old-cross-binutils/gdb/testsuite/gdb.threads/forking-threads-plus-breakpoint.c

140 lines
2.9 KiB
C
Raw Normal View History

gdbserver: Fix non-stop / fork / step-over issues Ref: https://sourceware.org/ml/gdb-patches/2015-07/msg00868.html This adds a test that has a multithreaded program have several threads continuously fork, while another thread continuously steps over a breakpoint. This exposes several intertwined issues, which this patch addresses: - When we're stopping and suspending threads, some thread may fork, and we missed setting its suspend count to 1, like we do when a new clone/thread is detected. When we next unsuspend threads, the fork child's suspend count goes below 0, which is bogus and fails an assertion. - If a step-over is cancelled because a signal arrives, but then gdb is not interested in the signal, we pass the signal straight back to the inferior. However, we miss that we need to re-increment the suspend counts of all other threads that had been paused for the step-over. As a result, other threads indefinitely end up stuck stopped. - If a detach request comes in just while gdbserver is handling a step-over (in the test at hand, this is GDB detaching the fork child), gdbserver internal errors in stabilize_thread's helpers, which assert that all thread's suspend counts are 0 (otherwise we wouldn't be able to move threads out of the jump pads). The suspend counts aren't 0 while a step-over is in progress, because all threads but the one stepping past the breakpoint must remain paused until the step-over finishes and the breakpoint can be reinserted. - Occasionally, we see "BAD - reinserting but not stepping." being output (from within linux_resume_one_lwp_throw). That was because GDB pokes memory while gdbserver is busy with a step-over, and that suspends threads, and then re-resumes them with proceed_one_lwp, which missed another reason to tell linux_resume_one_lwp that the thread should be set back to stepping. - In a couple places, we were resuming threads that are meant to be suspended. E.g., when a vCont;c/s request for thread B comes in just while gdbserver is stepping thread A past a breakpoint. The resume for thread B must be deferred until the step-over finishes. - The test runs with both "set detach-on-fork" on and off. When off, it exercises the case of GDB detaching the fork child explicitly. When on, it exercises the case of gdb resuming the child explicitly. In the "off" case, gdb seems to exponentially become slower as new inferiors are created. This is _very_ noticeable as with only 100 inferiors gdb is crawling already, which makes the test take quite a bit to run. For that reason, I've disabled the "off" variant for now. gdb/ChangeLog: 2015-08-06 Pedro Alves <palves@redhat.com> * target/waitstatus.h (enum target_stop_reason) <TARGET_STOPPED_BY_SINGLE_STEP>: New value. gdb/gdbserver/ChangeLog: 2015-08-06 Pedro Alves <palves@redhat.com> * linux-low.c (handle_extended_wait): Set the fork child's suspend count if stopping and suspending threads. (check_stopped_by_breakpoint): If stopped by trace, set the LWP's stop reason to TARGET_STOPPED_BY_SINGLE_STEP. (linux_detach): Complete an ongoing step-over. (lwp_suspended_inc, lwp_suspended_decr): New functions. Use throughout. (resume_stopped_resumed_lwps): Don't resume a suspended thread. (linux_wait_1): If passing a signal to the inferior after finishing a step-over, unsuspend and re-resume all lwps. If we see a single-step event but the thread should be continuing, don't pass the trap to gdb. (stuck_in_jump_pad_callback, move_out_of_jump_pad_callback): Use internal_error instead of gdb_assert. (enqueue_pending_signal): New function. (check_ptrace_stopped_lwp_gone): Add debug output. (start_step_over): Use internal_error instead of gdb_assert. (complete_ongoing_step_over): New function. (linux_resume_one_thread): Don't resume a suspended thread. (proceed_one_lwp): If the LWP is stepping over a breakpoint, reset it stepping. gdb/testsuite/ChangeLog: 2015-08-06 Pedro Alves <palves@redhat.com> * gdb.threads/forking-threads-plus-breakpoint.exp: New file. * gdb.threads/forking-threads-plus-breakpoint.c: New file.
2015-08-06 09:30:18 +00:00
/* This testcase is part of GDB, the GNU debugger.
Copyright 2015-2016 Free Software Foundation, Inc.
gdbserver: Fix non-stop / fork / step-over issues Ref: https://sourceware.org/ml/gdb-patches/2015-07/msg00868.html This adds a test that has a multithreaded program have several threads continuously fork, while another thread continuously steps over a breakpoint. This exposes several intertwined issues, which this patch addresses: - When we're stopping and suspending threads, some thread may fork, and we missed setting its suspend count to 1, like we do when a new clone/thread is detected. When we next unsuspend threads, the fork child's suspend count goes below 0, which is bogus and fails an assertion. - If a step-over is cancelled because a signal arrives, but then gdb is not interested in the signal, we pass the signal straight back to the inferior. However, we miss that we need to re-increment the suspend counts of all other threads that had been paused for the step-over. As a result, other threads indefinitely end up stuck stopped. - If a detach request comes in just while gdbserver is handling a step-over (in the test at hand, this is GDB detaching the fork child), gdbserver internal errors in stabilize_thread's helpers, which assert that all thread's suspend counts are 0 (otherwise we wouldn't be able to move threads out of the jump pads). The suspend counts aren't 0 while a step-over is in progress, because all threads but the one stepping past the breakpoint must remain paused until the step-over finishes and the breakpoint can be reinserted. - Occasionally, we see "BAD - reinserting but not stepping." being output (from within linux_resume_one_lwp_throw). That was because GDB pokes memory while gdbserver is busy with a step-over, and that suspends threads, and then re-resumes them with proceed_one_lwp, which missed another reason to tell linux_resume_one_lwp that the thread should be set back to stepping. - In a couple places, we were resuming threads that are meant to be suspended. E.g., when a vCont;c/s request for thread B comes in just while gdbserver is stepping thread A past a breakpoint. The resume for thread B must be deferred until the step-over finishes. - The test runs with both "set detach-on-fork" on and off. When off, it exercises the case of GDB detaching the fork child explicitly. When on, it exercises the case of gdb resuming the child explicitly. In the "off" case, gdb seems to exponentially become slower as new inferiors are created. This is _very_ noticeable as with only 100 inferiors gdb is crawling already, which makes the test take quite a bit to run. For that reason, I've disabled the "off" variant for now. gdb/ChangeLog: 2015-08-06 Pedro Alves <palves@redhat.com> * target/waitstatus.h (enum target_stop_reason) <TARGET_STOPPED_BY_SINGLE_STEP>: New value. gdb/gdbserver/ChangeLog: 2015-08-06 Pedro Alves <palves@redhat.com> * linux-low.c (handle_extended_wait): Set the fork child's suspend count if stopping and suspending threads. (check_stopped_by_breakpoint): If stopped by trace, set the LWP's stop reason to TARGET_STOPPED_BY_SINGLE_STEP. (linux_detach): Complete an ongoing step-over. (lwp_suspended_inc, lwp_suspended_decr): New functions. Use throughout. (resume_stopped_resumed_lwps): Don't resume a suspended thread. (linux_wait_1): If passing a signal to the inferior after finishing a step-over, unsuspend and re-resume all lwps. If we see a single-step event but the thread should be continuing, don't pass the trap to gdb. (stuck_in_jump_pad_callback, move_out_of_jump_pad_callback): Use internal_error instead of gdb_assert. (enqueue_pending_signal): New function. (check_ptrace_stopped_lwp_gone): Add debug output. (start_step_over): Use internal_error instead of gdb_assert. (complete_ongoing_step_over): New function. (linux_resume_one_thread): Don't resume a suspended thread. (proceed_one_lwp): If the LWP is stepping over a breakpoint, reset it stepping. gdb/testsuite/ChangeLog: 2015-08-06 Pedro Alves <palves@redhat.com> * gdb.threads/forking-threads-plus-breakpoint.exp: New file. * gdb.threads/forking-threads-plus-breakpoint.c: New file.
2015-08-06 09:30:18 +00:00
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include <assert.h>
#include <pthread.h>
#include <unistd.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <stdlib.h>
/* Number of threads. Each thread continuously spawns a fork and wait
for it. If we have another thread continuously start a step over,
gdbserver should end up finding new forks while suspending
threads. */
#define NTHREADS 10
pthread_t threads[NTHREADS];
pthread_barrier_t barrier;
#define NFORKS 10
gdbserver: Fix non-stop / fork / step-over issues Ref: https://sourceware.org/ml/gdb-patches/2015-07/msg00868.html This adds a test that has a multithreaded program have several threads continuously fork, while another thread continuously steps over a breakpoint. This exposes several intertwined issues, which this patch addresses: - When we're stopping and suspending threads, some thread may fork, and we missed setting its suspend count to 1, like we do when a new clone/thread is detected. When we next unsuspend threads, the fork child's suspend count goes below 0, which is bogus and fails an assertion. - If a step-over is cancelled because a signal arrives, but then gdb is not interested in the signal, we pass the signal straight back to the inferior. However, we miss that we need to re-increment the suspend counts of all other threads that had been paused for the step-over. As a result, other threads indefinitely end up stuck stopped. - If a detach request comes in just while gdbserver is handling a step-over (in the test at hand, this is GDB detaching the fork child), gdbserver internal errors in stabilize_thread's helpers, which assert that all thread's suspend counts are 0 (otherwise we wouldn't be able to move threads out of the jump pads). The suspend counts aren't 0 while a step-over is in progress, because all threads but the one stepping past the breakpoint must remain paused until the step-over finishes and the breakpoint can be reinserted. - Occasionally, we see "BAD - reinserting but not stepping." being output (from within linux_resume_one_lwp_throw). That was because GDB pokes memory while gdbserver is busy with a step-over, and that suspends threads, and then re-resumes them with proceed_one_lwp, which missed another reason to tell linux_resume_one_lwp that the thread should be set back to stepping. - In a couple places, we were resuming threads that are meant to be suspended. E.g., when a vCont;c/s request for thread B comes in just while gdbserver is stepping thread A past a breakpoint. The resume for thread B must be deferred until the step-over finishes. - The test runs with both "set detach-on-fork" on and off. When off, it exercises the case of GDB detaching the fork child explicitly. When on, it exercises the case of gdb resuming the child explicitly. In the "off" case, gdb seems to exponentially become slower as new inferiors are created. This is _very_ noticeable as with only 100 inferiors gdb is crawling already, which makes the test take quite a bit to run. For that reason, I've disabled the "off" variant for now. gdb/ChangeLog: 2015-08-06 Pedro Alves <palves@redhat.com> * target/waitstatus.h (enum target_stop_reason) <TARGET_STOPPED_BY_SINGLE_STEP>: New value. gdb/gdbserver/ChangeLog: 2015-08-06 Pedro Alves <palves@redhat.com> * linux-low.c (handle_extended_wait): Set the fork child's suspend count if stopping and suspending threads. (check_stopped_by_breakpoint): If stopped by trace, set the LWP's stop reason to TARGET_STOPPED_BY_SINGLE_STEP. (linux_detach): Complete an ongoing step-over. (lwp_suspended_inc, lwp_suspended_decr): New functions. Use throughout. (resume_stopped_resumed_lwps): Don't resume a suspended thread. (linux_wait_1): If passing a signal to the inferior after finishing a step-over, unsuspend and re-resume all lwps. If we see a single-step event but the thread should be continuing, don't pass the trap to gdb. (stuck_in_jump_pad_callback, move_out_of_jump_pad_callback): Use internal_error instead of gdb_assert. (enqueue_pending_signal): New function. (check_ptrace_stopped_lwp_gone): Add debug output. (start_step_over): Use internal_error instead of gdb_assert. (complete_ongoing_step_over): New function. (linux_resume_one_thread): Don't resume a suspended thread. (proceed_one_lwp): If the LWP is stepping over a breakpoint, reset it stepping. gdb/testsuite/ChangeLog: 2015-08-06 Pedro Alves <palves@redhat.com> * gdb.threads/forking-threads-plus-breakpoint.exp: New file. * gdb.threads/forking-threads-plus-breakpoint.c: New file.
2015-08-06 09:30:18 +00:00
/* Used to create a conditional breakpoint that always fails. */
volatile int zero;
static void *
thread_forks (void *arg)
{
int i;
pthread_barrier_wait (&barrier);
for (i = 0; i < NFORKS; i++)
{
pid_t pid;
pid = fork ();
if (pid > 0)
{
int status;
/* Parent. */
pid = waitpid (pid, &status, 0);
if (pid == -1)
{
perror ("wait");
exit (1);
}
if (!WIFEXITED (status))
{
printf ("Unexpected wait status 0x%x from child %d\n",
status, pid);
}
}
else if (pid == 0)
{
/* Child. */
exit (0);
}
else
{
perror ("fork");
exit (1);
}
}
}
/* Set this to tell the thread_breakpoint thread to exit. */
volatile int break_out;
static void *
thread_breakpoint (void *arg)
{
pthread_barrier_wait (&barrier);
while (!break_out)
{
usleep (1); /* set break here */
}
return NULL;
}
pthread_barrier_t barrier;
int
main (void)
{
int i;
int ret;
pthread_t bp_thread;
/* Don't run forever. */
alarm (180);
gdbserver: Fix non-stop / fork / step-over issues Ref: https://sourceware.org/ml/gdb-patches/2015-07/msg00868.html This adds a test that has a multithreaded program have several threads continuously fork, while another thread continuously steps over a breakpoint. This exposes several intertwined issues, which this patch addresses: - When we're stopping and suspending threads, some thread may fork, and we missed setting its suspend count to 1, like we do when a new clone/thread is detected. When we next unsuspend threads, the fork child's suspend count goes below 0, which is bogus and fails an assertion. - If a step-over is cancelled because a signal arrives, but then gdb is not interested in the signal, we pass the signal straight back to the inferior. However, we miss that we need to re-increment the suspend counts of all other threads that had been paused for the step-over. As a result, other threads indefinitely end up stuck stopped. - If a detach request comes in just while gdbserver is handling a step-over (in the test at hand, this is GDB detaching the fork child), gdbserver internal errors in stabilize_thread's helpers, which assert that all thread's suspend counts are 0 (otherwise we wouldn't be able to move threads out of the jump pads). The suspend counts aren't 0 while a step-over is in progress, because all threads but the one stepping past the breakpoint must remain paused until the step-over finishes and the breakpoint can be reinserted. - Occasionally, we see "BAD - reinserting but not stepping." being output (from within linux_resume_one_lwp_throw). That was because GDB pokes memory while gdbserver is busy with a step-over, and that suspends threads, and then re-resumes them with proceed_one_lwp, which missed another reason to tell linux_resume_one_lwp that the thread should be set back to stepping. - In a couple places, we were resuming threads that are meant to be suspended. E.g., when a vCont;c/s request for thread B comes in just while gdbserver is stepping thread A past a breakpoint. The resume for thread B must be deferred until the step-over finishes. - The test runs with both "set detach-on-fork" on and off. When off, it exercises the case of GDB detaching the fork child explicitly. When on, it exercises the case of gdb resuming the child explicitly. In the "off" case, gdb seems to exponentially become slower as new inferiors are created. This is _very_ noticeable as with only 100 inferiors gdb is crawling already, which makes the test take quite a bit to run. For that reason, I've disabled the "off" variant for now. gdb/ChangeLog: 2015-08-06 Pedro Alves <palves@redhat.com> * target/waitstatus.h (enum target_stop_reason) <TARGET_STOPPED_BY_SINGLE_STEP>: New value. gdb/gdbserver/ChangeLog: 2015-08-06 Pedro Alves <palves@redhat.com> * linux-low.c (handle_extended_wait): Set the fork child's suspend count if stopping and suspending threads. (check_stopped_by_breakpoint): If stopped by trace, set the LWP's stop reason to TARGET_STOPPED_BY_SINGLE_STEP. (linux_detach): Complete an ongoing step-over. (lwp_suspended_inc, lwp_suspended_decr): New functions. Use throughout. (resume_stopped_resumed_lwps): Don't resume a suspended thread. (linux_wait_1): If passing a signal to the inferior after finishing a step-over, unsuspend and re-resume all lwps. If we see a single-step event but the thread should be continuing, don't pass the trap to gdb. (stuck_in_jump_pad_callback, move_out_of_jump_pad_callback): Use internal_error instead of gdb_assert. (enqueue_pending_signal): New function. (check_ptrace_stopped_lwp_gone): Add debug output. (start_step_over): Use internal_error instead of gdb_assert. (complete_ongoing_step_over): New function. (linux_resume_one_thread): Don't resume a suspended thread. (proceed_one_lwp): If the LWP is stepping over a breakpoint, reset it stepping. gdb/testsuite/ChangeLog: 2015-08-06 Pedro Alves <palves@redhat.com> * gdb.threads/forking-threads-plus-breakpoint.exp: New file. * gdb.threads/forking-threads-plus-breakpoint.c: New file.
2015-08-06 09:30:18 +00:00
pthread_barrier_init (&barrier, NULL, NTHREADS + 1);
/* Start the threads that constantly fork. */
for (i = 0; i < NTHREADS; i++)
{
ret = pthread_create (&threads[i], NULL, thread_forks, NULL);
assert (ret == 0);
}
/* Start the thread that constantly hit a conditional breakpoint
that needs to be stepped over. */
ret = pthread_create (&bp_thread, NULL, thread_breakpoint, NULL);
assert (ret == 0);
/* Wait for forking to stop. */
for (i = 0; i < NTHREADS; i++)
{
ret = pthread_join (threads[i], NULL);
assert (ret == 0);
}
break_out = 1;
pthread_join (bp_thread, NULL);
assert (ret == 0);
return 0;
}