si);
ps = CPU_PROFILE_STATE (cpu);
/* The latency of the registers may be less than previously recorded,
depending on how they were used previously.
See Table 13-8 in the LSI. */
if (acc_use_is_media_p2 (cpu, in_ACC40Si))
{
busy_adjustment[0] = 1;
decrease_ACC_busy (cpu, in_ACC40Si, busy_adjustment[0]);
}
if (ACC40Si_1 >= 0 && acc_use_is_media_p2 (cpu, ACC40Si_1))
{
busy_adjustment[1] = 1;
decrease_ACC_busy (cpu, ACC40Si_1, busy_adjustment[1]);
}
if (out_ACC40Sk != in_ACC40Si && out_ACC40Sk != ACC40Si_1
&& acc_use_is_media_p2 (cpu, out_ACC40Sk))
{
busy_adjustment[2] = 1;
decrease_ACC_busy (cpu, out_ACC40Sk, busy_adjustment[2]);
}
/* The post processing must wait if there is a dependency on a register
which is not ready yet. */
ps->post_wait = cycles;
post_wait_for_ACC (cpu, in_ACC40Si);
post_wait_for_ACC (cpu, ACC40Si_1);
post_wait_for_ACC (cpu, out_ACC40Sk);
/* Restore the busy cycles of the registers we used. */
acc = ps->acc_busy;
acc[in_ACC40Si] += busy_adjustment[0];
if (ACC40Si_1 >= 0)
acc[ACC40Si_1] += busy_adjustment[1];
acc[out_ACC40Sk] += busy_adjustment[2];
/* The latency of the output register will be at least the latency of the
other inputs. Once initiated, post-processing will take 1 cycle. */
update_ACC_latency (cpu, out_ACC40Sk, ps->post_wait + 1);
set_acc_use_is_media_p2 (cpu, out_ACC40Sk);
return cycles;
}
int
frvbf_model_fr400_u_media_2_acc_dual (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_ACC40Si, INT out_ACC40Sk)
{
int cycles;
INT ACC40Si_1;
INT ACC40Si_2;
INT ACC40Si_3;
INT ACC40Sk_1;
FRV_PROFILE_STATE *ps;
int busy_adjustment[] = {0, 0, 0, 0, 0, 0};
int *acc;
if (model_insn == FRV_INSN_MODEL_PASS_1)
return 0;
/* The preprocessing can execute right away. */
cycles = idesc->timing->units[unit_num].done;
ACC40Si_1 = DUAL_REG (in_ACC40Si);
ACC40Si_2 = DUAL_REG (ACC40Si_1);
ACC40Si_3 = DUAL_REG (ACC40Si_2);
ACC40Sk_1 = DUAL_REG (out_ACC40Sk);
ps = CPU_PROFILE_STATE (cpu);
/* The latency of the registers may be less than previously recorded,
depending on how they were used previously.
See Table 13-8 in the LSI. */
if (acc_use_is_media_p2 (cpu, in_ACC40Si))
{
busy_adjustment[0] = 1;
decrease_ACC_busy (cpu, in_ACC40Si, busy_adjustment[0]);
}
if (ACC40Si_1 >= 0 && acc_use_is_media_p2 (cpu, ACC40Si_1))
{
busy_adjustment[1] = 1;
decrease_ACC_busy (cpu, ACC40Si_1, busy_adjustment[1]);
}
if (ACC40Si_2 >= 0 && acc_use_is_media_p2 (cpu, ACC40Si_2))
{
busy_adjustment[2] = 1;
decrease_ACC_busy (cpu, ACC40Si_2, busy_adjustment[2]);
}
if (ACC40Si_3 >= 0 && acc_use_is_media_p2 (cpu, ACC40Si_3))
{
busy_adjustment[3] = 1;
decrease_ACC_busy (cpu, ACC40Si_3, busy_adjustment[3]);
}
if (out_ACC40Sk != in_ACC40Si && out_ACC40Sk != ACC40Si_1
&& out_ACC40Sk != ACC40Si_2 && out_ACC40Sk != ACC40Si_3)
{
if (acc_use_is_media_p2 (cpu, out_ACC40Sk))
{
busy_adjustment[4] = 1;
decrease_ACC_busy (cpu, out_ACC40Sk, busy_adjustment[4]);
}
}
if (ACC40Sk_1 != in_ACC40Si && ACC40Sk_1 != ACC40Si_1
&& ACC40Sk_1 != ACC40Si_2 && ACC40Sk_1 != ACC40Si_3)
{
if (acc_use_is_media_p2 (cpu, ACC40Sk_1))
{
busy_adjustment[5] = 1;
decrease_ACC_busy (cpu, ACC40Sk_1, busy_adjustment[5]);
}
}
/* The post processing must wait if there is a dependency on a register
which is not ready yet. */
ps->post_wait = cycles;
post_wait_for_ACC (cpu, in_ACC40Si);
post_wait_for_ACC (cpu, ACC40Si_1);
post_wait_for_ACC (cpu, ACC40Si_2);
post_wait_for_ACC (cpu, ACC40Si_3);
post_wait_for_ACC (cpu, out_ACC40Sk);
post_wait_for_ACC (cpu, ACC40Sk_1);
/* Restore the busy cycles of the registers we used. */
acc = ps->acc_busy;
acc[in_ACC40Si] += busy_adjustment[0];
if (ACC40Si_1 >= 0)
acc[ACC40Si_1] += busy_adjustment[1];
if (ACC40Si_2 >= 0)
acc[ACC40Si_2] += busy_adjustment[2];
if (ACC40Si_3 >= 0)
acc[ACC40Si_3] += busy_adjustment[3];
acc[out_ACC40Sk] += busy_adjustment[4];
if (ACC40Sk_1 >= 0)
acc[ACC40Sk_1] += busy_adjustment[5];
/* The latency of the output register will be at least the latency of the
other inputs. Once initiated, post-processing will take 1 cycle. */
update_ACC_latency (cpu, out_ACC40Sk, ps->post_wait + 1);
set_acc_use_is_media_p2 (cpu, out_ACC40Sk);
if (ACC40Sk_1 >= 0)
{
update_ACC_latency (cpu, ACC40Sk_1, ps->post_wait + 1);
set_acc_use_is_media_p2 (cpu, ACC40Sk_1);
}
return cycles;
}
int
frvbf_model_fr400_u_media_2_add_sub (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_ACC40Si, INT out_ACC40Sk)
{
int cycles;
INT ACC40Si_1;
INT ACC40Sk_1;
FRV_PROFILE_STATE *ps;
int busy_adjustment[] = {0, 0, 0, 0};
int *acc;
if (model_insn == FRV_INSN_MODEL_PASS_1)
return 0;
/* The preprocessing can execute right away. */
cycles = idesc->timing->units[unit_num].done;
ACC40Si_1 = DUAL_REG (in_ACC40Si);
ACC40Sk_1 = DUAL_REG (out_ACC40Sk);
ps = CPU_PROFILE_STATE (cpu);
/* The latency of the registers may be less than previously recorded,
depending on how they were used previously.
See Table 13-8 in the LSI. */
if (acc_use_is_media_p2 (cpu, in_ACC40Si))
{
busy_adjustment[0] = 1;
decrease_ACC_busy (cpu, in_ACC40Si, busy_adjustment[0]);
}
if (ACC40Si_1 >= 0 && acc_use_is_media_p2 (cpu, ACC40Si_1))
{
busy_adjustment[1] = 1;
decrease_ACC_busy (cpu, ACC40Si_1, busy_adjustment[1]);
}
if (out_ACC40Sk != in_ACC40Si && out_ACC40Sk != ACC40Si_1)
{
if (acc_use_is_media_p2 (cpu, out_ACC40Sk))
{
busy_adjustment[2] = 1;
decrease_ACC_busy (cpu, out_ACC40Sk, busy_adjustment[2]);
}
}
if (ACC40Sk_1 != in_ACC40Si && ACC40Sk_1 != ACC40Si_1)
{
if (acc_use_is_media_p2 (cpu, ACC40Sk_1))
{
busy_adjustment[3] = 1;
decrease_ACC_busy (cpu, ACC40Sk_1, busy_adjustment[3]);
}
}
/* The post processing must wait if there is a dependency on a register
which is not ready yet. */
ps->post_wait = cycles;
post_wait_for_ACC (cpu, in_ACC40Si);
post_wait_for_ACC (cpu, ACC40Si_1);
post_wait_for_ACC (cpu, out_ACC40Sk);
post_wait_for_ACC (cpu, ACC40Sk_1);
/* Restore the busy cycles of the registers we used. */
acc = ps->acc_busy;
acc[in_ACC40Si] += busy_adjustment[0];
if (ACC40Si_1 >= 0)
acc[ACC40Si_1] += busy_adjustment[1];
acc[out_ACC40Sk] += busy_adjustment[2];
if (ACC40Sk_1 >= 0)
acc[ACC40Sk_1] += busy_adjustment[3];
/* The latency of the output register will be at least the latency of the
other inputs. Once initiated, post-processing will take 1 cycle. */
update_ACC_latency (cpu, out_ACC40Sk, ps->post_wait + 1);
set_acc_use_is_media_p2 (cpu, out_ACC40Sk);
if (ACC40Sk_1 >= 0)
{
update_ACC_latency (cpu, ACC40Sk_1, ps->post_wait + 1);
set_acc_use_is_media_p2 (cpu, ACC40Sk_1);
}
return cycles;
}
int
frvbf_model_fr400_u_media_2_add_sub_dual (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_ACC40Si, INT out_ACC40Sk)
{
int cycles;
INT ACC40Si_1;
INT ACC40Si_2;
INT ACC40Si_3;
INT ACC40Sk_1;
INT ACC40Sk_2;
INT ACC40Sk_3;
FRV_PROFILE_STATE *ps;
int busy_adjustment[] = {0, 0, 0, 0, 0, 0, 0, 0};
int *acc;
if (model_insn == FRV_INSN_MODEL_PASS_1)
return 0;
/* The preprocessing can execute right away. */
cycles = idesc->timing->units[unit_num].done;
ACC40Si_1 = DUAL_REG (in_ACC40Si);
ACC40Si_2 = DUAL_REG (ACC40Si_1);
ACC40Si_3 = DUAL_REG (ACC40Si_2);
ACC40Sk_1 = DUAL_REG (out_ACC40Sk);
ACC40Sk_2 = DUAL_REG (ACC40Sk_1);
ACC40Sk_3 = DUAL_REG (ACC40Sk_2);
ps = CPU_PROFILE_STATE (cpu);
/* The latency of the registers may be less than previously recorded,
depending on how they were used previously.
See Table 13-8 in the LSI. */
if (acc_use_is_media_p2 (cpu, in_ACC40Si))
{
busy_adjustment[0] = 1;
decrease_ACC_busy (cpu, in_ACC40Si, busy_adjustment[0]);
}
if (ACC40Si_1 >= 0 && acc_use_is_media_p2 (cpu, ACC40Si_1))
{
busy_adjustment[1] = 1;
decrease_ACC_busy (cpu, ACC40Si_1, busy_adjustment[1]);
}
if (ACC40Si_2 >= 0 && acc_use_is_media_p2 (cpu, ACC40Si_2))
{
busy_adjustment[2] = 1;
decrease_ACC_busy (cpu, ACC40Si_2, busy_adjustment[2]);
}
if (ACC40Si_3 >= 0 && acc_use_is_media_p2 (cpu, ACC40Si_3))
{
busy_adjustment[3] = 1;
decrease_ACC_busy (cpu, ACC40Si_3, busy_adjustment[3]);
}
if (out_ACC40Sk != in_ACC40Si && out_ACC40Sk != ACC40Si_1
&& out_ACC40Sk != ACC40Si_2 && out_ACC40Sk != ACC40Si_3)
{
if (acc_use_is_media_p2 (cpu, out_ACC40Sk))
{
busy_adjustment[4] = 1;
decrease_ACC_busy (cpu, out_ACC40Sk, busy_adjustment[4]);
}
}
if (ACC40Sk_1 != in_ACC40Si && ACC40Sk_1 != ACC40Si_1
&& ACC40Sk_1 != ACC40Si_2 && ACC40Sk_1 != ACC40Si_3)
{
if (acc_use_is_media_p2 (cpu, ACC40Sk_1))
{
busy_adjustment[5] = 1;
decrease_ACC_busy (cpu, ACC40Sk_1, busy_adjustment[5]);
}
}
if (ACC40Sk_2 != in_ACC40Si && ACC40Sk_2 != ACC40Si_1
&& ACC40Sk_2 != ACC40Si_2 && ACC40Sk_2 != ACC40Si_3)
{
if (acc_use_is_media_p2 (cpu, ACC40Sk_2))
{
busy_adjustment[6] = 1;
decrease_ACC_busy (cpu, ACC40Sk_2, busy_adjustment[6]);
}
}
if (ACC40Sk_3 != in_ACC40Si && ACC40Sk_3 != ACC40Si_1
&& ACC40Sk_3 != ACC40Si_2 && ACC40Sk_3 != ACC40Si_3)
{
if (acc_use_is_media_p2 (cpu, ACC40Sk_3))
{
busy_adjustment[7] = 1;
decrease_ACC_busy (cpu, ACC40Sk_3, busy_adjustment[7]);
}
}
/* The post processing must wait if there is a dependency on a register
which is not ready yet. */
ps->post_wait = cycles;
post_wait_for_ACC (cpu, in_ACC40Si);
post_wait_for_ACC (cpu, ACC40Si_1);
post_wait_for_ACC (cpu, ACC40Si_2);
post_wait_for_ACC (cpu, ACC40Si_3);
post_wait_for_ACC (cpu, out_ACC40Sk);
post_wait_for_ACC (cpu, ACC40Sk_1);
post_wait_for_ACC (cpu, ACC40Sk_2);
post_wait_for_ACC (cpu, ACC40Sk_3);
/* Restore the busy cycles of the registers we used. */
acc = ps->acc_busy;
acc[in_ACC40Si] += busy_adjustment[0];
if (ACC40Si_1 >= 0)
acc[ACC40Si_1] += busy_adjustment[1];
if (ACC40Si_2 >= 0)
acc[ACC40Si_2] += busy_adjustment[2];
if (ACC40Si_3 >= 0)
acc[ACC40Si_3] += busy_adjustment[3];
acc[out_ACC40Sk] += busy_adjustment[4];
if (ACC40Sk_1 >= 0)
acc[ACC40Sk_1] += busy_adjustment[5];
if (ACC40Sk_2 >= 0)
acc[ACC40Sk_2] += busy_adjustment[6];
if (ACC40Sk_3 >= 0)
acc[ACC40Sk_3] += busy_adjustment[7];
/* The latency of the output register will be at least the latency of the
other inputs. Once initiated, post-processing will take 1 cycle. */
update_ACC_latency (cpu, out_ACC40Sk, ps->post_wait + 1);
set_acc_use_is_media_p2 (cpu, out_ACC40Sk);
if (ACC40Sk_1 >= 0)
{
update_ACC_latency (cpu, ACC40Sk_1, ps->post_wait + 1);
set_acc_use_is_media_p2 (cpu, ACC40Sk_1);
}
if (ACC40Sk_2 >= 0)
{
update_ACC_latency (cpu, ACC40Sk_2, ps->post_wait + 1);
set_acc_use_is_media_p2 (cpu, ACC40Sk_2);
}
if (ACC40Sk_3 >= 0)
{
update_ACC_latency (cpu, ACC40Sk_3, ps->post_wait + 1);
set_acc_use_is_media_p2 (cpu, ACC40Sk_3);
}
return cycles;
}
int
frvbf_model_fr400_u_media_3 (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_FRi, INT in_FRj,
INT out_FRk)
{
/* Modelling is the same as media unit 1. */
return frvbf_model_fr400_u_media_1 (cpu, idesc, unit_num, referenced,
in_FRi, in_FRj, out_FRk);
}
int
frvbf_model_fr400_u_media_3_dual (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_FRi, INT out_FRk)
{
int cycles;
INT dual_FRi;
FRV_PROFILE_STATE *ps;
int busy_adjustment[] = {0, 0};
int *fr;
if (model_insn == FRV_INSN_MODEL_PASS_1)
return 0;
/* The preprocessing can execute right away. */
cycles = idesc->timing->units[unit_num].done;
ps = CPU_PROFILE_STATE (cpu);
dual_FRi = DUAL_REG (in_FRi);
/* The latency of the registers may be less than previously recorded,
depending on how they were used previously.
See Table 13-8 in the LSI. */
if (use_is_fp_load (cpu, in_FRi))
{
busy_adjustment[0] = 1;
decrease_FR_busy (cpu, in_FRi, busy_adjustment[0]);
}
else
enforce_full_fr_latency (cpu, in_FRi);
if (dual_FRi >= 0 && use_is_fp_load (cpu, dual_FRi))
{
busy_adjustment[1] = 1;
decrease_FR_busy (cpu, dual_FRi, busy_adjustment[1]);
}
else
enforce_full_fr_latency (cpu, dual_FRi);
/* The post processing must wait if there is a dependency on a FR
which is not ready yet. */
ps->post_wait = cycles;
post_wait_for_FR (cpu, in_FRi);
post_wait_for_FR (cpu, dual_FRi);
post_wait_for_FR (cpu, out_FRk);
/* Restore the busy cycles of the registers we used. */
fr = ps->fr_busy;
fr[in_FRi] += busy_adjustment[0];
if (dual_FRi >= 0)
fr[dual_FRi] += busy_adjustment[1];
/* The latency of the output register will be at least the latency of the
other inputs. */
update_FR_latency (cpu, out_FRk, ps->post_wait);
/* Once initiated, post-processing has no latency. */
update_FR_ptime (cpu, out_FRk, 0);
return cycles;
}
int
frvbf_model_fr400_u_media_3_quad (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_FRi, INT in_FRj,
INT out_FRk)
{
/* Modelling is the same as media unit 1. */
return frvbf_model_fr400_u_media_1_quad (cpu, idesc, unit_num, referenced,
in_FRi, in_FRj, out_FRk);
}
int
frvbf_model_fr400_u_media_4 (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_ACC40Si, INT in_FRj,
INT out_ACC40Sk, INT out_FRk)
{
int cycles;
FRV_PROFILE_STATE *ps;
const CGEN_INSN *insn;
int busy_adjustment[] = {0};
int *fr;
if (model_insn == FRV_INSN_MODEL_PASS_1)
return 0;
/* The preprocessing can execute right away. */
cycles = idesc->timing->units[unit_num].done;
ps = CPU_PROFILE_STATE (cpu);
insn = idesc->idata;
/* The latency of the registers may be less than previously recorded,
depending on how they were used previously.
See Table 13-8 in the LSI. */
if (in_FRj >= 0)
{
if (use_is_fp_load (cpu, in_FRj))
{
busy_adjustment[0] = 1;
decrease_FR_busy (cpu, in_FRj, busy_adjustment[0]);
}
else
enforce_full_fr_latency (cpu, in_FRj);
}
/* The post processing must wait if there is a dependency on a FR
which is not ready yet. */
ps->post_wait = cycles;
post_wait_for_ACC (cpu, in_ACC40Si);
post_wait_for_ACC (cpu, out_ACC40Sk);
post_wait_for_FR (cpu, in_FRj);
post_wait_for_FR (cpu, out_FRk);
/* Restore the busy cycles of the registers we used. */
fr = ps->fr_busy;
/* The latency of the output register will be at least the latency of the
other inputs. Once initiated, post-processing will take 1 cycle. */
if (out_FRk >= 0)
{
update_FR_latency (cpu, out_FRk, ps->post_wait);
update_FR_ptime (cpu, out_FRk, 1);
/* Mark this use of the register as media unit 4. */
set_use_is_media_p4 (cpu, out_FRk);
}
else if (out_ACC40Sk >= 0)
{
update_ACC_latency (cpu, out_ACC40Sk, ps->post_wait);
update_ACC_ptime (cpu, out_ACC40Sk, 1);
/* Mark this use of the register as media unit 4. */
set_acc_use_is_media_p4 (cpu, out_ACC40Sk);
}
return cycles;
}
int
frvbf_model_fr400_u_media_4_accg (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_ACCGi, INT in_FRinti,
INT out_ACCGk, INT out_FRintk)
{
/* Modelling is the same as media-4 unit except use accumulator guards
as input instead of accumulators. */
return frvbf_model_fr400_u_media_4 (cpu, idesc, unit_num, referenced,
in_ACCGi, in_FRinti,
out_ACCGk, out_FRintk);
}
int
frvbf_model_fr400_u_media_4_acc_dual (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_ACC40Si, INT out_FRk)
{
int cycles;
FRV_PROFILE_STATE *ps;
const CGEN_INSN *insn;
INT ACC40Si_1;
INT FRk_1;
if (model_insn == FRV_INSN_MODEL_PASS_1)
return 0;
/* The preprocessing can execute right away. */
cycles = idesc->timing->units[unit_num].done;
ps = CPU_PROFILE_STATE (cpu);
ACC40Si_1 = DUAL_REG (in_ACC40Si);
FRk_1 = DUAL_REG (out_FRk);
insn = idesc->idata;
/* The post processing must wait if there is a dependency on a FR
which is not ready yet. */
ps->post_wait = cycles;
post_wait_for_ACC (cpu, in_ACC40Si);
post_wait_for_ACC (cpu, ACC40Si_1);
post_wait_for_FR (cpu, out_FRk);
post_wait_for_FR (cpu, FRk_1);
/* The latency of the output register will be at least the latency of the
other inputs. Once initiated, post-processing will take 1 cycle. */
if (out_FRk >= 0)
{
update_FR_latency (cpu, out_FRk, ps->post_wait);
update_FR_ptime (cpu, out_FRk, 1);
/* Mark this use of the register as media unit 4. */
set_use_is_media_p4 (cpu, out_FRk);
}
if (FRk_1 >= 0)
{
update_FR_latency (cpu, FRk_1, ps->post_wait);
update_FR_ptime (cpu, FRk_1, 1);
/* Mark this use of the register as media unit 4. */
set_use_is_media_p4 (cpu, FRk_1);
}
return cycles;
}
int
frvbf_model_fr400_u_media_6 (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_FRi, INT out_FRk)
{
int cycles;
FRV_PROFILE_STATE *ps;
const CGEN_INSN *insn;
int busy_adjustment[] = {0};
int *fr;
if (model_insn == FRV_INSN_MODEL_PASS_1)
return 0;
/* The preprocessing can execute right away. */
cycles = idesc->timing->units[unit_num].done;
ps = CPU_PROFILE_STATE (cpu);
insn = idesc->idata;
/* The latency of the registers may be less than previously recorded,
depending on how they were used previously.
See Table 13-8 in the LSI. */
if (in_FRi >= 0)
{
if (use_is_fp_load (cpu, in_FRi))
{
busy_adjustment[0] = 1;
decrease_FR_busy (cpu, in_FRi, busy_adjustment[0]);
}
else
enforce_full_fr_latency (cpu, in_FRi);
}
/* The post processing must wait if there is a dependency on a FR
which is not ready yet. */
ps->post_wait = cycles;
post_wait_for_FR (cpu, in_FRi);
post_wait_for_FR (cpu, out_FRk);
/* Restore the busy cycles of the registers we used. */
fr = ps->fr_busy;
if (in_FRi >= 0)
fr[in_FRi] += busy_adjustment[0];
/* The latency of the output register will be at least the latency of the
other inputs. Once initiated, post-processing will take 1 cycle. */
if (out_FRk >= 0)
{
update_FR_latency (cpu, out_FRk, ps->post_wait);
update_FR_ptime (cpu, out_FRk, 1);
/* Mark this use of the register as media unit 1. */
set_use_is_media_p6 (cpu, out_FRk);
}
return cycles;
}
int
frvbf_model_fr400_u_media_7 (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_FRinti, INT in_FRintj,
INT out_FCCk)
{
int cycles;
FRV_PROFILE_STATE *ps;
int busy_adjustment[] = {0, 0};
int *fr;
if (model_insn == FRV_INSN_MODEL_PASS_1)
return 0;
/* The preprocessing can execute right away. */
cycles = idesc->timing->units[unit_num].done;
/* The post processing must wait if there is a dependency on a FR
which is not ready yet. */
ps = CPU_PROFILE_STATE (cpu);
/* The latency of the registers may be less than previously recorded,
depending on how they were used previously.
See Table 13-8 in the LSI. */
if (in_FRinti >= 0)
{
if (use_is_fp_load (cpu, in_FRinti))
{
busy_adjustment[0] = 1;
decrease_FR_busy (cpu, in_FRinti, busy_adjustment[0]);
}
else
enforce_full_fr_latency (cpu, in_FRinti);
}
if (in_FRintj >= 0 && in_FRintj != in_FRinti)
{
if (use_is_fp_load (cpu, in_FRintj))
{
busy_adjustment[1] = 1;
decrease_FR_busy (cpu, in_FRintj, busy_adjustment[1]);
}
else
enforce_full_fr_latency (cpu, in_FRintj);
}
ps->post_wait = cycles;
post_wait_for_FR (cpu, in_FRinti);
post_wait_for_FR (cpu, in_FRintj);
post_wait_for_CCR (cpu, out_FCCk);
/* Restore the busy cycles of the registers we used. */
fr = ps->fr_busy;
if (in_FRinti >= 0)
fr[in_FRinti] += busy_adjustment[0];
if (in_FRintj >= 0)
fr[in_FRintj] += busy_adjustment[1];
/* The latency of FCCi_2 will be the latency of the other inputs plus 1
cycle. */
update_CCR_latency (cpu, out_FCCk, ps->post_wait + 1);
return cycles;
}
int
frvbf_model_fr400_u_media_dual_expand (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_FRi,
INT out_FRk)
{
/* Insns using this unit are media-3 class insns, with a dual FRk output. */
int cycles;
INT dual_FRk;
FRV_PROFILE_STATE *ps;
int busy_adjustment[] = {0};
int *fr;
if (model_insn == FRV_INSN_MODEL_PASS_1)
return 0;
/* The preprocessing can execute right away. */
cycles = idesc->timing->units[unit_num].done;
/* If the previous use of the registers was a media op,
then their latency will be less than previously recorded.
See Table 13-13 in the LSI. */
dual_FRk = DUAL_REG (out_FRk);
ps = CPU_PROFILE_STATE (cpu);
if (use_is_fp_load (cpu, in_FRi))
{
busy_adjustment[0] = 1;
decrease_FR_busy (cpu, in_FRi, busy_adjustment[0]);
}
else
enforce_full_fr_latency (cpu, in_FRi);
/* The post processing must wait if there is a dependency on a FR
which is not ready yet. */
ps->post_wait = cycles;
post_wait_for_FR (cpu, in_FRi);
post_wait_for_FR (cpu, out_FRk);
post_wait_for_FR (cpu, dual_FRk);
/* Restore the busy cycles of the registers we used. */
fr = ps->fr_busy;
fr[in_FRi] += busy_adjustment[0];
/* The latency of the output register will be at least the latency of the
other inputs. Once initiated, post-processing has no latency. */
update_FR_latency (cpu, out_FRk, ps->post_wait);
update_FR_ptime (cpu, out_FRk, 0);
if (dual_FRk >= 0)
{
update_FR_latency (cpu, dual_FRk, ps->post_wait);
update_FR_ptime (cpu, dual_FRk, 0);
}
return cycles;
}
int
frvbf_model_fr400_u_media_dual_htob (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_FRj,
INT out_FRk)
{
/* Insns using this unit are media-3 class insns, with a dual FRj input. */
int cycles;
INT dual_FRj;
FRV_PROFILE_STATE *ps;
int busy_adjustment[] = {0, 0};
int *fr;
if (model_insn == FRV_INSN_MODEL_PASS_1)
return 0;
/* The preprocessing can execute right away. */
cycles = idesc->timing->units[unit_num].done;
/* If the previous use of the registers was a media op,
then their latency will be less than previously recorded.
See Table 13-13 in the LSI. */
dual_FRj = DUAL_REG (in_FRj);
ps = CPU_PROFILE_STATE (cpu);
if (use_is_fp_load (cpu, in_FRj))
{
busy_adjustment[0] = 1;
decrease_FR_busy (cpu, in_FRj, busy_adjustment[0]);
}
else
enforce_full_fr_latency (cpu, in_FRj);
if (dual_FRj >= 0)
{
if (use_is_fp_load (cpu, dual_FRj))
{
busy_adjustment[1] = 1;
decrease_FR_busy (cpu, dual_FRj, busy_adjustment[1]);
}
else
enforce_full_fr_latency (cpu, dual_FRj);
}
/* The post processing must wait if there is a dependency on a FR
which is not ready yet. */
ps->post_wait = cycles;
post_wait_for_FR (cpu, in_FRj);
post_wait_for_FR (cpu, dual_FRj);
post_wait_for_FR (cpu, out_FRk);
/* Restore the busy cycles of the registers we used. */
fr = ps->fr_busy;
fr[in_FRj] += busy_adjustment[0];
if (dual_FRj >= 0)
fr[dual_FRj] += busy_adjustment[1];
/* The latency of the output register will be at least the latency of the
other inputs. */
update_FR_latency (cpu, out_FRk, ps->post_wait);
/* Once initiated, post-processing has no latency. */
update_FR_ptime (cpu, out_FRk, 0);
return cycles;
}
int
frvbf_model_fr400_u_ici (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_GRi, INT in_GRj)
{
/* Modelling for this unit is the same as for fr500. */
return frvbf_model_fr500_u_ici (cpu, idesc, unit_num, referenced,
in_GRi, in_GRj);
}
int
frvbf_model_fr400_u_dci (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_GRi, INT in_GRj)
{
/* Modelling for this unit is the same as for fr500. */
return frvbf_model_fr500_u_dci (cpu, idesc, unit_num, referenced,
in_GRi, in_GRj);
}
int
frvbf_model_fr400_u_dcf (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_GRi, INT in_GRj)
{
/* Modelling for this unit is the same as for fr500. */
return frvbf_model_fr500_u_dcf (cpu, idesc, unit_num, referenced,
in_GRi, in_GRj);
}
int
frvbf_model_fr400_u_icpl (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_GRi, INT in_GRj)
{
/* Modelling for this unit is the same as for fr500. */
return frvbf_model_fr500_u_icpl (cpu, idesc, unit_num, referenced,
in_GRi, in_GRj);
}
int
frvbf_model_fr400_u_dcpl (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_GRi, INT in_GRj)
{
/* Modelling for this unit is the same as for fr500. */
return frvbf_model_fr500_u_dcpl (cpu, idesc, unit_num, referenced,
in_GRi, in_GRj);
}
int
frvbf_model_fr400_u_icul (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_GRi, INT in_GRj)
{
/* Modelling for this unit is the same as for fr500. */
return frvbf_model_fr500_u_icul (cpu, idesc, unit_num, referenced,
in_GRi, in_GRj);
}
int
frvbf_model_fr400_u_dcul (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_GRi, INT in_GRj)
{
/* Modelling for this unit is the same as for fr500. */
return frvbf_model_fr500_u_dcul (cpu, idesc, unit_num, referenced,
in_GRi, in_GRj);
}
int
frvbf_model_fr400_u_barrier (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced)
{
/* Modelling for this unit is the same as for fr500. */
return frvbf_model_fr500_u_barrier (cpu, idesc, unit_num, referenced);
}
int
frvbf_model_fr400_u_membar (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced)
{
/* Modelling for this unit is the same as for fr500. */
return frvbf_model_fr500_u_membar (cpu, idesc, unit_num, referenced);
}
#endif /* WITH_PROFILE_MODEL_P */