old-cross-binutils/sim/lm32/sim-if.c

282 lines
7.1 KiB
C
Raw Normal View History

/* Main simulator entry points specific to Lattice Mico32.
Contributed by Jon Beniston <jon@beniston.com>
Copyright (C) 2009-2015 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "sim-main.h"
#include "sim-options.h"
#include "libiberty.h"
#include "bfd.h"
#ifdef HAVE_STDLIB_H
#include <stdlib.h>
#endif
static void free_state (SIM_DESC);
static void print_lm32_misc_cpu (SIM_CPU * cpu, int verbose);
static DECLARE_OPTION_HANDLER (lm32_option_handler);
enum
{
OPTION_ENDIAN = OPTION_START,
};
/* GDB passes -E, even though it's fixed, so we have to handle it here. common code only handles it if SIM_HAVE_BIENDIAN is defined, which it isn't for lm32. */
static const OPTION lm32_options[] = {
{{"endian", required_argument, NULL, OPTION_ENDIAN},
'E', "big", "Set endianness",
lm32_option_handler},
{{NULL, no_argument, NULL, 0}, '\0', NULL, NULL, NULL}
};
/* Records simulator descriptor so utilities like lm32_dump_regs can be
called from gdb. */
SIM_DESC current_state;
/* Cover function of sim_state_free to free the cpu buffers as well. */
static void
free_state (SIM_DESC sd)
{
if (STATE_MODULES (sd) != NULL)
sim_module_uninstall (sd);
sim_cpu_free_all (sd);
sim_state_free (sd);
}
/* Find memory range used by program. */
static unsigned long
find_base (bfd *prog_bfd)
{
int found;
unsigned long base = ~(0UL);
asection *s;
found = 0;
for (s = prog_bfd->sections; s; s = s->next)
{
if ((strcmp (bfd_get_section_name (prog_bfd, s), ".boot") == 0)
|| (strcmp (bfd_get_section_name (prog_bfd, s), ".text") == 0)
|| (strcmp (bfd_get_section_name (prog_bfd, s), ".data") == 0)
|| (strcmp (bfd_get_section_name (prog_bfd, s), ".bss") == 0))
{
if (!found)
{
base = bfd_get_section_vma (prog_bfd, s);
found = 1;
}
else
base =
bfd_get_section_vma (prog_bfd,
s) < base ? bfd_get_section_vma (prog_bfd,
s) : base;
}
}
return base & ~(0xffffUL);
}
static unsigned long
find_limit (bfd *prog_bfd)
{
struct bfd_symbol **asymbols;
long symsize;
long symbol_count;
long s;
symsize = bfd_get_symtab_upper_bound (prog_bfd);
if (symsize < 0)
return 0;
asymbols = (asymbol **) xmalloc (symsize);
symbol_count = bfd_canonicalize_symtab (prog_bfd, asymbols);
if (symbol_count < 0)
return 0;
for (s = 0; s < symbol_count; s++)
{
if (!strcmp (asymbols[s]->name, "_fstack"))
return (asymbols[s]->value + 65536) & ~(0xffffUL);
}
return 0;
}
/* Handle lm32 specific options. */
static SIM_RC
lm32_option_handler (sd, cpu, opt, arg, is_command)
SIM_DESC sd;
sim_cpu *cpu;
int opt;
char *arg;
int is_command;
{
return SIM_RC_OK;
}
/* Create an instance of the simulator. */
SIM_DESC
sim_open (kind, callback, abfd, argv)
SIM_OPEN_KIND kind;
host_callback *callback;
struct bfd *abfd;
char **argv;
{
SIM_DESC sd = sim_state_alloc (kind, callback);
char c;
int i;
unsigned long base, limit;
/* The cpu data is kept in a separately allocated chunk of memory. */
if (sim_cpu_alloc_all (sd, 1, cgen_cpu_max_extra_bytes ()) != SIM_RC_OK)
{
free_state (sd);
return 0;
}
if (sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK)
{
free_state (sd);
return 0;
}
sim_add_option_table (sd, NULL, lm32_options);
/* getopt will print the error message so we just have to exit if this fails.
FIXME: Hmmm... in the case of gdb we need getopt to call
print_filtered. */
if (sim_parse_args (sd, argv) != SIM_RC_OK)
{
free_state (sd);
return 0;
}
#if 0
/* Allocate a handler for I/O devices
if no memory for that range has been allocated by the user.
All are allocated in one chunk to keep things from being
unnecessarily complicated. */
if (sim_core_read_buffer (sd, NULL, read_map, &c, LM32_DEVICE_ADDR, 1) == 0)
sim_core_attach (sd, NULL, 0 /*level */ ,
access_read_write, 0 /*space ??? */ ,
LM32_DEVICE_ADDR, LM32_DEVICE_LEN /*nr_bytes */ ,
0 /*modulo */ ,
&lm32_devices, NULL /*buffer */ );
#endif
/* check for/establish the reference program image. */
if (sim_analyze_program (sd,
(STATE_PROG_ARGV (sd) != NULL
? *STATE_PROG_ARGV (sd)
: NULL), abfd) != SIM_RC_OK)
{
free_state (sd);
return 0;
}
/* Check to see if memory exists at programs start address. */
if (sim_core_read_buffer (sd, NULL, read_map, &c, STATE_START_ADDR (sd), 1)
== 0)
{
if (STATE_PROG_BFD (sd) != NULL)
{
/* It doesn't, so we should try to allocate enough memory to hold program. */
base = find_base (STATE_PROG_BFD (sd));
limit = find_limit (STATE_PROG_BFD (sd));
if (limit == 0)
{
sim_io_eprintf (sd,
"Failed to find symbol _fstack in program. You must specify memory regions with --memory-region.\n");
free_state (sd);
return 0;
}
/*sim_io_printf (sd, "Allocating memory at 0x%x size 0x%x\n", base, limit); */
sim_do_commandf (sd, "memory region 0x%x,0x%x", base, limit);
}
}
/* Establish any remaining configuration options. */
if (sim_config (sd) != SIM_RC_OK)
{
free_state (sd);
return 0;
}
if (sim_post_argv_init (sd) != SIM_RC_OK)
{
free_state (sd);
return 0;
}
/* Open a copy of the cpu descriptor table. */
{
CGEN_CPU_DESC cd =
lm32_cgen_cpu_open_1 (STATE_ARCHITECTURE (sd)->printable_name,
CGEN_ENDIAN_BIG);
for (i = 0; i < MAX_NR_PROCESSORS; ++i)
{
SIM_CPU *cpu = STATE_CPU (sd, i);
CPU_CPU_DESC (cpu) = cd;
CPU_DISASSEMBLER (cpu) = sim_cgen_disassemble_insn;
}
lm32_cgen_init_dis (cd);
}
/* Initialize various cgen things not done by common framework.
Must be done after lm32_cgen_cpu_open. */
cgen_init (sd);
/* Store in a global so things like lm32_dump_regs can be invoked
from the gdb command line. */
current_state = sd;
return sd;
}
void
sim_close (sd, quitting)
SIM_DESC sd;
int quitting;
{
lm32_cgen_cpu_close (CPU_CPU_DESC (STATE_CPU (sd, 0)));
sim_module_uninstall (sd);
}
SIM_RC
sim_create_inferior (sd, abfd, argv, envp)
SIM_DESC sd;
struct bfd *abfd;
char **argv;
char **envp;
{
SIM_CPU *current_cpu = STATE_CPU (sd, 0);
SIM_ADDR addr;
if (abfd != NULL)
addr = bfd_get_start_address (abfd);
else
addr = 0;
sim_pc_set (current_cpu, addr);
#if 0
STATE_ARGV (sd) = sim_copy_argv (argv);
STATE_ENVP (sd) = sim_copy_argv (envp);
#endif
return SIM_RC_OK;
}