1991-03-28 16:28:29 +00:00
|
|
|
|
/* Target-machine dependent code for the AMD 29000
|
* defs.h: Incorporate param.h. All users changed.
* param-no-tm.h: Change users to define TM_FILE_OVERRIDE instead.
* param.h, param-no-tm.h: Removed.
* Update copyrights in all changed files.
* dbxread.c, dwarfread.c, inflow.c, infrun.c, m2-exp.y, putenv.c,
solib.c, symtab.h, tm-umax.h, valprint.c: Lint.
* tm-convex.h, tm-hp300hpux.h, tm-merlin.h, tm-sparc.h,
xm-merlin.h: Avoid host include files in target descriptions.
* getpagesize.h: Removed, libiberty copes now.
1991-11-21 18:42:05 +00:00
|
|
|
|
Copyright 1990, 1991 Free Software Foundation, Inc.
|
1991-03-28 16:28:29 +00:00
|
|
|
|
Contributed by Cygnus Support. Written by Jim Kingdon.
|
|
|
|
|
|
|
|
|
|
This file is part of GDB.
|
|
|
|
|
|
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
|
|
|
it under the terms of the GNU General Public License as published by
|
1991-06-04 07:31:55 +00:00
|
|
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
|
|
|
(at your option) any later version.
|
1991-03-28 16:28:29 +00:00
|
|
|
|
|
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
1991-06-04 07:31:55 +00:00
|
|
|
|
along with this program; if not, write to the Free Software
|
|
|
|
|
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
|
1991-03-28 16:28:29 +00:00
|
|
|
|
|
|
|
|
|
#include "defs.h"
|
|
|
|
|
#include "gdbcore.h"
|
|
|
|
|
#include <stdio.h>
|
|
|
|
|
#include "frame.h"
|
|
|
|
|
#include "value.h"
|
|
|
|
|
#include "symtab.h"
|
|
|
|
|
#include "inferior.h"
|
|
|
|
|
|
1991-09-13 07:22:01 +00:00
|
|
|
|
extern CORE_ADDR text_start; /* FIXME, kludge... */
|
|
|
|
|
|
1991-03-28 16:28:29 +00:00
|
|
|
|
/* Structure to hold cached info about function prologues. */
|
|
|
|
|
struct prologue_info
|
|
|
|
|
{
|
|
|
|
|
CORE_ADDR pc; /* First addr after fn prologue */
|
|
|
|
|
unsigned rsize, msize; /* register stack frame size, mem stack ditto */
|
|
|
|
|
unsigned mfp_used : 1; /* memory frame pointer used */
|
|
|
|
|
unsigned rsize_valid : 1; /* Validity bits for the above */
|
|
|
|
|
unsigned msize_valid : 1;
|
|
|
|
|
unsigned mfp_valid : 1;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/* Examine the prologue of a function which starts at PC. Return
|
|
|
|
|
the first addess past the prologue. If MSIZE is non-NULL, then
|
|
|
|
|
set *MSIZE to the memory stack frame size. If RSIZE is non-NULL,
|
|
|
|
|
then set *RSIZE to the register stack frame size (not including
|
|
|
|
|
incoming arguments and the return address & frame pointer stored
|
|
|
|
|
with them). If no prologue is found, *RSIZE is set to zero.
|
|
|
|
|
If no prologue is found, or a prologue which doesn't involve
|
|
|
|
|
allocating a memory stack frame, then set *MSIZE to zero.
|
|
|
|
|
|
|
|
|
|
Note that both msize and rsize are in bytes. This is not consistent
|
|
|
|
|
with the _User's Manual_ with respect to rsize, but it is much more
|
|
|
|
|
convenient.
|
|
|
|
|
|
|
|
|
|
If MFP_USED is non-NULL, *MFP_USED is set to nonzero if a memory
|
|
|
|
|
frame pointer is being used. */
|
|
|
|
|
CORE_ADDR
|
|
|
|
|
examine_prologue (pc, rsize, msize, mfp_used)
|
|
|
|
|
CORE_ADDR pc;
|
|
|
|
|
unsigned *msize;
|
|
|
|
|
unsigned *rsize;
|
|
|
|
|
int *mfp_used;
|
|
|
|
|
{
|
|
|
|
|
long insn;
|
|
|
|
|
CORE_ADDR p = pc;
|
|
|
|
|
int misc_index = find_pc_misc_function (pc);
|
|
|
|
|
struct prologue_info *mi = 0;
|
|
|
|
|
|
|
|
|
|
if (misc_index >= 0)
|
|
|
|
|
mi = (struct prologue_info *)misc_function_vector[misc_index].misc_info;
|
|
|
|
|
|
|
|
|
|
if (mi != 0)
|
|
|
|
|
{
|
|
|
|
|
int valid = 1;
|
|
|
|
|
if (rsize != NULL)
|
|
|
|
|
{
|
|
|
|
|
*rsize = mi->rsize;
|
|
|
|
|
valid &= mi->rsize_valid;
|
|
|
|
|
}
|
|
|
|
|
if (msize != NULL)
|
|
|
|
|
{
|
|
|
|
|
*msize = mi->msize;
|
|
|
|
|
valid &= mi->msize_valid;
|
|
|
|
|
}
|
|
|
|
|
if (mfp_used != NULL)
|
|
|
|
|
{
|
|
|
|
|
*mfp_used = mi->mfp_used;
|
|
|
|
|
valid &= mi->mfp_valid;
|
|
|
|
|
}
|
|
|
|
|
if (valid)
|
|
|
|
|
return mi->pc;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (rsize != NULL)
|
|
|
|
|
*rsize = 0;
|
|
|
|
|
if (msize != NULL)
|
|
|
|
|
*msize = 0;
|
|
|
|
|
if (mfp_used != NULL)
|
|
|
|
|
*mfp_used = 0;
|
|
|
|
|
|
|
|
|
|
/* Prologue must start with subtracting a constant from gr1.
|
|
|
|
|
Normally this is sub gr1,gr1,<rsize * 4>. */
|
|
|
|
|
insn = read_memory_integer (p, 4);
|
|
|
|
|
if ((insn & 0xffffff00) != 0x25010100)
|
|
|
|
|
{
|
|
|
|
|
/* If the frame is large, instead of a single instruction it
|
|
|
|
|
might be a pair of instructions:
|
|
|
|
|
const <reg>, <rsize * 4>
|
|
|
|
|
sub gr1,gr1,<reg>
|
|
|
|
|
*/
|
|
|
|
|
int reg;
|
|
|
|
|
/* Possible value for rsize. */
|
|
|
|
|
unsigned int rsize0;
|
|
|
|
|
|
|
|
|
|
if ((insn & 0xff000000) != 0x03000000)
|
|
|
|
|
{
|
|
|
|
|
p = pc;
|
|
|
|
|
goto done;
|
|
|
|
|
}
|
|
|
|
|
reg = (insn >> 8) & 0xff;
|
|
|
|
|
rsize0 = (((insn >> 8) & 0xff00) | (insn & 0xff));
|
|
|
|
|
p += 4;
|
|
|
|
|
insn = read_memory_integer (p, 4);
|
|
|
|
|
if ((insn & 0xffffff00) != 0x24010100
|
|
|
|
|
|| (insn & 0xff) != reg)
|
|
|
|
|
{
|
|
|
|
|
p = pc;
|
|
|
|
|
goto done;
|
|
|
|
|
}
|
|
|
|
|
if (rsize != NULL)
|
|
|
|
|
*rsize = rsize0;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
if (rsize != NULL)
|
|
|
|
|
*rsize = (insn & 0xff);
|
|
|
|
|
}
|
|
|
|
|
p += 4;
|
|
|
|
|
|
|
|
|
|
/* Next instruction must be asgeu V_SPILL,gr1,rab. */
|
|
|
|
|
insn = read_memory_integer (p, 4);
|
|
|
|
|
if (insn != 0x5e40017e)
|
|
|
|
|
{
|
|
|
|
|
p = pc;
|
|
|
|
|
goto done;
|
|
|
|
|
}
|
|
|
|
|
p += 4;
|
|
|
|
|
|
|
|
|
|
/* Next instruction usually sets the frame pointer (lr1) by adding
|
|
|
|
|
<size * 4> from gr1. However, this can (and high C does) be
|
|
|
|
|
deferred until anytime before the first function call. So it is
|
|
|
|
|
OK if we don't see anything which sets lr1. */
|
|
|
|
|
/* Normally this is just add lr1,gr1,<size * 4>. */
|
|
|
|
|
insn = read_memory_integer (p, 4);
|
|
|
|
|
if ((insn & 0xffffff00) == 0x15810100)
|
|
|
|
|
p += 4;
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* However, for large frames it can be
|
|
|
|
|
const <reg>, <size *4>
|
|
|
|
|
add lr1,gr1,<reg>
|
|
|
|
|
*/
|
|
|
|
|
int reg;
|
|
|
|
|
CORE_ADDR q;
|
|
|
|
|
|
|
|
|
|
if ((insn & 0xff000000) == 0x03000000)
|
|
|
|
|
{
|
|
|
|
|
reg = (insn >> 8) & 0xff;
|
|
|
|
|
q = p + 4;
|
|
|
|
|
insn = read_memory_integer (q, 4);
|
|
|
|
|
if ((insn & 0xffffff00) == 0x14810100
|
|
|
|
|
&& (insn & 0xff) == reg)
|
|
|
|
|
p = q;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Next comes "add lr{<rsize-1>},msp,0", but only if a memory
|
|
|
|
|
frame pointer is in use. We just check for add lr<anything>,msp,0;
|
|
|
|
|
we don't check this rsize against the first instruction, and
|
|
|
|
|
we don't check that the trace-back tag indicates a memory frame pointer
|
|
|
|
|
is in use.
|
|
|
|
|
|
|
|
|
|
The recommended instruction is actually "sll lr<whatever>,msp,0".
|
|
|
|
|
We check for that, too. Originally Jim Kingdon's code seemed
|
|
|
|
|
to be looking for a "sub" instruction here, but the mask was set
|
|
|
|
|
up to lose all the time. */
|
|
|
|
|
insn = read_memory_integer (p, 4);
|
|
|
|
|
if (((insn & 0xff80ffff) == 0x15807d00) /* add */
|
|
|
|
|
|| ((insn & 0xff80ffff) == 0x81807d00) ) /* sll */
|
|
|
|
|
{
|
|
|
|
|
p += 4;
|
|
|
|
|
if (mfp_used != NULL)
|
|
|
|
|
*mfp_used = 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Next comes a subtraction from msp to allocate a memory frame,
|
|
|
|
|
but only if a memory frame is
|
|
|
|
|
being used. We don't check msize against the trace-back tag.
|
|
|
|
|
|
|
|
|
|
Normally this is just
|
|
|
|
|
sub msp,msp,<msize>
|
|
|
|
|
*/
|
|
|
|
|
insn = read_memory_integer (p, 4);
|
|
|
|
|
if ((insn & 0xffffff00) == 0x257d7d00)
|
|
|
|
|
{
|
|
|
|
|
p += 4;
|
|
|
|
|
if (msize != NULL)
|
|
|
|
|
*msize = insn & 0xff;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* For large frames, instead of a single instruction it might
|
|
|
|
|
be
|
|
|
|
|
|
|
|
|
|
const <reg>, <msize>
|
|
|
|
|
consth <reg>, <msize> ; optional
|
|
|
|
|
sub msp,msp,<reg>
|
|
|
|
|
*/
|
|
|
|
|
int reg;
|
|
|
|
|
unsigned msize0;
|
|
|
|
|
CORE_ADDR q = p;
|
|
|
|
|
|
|
|
|
|
if ((insn & 0xff000000) == 0x03000000)
|
|
|
|
|
{
|
|
|
|
|
reg = (insn >> 8) & 0xff;
|
|
|
|
|
msize0 = ((insn >> 8) & 0xff00) | (insn & 0xff);
|
|
|
|
|
q += 4;
|
|
|
|
|
insn = read_memory_integer (q, 4);
|
|
|
|
|
/* Check for consth. */
|
|
|
|
|
if ((insn & 0xff000000) == 0x02000000
|
|
|
|
|
&& (insn & 0x0000ff00) == reg)
|
|
|
|
|
{
|
|
|
|
|
msize0 |= (insn << 8) & 0xff000000;
|
|
|
|
|
msize0 |= (insn << 16) & 0x00ff0000;
|
|
|
|
|
q += 4;
|
|
|
|
|
insn = read_memory_integer (q, 4);
|
|
|
|
|
}
|
|
|
|
|
/* Check for sub msp,msp,<reg>. */
|
|
|
|
|
if ((insn & 0xffffff00) == 0x247d7d00
|
|
|
|
|
&& (insn & 0xff) == reg)
|
|
|
|
|
{
|
|
|
|
|
p = q + 4;
|
|
|
|
|
if (msize != NULL)
|
|
|
|
|
*msize = msize0;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
done:
|
|
|
|
|
if (misc_index >= 0)
|
|
|
|
|
{
|
|
|
|
|
if (mi == 0)
|
|
|
|
|
{
|
|
|
|
|
/* Add a new cache entry. */
|
|
|
|
|
mi = (struct prologue_info *)xmalloc (sizeof (struct prologue_info));
|
|
|
|
|
misc_function_vector[misc_index].misc_info = (char *)mi;
|
|
|
|
|
mi->rsize_valid = 0;
|
|
|
|
|
mi->msize_valid = 0;
|
|
|
|
|
mi->mfp_valid = 0;
|
|
|
|
|
}
|
|
|
|
|
/* else, cache entry exists, but info is incomplete. */
|
|
|
|
|
mi->pc = p;
|
|
|
|
|
if (rsize != NULL)
|
|
|
|
|
{
|
|
|
|
|
mi->rsize = *rsize;
|
|
|
|
|
mi->rsize_valid = 1;
|
|
|
|
|
}
|
|
|
|
|
if (msize != NULL)
|
|
|
|
|
{
|
|
|
|
|
mi->msize = *msize;
|
|
|
|
|
mi->msize_valid = 1;
|
|
|
|
|
}
|
|
|
|
|
if (mfp_used != NULL)
|
|
|
|
|
{
|
|
|
|
|
mi->mfp_used = *mfp_used;
|
|
|
|
|
mi->mfp_valid = 1;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return p;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Advance PC across any function entry prologue instructions
|
|
|
|
|
to reach some "real" code. */
|
|
|
|
|
|
|
|
|
|
CORE_ADDR
|
|
|
|
|
skip_prologue (pc)
|
|
|
|
|
CORE_ADDR pc;
|
|
|
|
|
{
|
|
|
|
|
return examine_prologue (pc, (unsigned *)NULL, (unsigned *)NULL,
|
|
|
|
|
(int *)NULL);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Initialize the frame. In addition to setting "extra" frame info,
|
|
|
|
|
we also set ->frame because we use it in a nonstandard way, and ->pc
|
|
|
|
|
because we need to know it to get the other stuff. See the diagram
|
|
|
|
|
of stacks and the frame cache in tm-29k.h for more detail. */
|
|
|
|
|
static void
|
|
|
|
|
init_frame_info (innermost_frame, fci)
|
|
|
|
|
int innermost_frame;
|
|
|
|
|
struct frame_info *fci;
|
|
|
|
|
{
|
|
|
|
|
CORE_ADDR p;
|
|
|
|
|
long insn;
|
|
|
|
|
unsigned rsize;
|
|
|
|
|
unsigned msize;
|
|
|
|
|
int mfp_used;
|
|
|
|
|
struct symbol *func;
|
|
|
|
|
|
|
|
|
|
p = fci->pc;
|
|
|
|
|
|
|
|
|
|
if (innermost_frame)
|
|
|
|
|
fci->frame = read_register (GR1_REGNUM);
|
|
|
|
|
else
|
|
|
|
|
fci->frame = fci->next_frame + fci->next->rsize;
|
|
|
|
|
|
|
|
|
|
#if CALL_DUMMY_LOCATION == ON_STACK
|
|
|
|
|
This wont work;
|
|
|
|
|
#else
|
|
|
|
|
if (PC_IN_CALL_DUMMY (p, 0, 0))
|
|
|
|
|
#endif
|
|
|
|
|
{
|
|
|
|
|
fci->rsize = DUMMY_FRAME_RSIZE;
|
|
|
|
|
/* This doesn't matter since we never try to get locals or args
|
|
|
|
|
from a dummy frame. */
|
|
|
|
|
fci->msize = 0;
|
|
|
|
|
/* Dummy frames always use a memory frame pointer. */
|
|
|
|
|
fci->saved_msp =
|
|
|
|
|
read_register_stack_integer (fci->frame + DUMMY_FRAME_RSIZE - 4, 4);
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
func = find_pc_function (p);
|
|
|
|
|
if (func != NULL)
|
|
|
|
|
p = BLOCK_START (SYMBOL_BLOCK_VALUE (func));
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* Search backward to find the trace-back tag. However,
|
|
|
|
|
do not trace back beyond the start of the text segment
|
|
|
|
|
(just as a sanity check to avoid going into never-never land). */
|
|
|
|
|
while (p >= text_start
|
|
|
|
|
&& ((insn = read_memory_integer (p, 4)) & 0xff000000) != 0)
|
|
|
|
|
p -= 4;
|
|
|
|
|
|
|
|
|
|
if (p < text_start)
|
|
|
|
|
{
|
|
|
|
|
/* Couldn't find the trace-back tag.
|
|
|
|
|
Something strange is going on. */
|
|
|
|
|
fci->saved_msp = 0;
|
|
|
|
|
fci->rsize = 0;
|
|
|
|
|
fci->msize = 0;
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
/* Advance to the first word of the function, i.e. the word
|
|
|
|
|
after the trace-back tag. */
|
|
|
|
|
p += 4;
|
|
|
|
|
}
|
|
|
|
|
/* We've found the start of the function. Since High C interchanges
|
|
|
|
|
the meanings of bits 23 and 22 (as of Jul 90), and we
|
|
|
|
|
need to look at the prologue anyway to figure out
|
|
|
|
|
what rsize is, ignore the contents of the trace-back tag. */
|
|
|
|
|
examine_prologue (p, &rsize, &msize, &mfp_used);
|
|
|
|
|
fci->rsize = rsize;
|
|
|
|
|
fci->msize = msize;
|
|
|
|
|
if (innermost_frame)
|
|
|
|
|
{
|
|
|
|
|
fci->saved_msp = read_register (MSP_REGNUM) + msize;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
if (mfp_used)
|
|
|
|
|
fci->saved_msp =
|
|
|
|
|
read_register_stack_integer (fci->frame + rsize - 1, 4);
|
|
|
|
|
else
|
|
|
|
|
fci->saved_msp = fci->next->saved_msp + msize;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
init_extra_frame_info (fci)
|
|
|
|
|
struct frame_info *fci;
|
|
|
|
|
{
|
|
|
|
|
if (fci->next == 0)
|
|
|
|
|
/* Assume innermost frame. May produce strange results for "info frame"
|
|
|
|
|
but there isn't any way to tell the difference. */
|
|
|
|
|
init_frame_info (1, fci);
|
1991-09-13 03:00:28 +00:00
|
|
|
|
else {
|
|
|
|
|
/* We're in get_prev_frame_info.
|
|
|
|
|
Take care of everything in init_frame_pc. */
|
|
|
|
|
;
|
|
|
|
|
}
|
1991-03-28 16:28:29 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
init_frame_pc (fromleaf, fci)
|
|
|
|
|
int fromleaf;
|
|
|
|
|
struct frame_info *fci;
|
|
|
|
|
{
|
|
|
|
|
fci->pc = (fromleaf ? SAVED_PC_AFTER_CALL (fci->next) :
|
|
|
|
|
fci->next ? FRAME_SAVED_PC (fci->next) : read_pc ());
|
|
|
|
|
init_frame_info (0, fci);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Local variables (i.e. LOC_LOCAL) are on the memory stack, with their
|
|
|
|
|
offsets being relative to the memory stack pointer (high C) or
|
|
|
|
|
saved_msp (gcc). */
|
|
|
|
|
|
|
|
|
|
CORE_ADDR
|
|
|
|
|
frame_locals_address (fi)
|
|
|
|
|
struct frame_info *fi;
|
|
|
|
|
{
|
|
|
|
|
struct block *b = block_for_pc (fi->pc);
|
|
|
|
|
/* If compiled without -g, assume GCC. */
|
|
|
|
|
if (b == NULL || BLOCK_GCC_COMPILED (b))
|
|
|
|
|
return fi->saved_msp;
|
|
|
|
|
else
|
|
|
|
|
return fi->saved_msp - fi->msize;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Routines for reading the register stack. The caller gets to treat
|
|
|
|
|
the register stack as a uniform stack in memory, from address $gr1
|
|
|
|
|
straight through $rfb and beyond. */
|
|
|
|
|
|
|
|
|
|
/* Analogous to read_memory except the length is understood to be 4.
|
|
|
|
|
Also, myaddr can be NULL (meaning don't bother to read), and
|
|
|
|
|
if actual_mem_addr is non-NULL, store there the address that it
|
|
|
|
|
was fetched from (or if from a register the offset within
|
|
|
|
|
registers). Set *LVAL to lval_memory or lval_register, depending
|
|
|
|
|
on where it came from. */
|
|
|
|
|
void
|
|
|
|
|
read_register_stack (memaddr, myaddr, actual_mem_addr, lval)
|
|
|
|
|
CORE_ADDR memaddr;
|
|
|
|
|
char *myaddr;
|
|
|
|
|
CORE_ADDR *actual_mem_addr;
|
|
|
|
|
enum lval_type *lval;
|
|
|
|
|
{
|
|
|
|
|
long rfb = read_register (RFB_REGNUM);
|
|
|
|
|
long rsp = read_register (RSP_REGNUM);
|
|
|
|
|
if (memaddr < rfb)
|
|
|
|
|
{
|
|
|
|
|
/* It's in a register. */
|
|
|
|
|
int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
|
|
|
|
|
if (regnum < LR0_REGNUM || regnum > LR0_REGNUM + 127)
|
|
|
|
|
error ("Attempt to read register stack out of range.");
|
|
|
|
|
if (myaddr != NULL)
|
|
|
|
|
read_register_gen (regnum, myaddr);
|
|
|
|
|
if (lval != NULL)
|
|
|
|
|
*lval = lval_register;
|
|
|
|
|
if (actual_mem_addr != NULL)
|
|
|
|
|
*actual_mem_addr = REGISTER_BYTE (regnum);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* It's in the memory portion of the register stack. */
|
|
|
|
|
if (myaddr != NULL)
|
|
|
|
|
read_memory (memaddr, myaddr, 4);
|
|
|
|
|
if (lval != NULL)
|
|
|
|
|
*lval = lval_memory;
|
|
|
|
|
if (actual_mem_addr != NULL)
|
1991-09-13 03:00:28 +00:00
|
|
|
|
*actual_mem_addr = memaddr;
|
1991-03-28 16:28:29 +00:00
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Analogous to read_memory_integer
|
|
|
|
|
except the length is understood to be 4. */
|
|
|
|
|
long
|
|
|
|
|
read_register_stack_integer (memaddr, len)
|
|
|
|
|
CORE_ADDR memaddr;
|
|
|
|
|
int len;
|
|
|
|
|
{
|
|
|
|
|
long buf;
|
|
|
|
|
read_register_stack (memaddr, &buf, NULL, NULL);
|
|
|
|
|
SWAP_TARGET_AND_HOST (&buf, 4);
|
|
|
|
|
return buf;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Copy 4 bytes from GDB memory at MYADDR into inferior memory
|
|
|
|
|
at MEMADDR and put the actual address written into in
|
|
|
|
|
*ACTUAL_MEM_ADDR. */
|
|
|
|
|
static void
|
|
|
|
|
write_register_stack (memaddr, myaddr, actual_mem_addr)
|
|
|
|
|
CORE_ADDR memaddr;
|
|
|
|
|
char *myaddr;
|
|
|
|
|
CORE_ADDR *actual_mem_addr;
|
|
|
|
|
{
|
|
|
|
|
long rfb = read_register (RFB_REGNUM);
|
|
|
|
|
long rsp = read_register (RSP_REGNUM);
|
|
|
|
|
if (memaddr < rfb)
|
|
|
|
|
{
|
|
|
|
|
/* It's in a register. */
|
|
|
|
|
int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
|
|
|
|
|
if (regnum < LR0_REGNUM || regnum > LR0_REGNUM + 127)
|
|
|
|
|
error ("Attempt to read register stack out of range.");
|
|
|
|
|
if (myaddr != NULL)
|
|
|
|
|
write_register (regnum, *(long *)myaddr);
|
|
|
|
|
if (actual_mem_addr != NULL)
|
|
|
|
|
*actual_mem_addr = NULL;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* It's in the memory portion of the register stack. */
|
|
|
|
|
if (myaddr != NULL)
|
|
|
|
|
write_memory (memaddr, myaddr, 4);
|
|
|
|
|
if (actual_mem_addr != NULL)
|
1991-09-13 03:00:28 +00:00
|
|
|
|
*actual_mem_addr = memaddr;
|
1991-03-28 16:28:29 +00:00
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Find register number REGNUM relative to FRAME and put its
|
|
|
|
|
(raw) contents in *RAW_BUFFER. Set *OPTIMIZED if the variable
|
|
|
|
|
was optimized out (and thus can't be fetched). If the variable
|
|
|
|
|
was fetched from memory, set *ADDRP to where it was fetched from,
|
|
|
|
|
otherwise it was fetched from a register.
|
|
|
|
|
|
|
|
|
|
The argument RAW_BUFFER must point to aligned memory. */
|
|
|
|
|
void
|
|
|
|
|
get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lvalp)
|
|
|
|
|
char *raw_buffer;
|
|
|
|
|
int *optimized;
|
|
|
|
|
CORE_ADDR *addrp;
|
|
|
|
|
FRAME frame;
|
|
|
|
|
int regnum;
|
|
|
|
|
enum lval_type *lvalp;
|
|
|
|
|
{
|
|
|
|
|
struct frame_info *fi = get_frame_info (frame);
|
|
|
|
|
CORE_ADDR addr;
|
|
|
|
|
enum lval_type lval;
|
|
|
|
|
|
|
|
|
|
/* Once something has a register number, it doesn't get optimized out. */
|
|
|
|
|
if (optimized != NULL)
|
|
|
|
|
*optimized = 0;
|
|
|
|
|
if (regnum == RSP_REGNUM)
|
|
|
|
|
{
|
|
|
|
|
if (raw_buffer != NULL)
|
|
|
|
|
*(CORE_ADDR *)raw_buffer = fi->frame;
|
|
|
|
|
if (lvalp != NULL)
|
|
|
|
|
*lvalp = not_lval;
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
else if (regnum == PC_REGNUM)
|
|
|
|
|
{
|
|
|
|
|
if (raw_buffer != NULL)
|
|
|
|
|
*(CORE_ADDR *)raw_buffer = fi->pc;
|
|
|
|
|
|
|
|
|
|
/* Not sure we have to do this. */
|
|
|
|
|
if (lvalp != NULL)
|
|
|
|
|
*lvalp = not_lval;
|
|
|
|
|
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
else if (regnum == MSP_REGNUM)
|
|
|
|
|
{
|
|
|
|
|
if (raw_buffer != NULL)
|
|
|
|
|
{
|
|
|
|
|
if (fi->next != NULL)
|
|
|
|
|
*(CORE_ADDR *)raw_buffer = fi->next->saved_msp;
|
|
|
|
|
else
|
|
|
|
|
*(CORE_ADDR *)raw_buffer = read_register (MSP_REGNUM);
|
|
|
|
|
}
|
|
|
|
|
/* The value may have been computed, not fetched. */
|
|
|
|
|
if (lvalp != NULL)
|
|
|
|
|
*lvalp = not_lval;
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
else if (regnum < LR0_REGNUM || regnum >= LR0_REGNUM + 128)
|
|
|
|
|
{
|
|
|
|
|
/* These registers are not saved over procedure calls,
|
|
|
|
|
so just print out the current values. */
|
|
|
|
|
if (raw_buffer != NULL)
|
|
|
|
|
*(CORE_ADDR *)raw_buffer = read_register (regnum);
|
|
|
|
|
if (lvalp != NULL)
|
|
|
|
|
*lvalp = lval_register;
|
|
|
|
|
if (addrp != NULL)
|
|
|
|
|
*addrp = REGISTER_BYTE (regnum);
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
addr = fi->frame + (regnum - LR0_REGNUM) * 4;
|
|
|
|
|
if (raw_buffer != NULL)
|
|
|
|
|
read_register_stack (addr, raw_buffer, &addr, &lval);
|
|
|
|
|
if (lvalp != NULL)
|
|
|
|
|
*lvalp = lval;
|
|
|
|
|
if (addrp != NULL)
|
|
|
|
|
*addrp = addr;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Discard from the stack the innermost frame,
|
|
|
|
|
restoring all saved registers. */
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
pop_frame ()
|
|
|
|
|
{
|
|
|
|
|
FRAME frame = get_current_frame ();
|
|
|
|
|
struct frame_info *fi = get_frame_info (frame);
|
|
|
|
|
CORE_ADDR rfb = read_register (RFB_REGNUM);
|
|
|
|
|
CORE_ADDR gr1 = fi->frame + fi->rsize;
|
|
|
|
|
CORE_ADDR lr1;
|
|
|
|
|
CORE_ADDR ret_addr;
|
|
|
|
|
int i;
|
|
|
|
|
|
|
|
|
|
/* If popping a dummy frame, need to restore registers. */
|
|
|
|
|
if (PC_IN_CALL_DUMMY (read_register (PC_REGNUM),
|
|
|
|
|
read_register (SP_REGNUM),
|
|
|
|
|
FRAME_FP (fi)))
|
|
|
|
|
{
|
|
|
|
|
for (i = 0; i < DUMMY_SAVE_SR128; ++i)
|
|
|
|
|
write_register
|
|
|
|
|
(SR_REGNUM (i + 128),
|
|
|
|
|
read_register (LR0_REGNUM + DUMMY_ARG / 4 + i));
|
1991-09-13 00:33:17 +00:00
|
|
|
|
for (i = 0; i < DUMMY_SAVE_GREGS; ++i)
|
1991-03-28 16:28:29 +00:00
|
|
|
|
write_register
|
1991-09-13 00:33:17 +00:00
|
|
|
|
(RETURN_REGNUM + i,
|
1991-03-28 16:28:29 +00:00
|
|
|
|
read_register (LR0_REGNUM + DUMMY_ARG / 4 + DUMMY_SAVE_SR128 + i));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Restore the memory stack pointer. */
|
|
|
|
|
write_register (MSP_REGNUM, fi->saved_msp);
|
|
|
|
|
/* Restore the register stack pointer. */
|
|
|
|
|
write_register (GR1_REGNUM, gr1);
|
|
|
|
|
/* Check whether we need to fill registers. */
|
|
|
|
|
lr1 = read_register (LR0_REGNUM + 1);
|
|
|
|
|
if (lr1 > rfb)
|
|
|
|
|
{
|
|
|
|
|
/* Fill. */
|
|
|
|
|
int num_bytes = lr1 - rfb;
|
|
|
|
|
int i;
|
|
|
|
|
long word;
|
|
|
|
|
write_register (RAB_REGNUM, read_register (RAB_REGNUM) + num_bytes);
|
|
|
|
|
write_register (RFB_REGNUM, lr1);
|
|
|
|
|
for (i = 0; i < num_bytes; i += 4)
|
|
|
|
|
{
|
|
|
|
|
/* Note: word is in host byte order. */
|
|
|
|
|
word = read_memory_integer (rfb + i, 4);
|
|
|
|
|
write_register (LR0_REGNUM + ((rfb - gr1) % 0x80) + i / 4, word);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
ret_addr = read_register (LR0_REGNUM);
|
|
|
|
|
write_register (PC_REGNUM, ret_addr);
|
|
|
|
|
write_register (NPC_REGNUM, ret_addr + 4);
|
|
|
|
|
flush_cached_frames ();
|
|
|
|
|
set_current_frame (create_new_frame (0, read_pc()));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Push an empty stack frame, to record the current PC, etc. */
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
push_dummy_frame ()
|
|
|
|
|
{
|
|
|
|
|
long w;
|
|
|
|
|
CORE_ADDR rab, gr1;
|
|
|
|
|
CORE_ADDR msp = read_register (MSP_REGNUM);
|
|
|
|
|
int i;
|
|
|
|
|
|
|
|
|
|
/* Save the PC. */
|
|
|
|
|
write_register (LR0_REGNUM, read_register (PC_REGNUM));
|
|
|
|
|
|
|
|
|
|
/* Allocate the new frame. */
|
|
|
|
|
gr1 = read_register (GR1_REGNUM) - DUMMY_FRAME_RSIZE;
|
|
|
|
|
write_register (GR1_REGNUM, gr1);
|
|
|
|
|
|
|
|
|
|
rab = read_register (RAB_REGNUM);
|
|
|
|
|
if (gr1 < rab)
|
|
|
|
|
{
|
|
|
|
|
/* We need to spill registers. */
|
|
|
|
|
int num_bytes = rab - gr1;
|
|
|
|
|
CORE_ADDR rfb = read_register (RFB_REGNUM);
|
|
|
|
|
int i;
|
|
|
|
|
long word;
|
|
|
|
|
|
|
|
|
|
write_register (RFB_REGNUM, rfb - num_bytes);
|
|
|
|
|
write_register (RAB_REGNUM, gr1);
|
|
|
|
|
for (i = 0; i < num_bytes; i += 4)
|
|
|
|
|
{
|
|
|
|
|
/* Note: word is in target byte order. */
|
|
|
|
|
read_register_gen (LR0_REGNUM + i / 4, &word, 4);
|
|
|
|
|
write_memory (rfb - num_bytes + i, &word, 4);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* There are no arguments in to the dummy frame, so we don't need
|
|
|
|
|
more than rsize plus the return address and lr1. */
|
|
|
|
|
write_register (LR0_REGNUM + 1, gr1 + DUMMY_FRAME_RSIZE + 2 * 4);
|
|
|
|
|
|
|
|
|
|
/* Set the memory frame pointer. */
|
|
|
|
|
write_register (LR0_REGNUM + DUMMY_FRAME_RSIZE / 4 - 1, msp);
|
|
|
|
|
|
|
|
|
|
/* Allocate arg_slop. */
|
|
|
|
|
write_register (MSP_REGNUM, msp - 16 * 4);
|
|
|
|
|
|
|
|
|
|
/* Save registers. */
|
|
|
|
|
for (i = 0; i < DUMMY_SAVE_SR128; ++i)
|
|
|
|
|
write_register (LR0_REGNUM + DUMMY_ARG / 4 + i,
|
|
|
|
|
read_register (SR_REGNUM (i + 128)));
|
1991-09-13 00:33:17 +00:00
|
|
|
|
for (i = 0; i < DUMMY_SAVE_GREGS; ++i)
|
1991-03-28 16:28:29 +00:00
|
|
|
|
write_register (LR0_REGNUM + DUMMY_ARG / 4 + DUMMY_SAVE_SR128 + i,
|
1991-09-13 00:33:17 +00:00
|
|
|
|
read_register (RETURN_REGNUM + i));
|
1991-03-28 16:28:29 +00:00
|
|
|
|
}
|