old-cross-binutils/sim/bfin/dv-bfin_mmu.c

577 lines
16 KiB
C
Raw Normal View History

/* Blackfin Memory Management Unit (MMU) model.
Copyright (C) 2010-2012 Free Software Foundation, Inc.
Contributed by Analog Devices, Inc.
This file is part of simulators.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "config.h"
#include "sim-main.h"
#include "sim-options.h"
#include "devices.h"
#include "dv-bfin_mmu.h"
#include "dv-bfin_cec.h"
/* XXX: Should this really be two blocks of registers ? PRM describes
these as two Content Addressable Memory (CAM) blocks. */
struct bfin_mmu
{
bu32 base;
/* Order after here is important -- matches hardware MMR layout. */
bu32 sram_base_address;
bu32 dmem_control, dcplb_fault_status, dcplb_fault_addr;
char _dpad0[0x100 - 0x0 - (4 * 4)];
bu32 dcplb_addr[16];
char _dpad1[0x200 - 0x100 - (4 * 16)];
bu32 dcplb_data[16];
char _dpad2[0x300 - 0x200 - (4 * 16)];
bu32 dtest_command;
char _dpad3[0x400 - 0x300 - (4 * 1)];
bu32 dtest_data[2];
char _dpad4[0x1000 - 0x400 - (4 * 2)];
bu32 idk; /* Filler MMR; hardware simply ignores. */
bu32 imem_control, icplb_fault_status, icplb_fault_addr;
char _ipad0[0x100 - 0x0 - (4 * 4)];
bu32 icplb_addr[16];
char _ipad1[0x200 - 0x100 - (4 * 16)];
bu32 icplb_data[16];
char _ipad2[0x300 - 0x200 - (4 * 16)];
bu32 itest_command;
char _ipad3[0x400 - 0x300 - (4 * 1)];
bu32 itest_data[2];
};
#define mmr_base() offsetof(struct bfin_mmu, sram_base_address)
#define mmr_offset(mmr) (offsetof(struct bfin_mmu, mmr) - mmr_base())
#define mmr_idx(mmr) (mmr_offset (mmr) / 4)
2011-03-15 20:44:11 +00:00
static const char * const mmr_names[BFIN_COREMMR_MMU_SIZE / 4] =
{
"SRAM_BASE_ADDRESS", "DMEM_CONTROL", "DCPLB_FAULT_STATUS", "DCPLB_FAULT_ADDR",
[mmr_idx (dcplb_addr[0])] = "DCPLB_ADDR0",
"DCPLB_ADDR1", "DCPLB_ADDR2", "DCPLB_ADDR3", "DCPLB_ADDR4", "DCPLB_ADDR5",
"DCPLB_ADDR6", "DCPLB_ADDR7", "DCPLB_ADDR8", "DCPLB_ADDR9", "DCPLB_ADDR10",
"DCPLB_ADDR11", "DCPLB_ADDR12", "DCPLB_ADDR13", "DCPLB_ADDR14", "DCPLB_ADDR15",
[mmr_idx (dcplb_data[0])] = "DCPLB_DATA0",
"DCPLB_DATA1", "DCPLB_DATA2", "DCPLB_DATA3", "DCPLB_DATA4", "DCPLB_DATA5",
"DCPLB_DATA6", "DCPLB_DATA7", "DCPLB_DATA8", "DCPLB_DATA9", "DCPLB_DATA10",
"DCPLB_DATA11", "DCPLB_DATA12", "DCPLB_DATA13", "DCPLB_DATA14", "DCPLB_DATA15",
[mmr_idx (dtest_command)] = "DTEST_COMMAND",
[mmr_idx (dtest_data[0])] = "DTEST_DATA0", "DTEST_DATA1",
[mmr_idx (imem_control)] = "IMEM_CONTROL", "ICPLB_FAULT_STATUS", "ICPLB_FAULT_ADDR",
[mmr_idx (icplb_addr[0])] = "ICPLB_ADDR0",
"ICPLB_ADDR1", "ICPLB_ADDR2", "ICPLB_ADDR3", "ICPLB_ADDR4", "ICPLB_ADDR5",
"ICPLB_ADDR6", "ICPLB_ADDR7", "ICPLB_ADDR8", "ICPLB_ADDR9", "ICPLB_ADDR10",
"ICPLB_ADDR11", "ICPLB_ADDR12", "ICPLB_ADDR13", "ICPLB_ADDR14", "ICPLB_ADDR15",
[mmr_idx (icplb_data[0])] = "ICPLB_DATA0",
"ICPLB_DATA1", "ICPLB_DATA2", "ICPLB_DATA3", "ICPLB_DATA4", "ICPLB_DATA5",
"ICPLB_DATA6", "ICPLB_DATA7", "ICPLB_DATA8", "ICPLB_DATA9", "ICPLB_DATA10",
"ICPLB_DATA11", "ICPLB_DATA12", "ICPLB_DATA13", "ICPLB_DATA14", "ICPLB_DATA15",
[mmr_idx (itest_command)] = "ITEST_COMMAND",
[mmr_idx (itest_data[0])] = "ITEST_DATA0", "ITEST_DATA1",
};
#define mmr_name(off) (mmr_names[(off) / 4] ? : "<INV>")
static bool bfin_mmu_skip_cplbs = false;
static unsigned
bfin_mmu_io_write_buffer (struct hw *me, const void *source,
int space, address_word addr, unsigned nr_bytes)
{
struct bfin_mmu *mmu = hw_data (me);
bu32 mmr_off;
bu32 value;
bu32 *valuep;
value = dv_load_4 (source);
mmr_off = addr - mmu->base;
valuep = (void *)((unsigned long)mmu + mmr_base() + mmr_off);
HW_TRACE_WRITE ();
switch (mmr_off)
{
case mmr_offset(dmem_control):
case mmr_offset(imem_control):
/* XXX: IMC/DMC bit should add/remove L1 cache regions ... */
case mmr_offset(dtest_data[0]) ... mmr_offset(dtest_data[1]):
case mmr_offset(itest_data[0]) ... mmr_offset(itest_data[1]):
case mmr_offset(dcplb_addr[0]) ... mmr_offset(dcplb_addr[15]):
case mmr_offset(dcplb_data[0]) ... mmr_offset(dcplb_data[15]):
case mmr_offset(icplb_addr[0]) ... mmr_offset(icplb_addr[15]):
case mmr_offset(icplb_data[0]) ... mmr_offset(icplb_data[15]):
*valuep = value;
break;
case mmr_offset(sram_base_address):
case mmr_offset(dcplb_fault_status):
case mmr_offset(dcplb_fault_addr):
case mmr_offset(idk):
case mmr_offset(icplb_fault_status):
case mmr_offset(icplb_fault_addr):
/* Discard writes to these. */
break;
case mmr_offset(itest_command):
/* XXX: Not supported atm. */
if (value)
hw_abort (me, "ITEST_COMMAND unimplemented");
break;
case mmr_offset(dtest_command):
/* Access L1 memory indirectly. */
*valuep = value;
if (value)
{
bu32 addr = mmu->sram_base_address |
((value >> (26 - 11)) & (1 << 11)) | /* addr bit 11 (Way0/Way1) */
((value >> (24 - 21)) & (1 << 21)) | /* addr bit 21 (Data/Inst) */
((value >> (23 - 15)) & (1 << 15)) | /* addr bit 15 (Data Bank) */
((value >> (16 - 12)) & (3 << 12)) | /* addr bits 13:12 (Subbank) */
(value & 0x47F8); /* addr bits 14 & 10:3 */
if (!(value & TEST_DATA_ARRAY))
hw_abort (me, "DTEST_COMMAND tag array unimplemented");
if (value & 0xfa7cb801)
hw_abort (me, "DTEST_COMMAND bits undefined");
if (value & TEST_WRITE)
sim_write (hw_system (me), addr, (void *)mmu->dtest_data, 8);
else
sim_read (hw_system (me), addr, (void *)mmu->dtest_data, 8);
}
break;
default:
dv_bfin_mmr_invalid (me, addr, nr_bytes, true);
break;
}
return nr_bytes;
}
static unsigned
bfin_mmu_io_read_buffer (struct hw *me, void *dest,
int space, address_word addr, unsigned nr_bytes)
{
struct bfin_mmu *mmu = hw_data (me);
bu32 mmr_off;
bu32 *valuep;
mmr_off = addr - mmu->base;
valuep = (void *)((unsigned long)mmu + mmr_base() + mmr_off);
HW_TRACE_READ ();
switch (mmr_off)
{
case mmr_offset(dmem_control):
case mmr_offset(imem_control):
case mmr_offset(dtest_command):
case mmr_offset(dtest_data[0]) ... mmr_offset(dtest_data[2]):
case mmr_offset(itest_command):
case mmr_offset(itest_data[0]) ... mmr_offset(itest_data[2]):
/* XXX: should do something here. */
case mmr_offset(dcplb_addr[0]) ... mmr_offset(dcplb_addr[15]):
case mmr_offset(dcplb_data[0]) ... mmr_offset(dcplb_data[15]):
case mmr_offset(icplb_addr[0]) ... mmr_offset(icplb_addr[15]):
case mmr_offset(icplb_data[0]) ... mmr_offset(icplb_data[15]):
case mmr_offset(sram_base_address):
case mmr_offset(dcplb_fault_status):
case mmr_offset(dcplb_fault_addr):
case mmr_offset(idk):
case mmr_offset(icplb_fault_status):
case mmr_offset(icplb_fault_addr):
dv_store_4 (dest, *valuep);
break;
default:
while (1) /* Core MMRs -> exception -> doesn't return. */
dv_bfin_mmr_invalid (me, addr, nr_bytes, false);
break;
}
return nr_bytes;
}
static void
attach_bfin_mmu_regs (struct hw *me, struct bfin_mmu *mmu)
{
address_word attach_address;
int attach_space;
unsigned attach_size;
reg_property_spec reg;
if (hw_find_property (me, "reg") == NULL)
hw_abort (me, "Missing \"reg\" property");
if (!hw_find_reg_array_property (me, "reg", 0, &reg))
hw_abort (me, "\"reg\" property must contain three addr/size entries");
hw_unit_address_to_attach_address (hw_parent (me),
&reg.address,
&attach_space, &attach_address, me);
hw_unit_size_to_attach_size (hw_parent (me), &reg.size, &attach_size, me);
if (attach_size != BFIN_COREMMR_MMU_SIZE)
hw_abort (me, "\"reg\" size must be %#x", BFIN_COREMMR_MMU_SIZE);
hw_attach_address (hw_parent (me),
0, attach_space, attach_address, attach_size, me);
mmu->base = attach_address;
}
static void
bfin_mmu_finish (struct hw *me)
{
struct bfin_mmu *mmu;
mmu = HW_ZALLOC (me, struct bfin_mmu);
set_hw_data (me, mmu);
set_hw_io_read_buffer (me, bfin_mmu_io_read_buffer);
set_hw_io_write_buffer (me, bfin_mmu_io_write_buffer);
attach_bfin_mmu_regs (me, mmu);
/* Initialize the MMU. */
mmu->sram_base_address = 0xff800000 - 0;
/*(4 * 1024 * 1024 * CPU_INDEX (hw_system_cpu (me)));*/
mmu->dmem_control = 0x00000001;
mmu->imem_control = 0x00000001;
}
2011-03-15 20:55:11 +00:00
const struct hw_descriptor dv_bfin_mmu_descriptor[] =
{
{"bfin_mmu", bfin_mmu_finish,},
{NULL, NULL},
};
/* Device option parsing. */
static DECLARE_OPTION_HANDLER (bfin_mmu_option_handler);
enum {
OPTION_MMU_SKIP_TABLES = OPTION_START,
};
const OPTION bfin_mmu_options[] =
{
{ {"mmu-skip-cplbs", no_argument, NULL, OPTION_MMU_SKIP_TABLES },
'\0', NULL, "Skip parsing of CPLB tables (big speed increase)",
bfin_mmu_option_handler, NULL },
{ {NULL, no_argument, NULL, 0}, '\0', NULL, NULL, NULL, NULL }
};
static SIM_RC
bfin_mmu_option_handler (SIM_DESC sd, sim_cpu *current_cpu, int opt,
char *arg, int is_command)
{
switch (opt)
{
case OPTION_MMU_SKIP_TABLES:
bfin_mmu_skip_cplbs = true;
return SIM_RC_OK;
default:
sim_io_eprintf (sd, "Unknown Blackfin MMU option %d\n", opt);
return SIM_RC_FAIL;
}
}
#define MMU_STATE(cpu) DV_STATE_CACHED (cpu, mmu)
static void
_mmu_log_ifault (SIM_CPU *cpu, struct bfin_mmu *mmu, bu32 pc, bool supv)
{
mmu->icplb_fault_addr = pc;
mmu->icplb_fault_status = supv << 17;
}
void
mmu_log_ifault (SIM_CPU *cpu)
{
_mmu_log_ifault (cpu, MMU_STATE (cpu), PCREG, cec_get_ivg (cpu) >= 0);
}
static void
_mmu_log_fault (SIM_CPU *cpu, struct bfin_mmu *mmu, bu32 addr, bool write,
bool inst, bool miss, bool supv, bool dag1, bu32 faults)
{
bu32 *fault_status, *fault_addr;
/* No logging in non-OS mode. */
if (!mmu)
return;
fault_status = inst ? &mmu->icplb_fault_status : &mmu->dcplb_fault_status;
fault_addr = inst ? &mmu->icplb_fault_addr : &mmu->dcplb_fault_addr;
/* ICPLB regs always get updated. */
if (!inst)
_mmu_log_ifault (cpu, mmu, PCREG, supv);
*fault_addr = addr;
*fault_status =
(miss << 19) |
(dag1 << 18) |
(supv << 17) |
(write << 16) |
faults;
}
static void
_mmu_process_fault (SIM_CPU *cpu, struct bfin_mmu *mmu, bu32 addr, bool write,
bool inst, bool unaligned, bool miss, bool supv, bool dag1)
{
int excp;
/* See order in mmu_check_addr() */
if (unaligned)
excp = inst ? VEC_MISALI_I : VEC_MISALI_D;
else if (addr >= BFIN_SYSTEM_MMR_BASE)
excp = VEC_ILL_RES;
else if (!mmu)
excp = inst ? VEC_CPLB_I_M : VEC_CPLB_M;
else
{
/* Misses are hardware errors. */
cec_hwerr (cpu, HWERR_EXTERN_ADDR);
return;
}
_mmu_log_fault (cpu, mmu, addr, write, inst, miss, supv, dag1, 0);
cec_exception (cpu, excp);
}
void
mmu_process_fault (SIM_CPU *cpu, bu32 addr, bool write, bool inst,
bool unaligned, bool miss)
{
SIM_DESC sd = CPU_STATE (cpu);
struct bfin_mmu *mmu;
if (STATE_ENVIRONMENT (sd) != OPERATING_ENVIRONMENT)
mmu = NULL;
else
mmu = MMU_STATE (cpu);
_mmu_process_fault (cpu, mmu, addr, write, inst, unaligned, miss,
cec_is_supervisor_mode (cpu),
BFIN_CPU_STATE.multi_pc == PCREG + 6);
}
/* Return values:
-2: no known problems
-1: valid
0: miss
1: protection violation
2: multiple hits
3: unaligned
4: miss; hwerr */
static int
mmu_check_implicit_addr (SIM_CPU *cpu, bu32 addr, bool inst, int size,
bool supv, bool dag1)
{
bool l1 = ((addr & 0xFF000000) == 0xFF000000);
bu32 amask = (addr & 0xFFF00000);
if (addr & (size - 1))
return 3;
/* MMRs may never be executable or accessed from usermode. */
if (addr >= BFIN_SYSTEM_MMR_BASE)
{
if (inst)
return 0;
else if (!supv || dag1)
return 1;
else
return -1;
}
else if (inst)
{
/* Some regions are not executable. */
/* XXX: Should this be in the model data ? Core B 561 ? */
if (l1)
return (amask == 0xFFA00000) ? -1 : 1;
}
else
{
/* Some regions are not readable. */
/* XXX: Should this be in the model data ? Core B 561 ? */
if (l1)
return (amask != 0xFFA00000) ? -1 : 4;
}
return -2;
}
/* Exception order per the PRM (first has highest):
Inst Multiple CPLB Hits
Inst Misaligned Access
Inst Protection Violation
Inst CPLB Miss
Only the alignment matters in non-OS mode though. */
static int
_mmu_check_addr (SIM_CPU *cpu, bu32 addr, bool write, bool inst, int size)
{
SIM_DESC sd = CPU_STATE (cpu);
struct bfin_mmu *mmu;
bu32 *fault_status, *fault_addr, *mem_control, *cplb_addr, *cplb_data;
bu32 faults;
bool supv, do_excp, dag1;
int i, hits;
supv = cec_is_supervisor_mode (cpu);
dag1 = (BFIN_CPU_STATE.multi_pc == PCREG + 6);
if (STATE_ENVIRONMENT (sd) != OPERATING_ENVIRONMENT || bfin_mmu_skip_cplbs)
{
int ret = mmu_check_implicit_addr (cpu, addr, inst, size, supv, dag1);
/* Valid hits and misses are OK in non-OS envs. */
if (ret < 0)
return 0;
_mmu_process_fault (cpu, NULL, addr, write, inst, (ret == 3), false, supv, dag1);
}
mmu = MMU_STATE (cpu);
fault_status = inst ? &mmu->icplb_fault_status : &mmu->dcplb_fault_status;
fault_addr = inst ? &mmu->icplb_fault_addr : &mmu->dcplb_fault_addr;
mem_control = inst ? &mmu->imem_control : &mmu->dmem_control;
cplb_addr = inst ? &mmu->icplb_addr[0] : &mmu->dcplb_addr[0];
cplb_data = inst ? &mmu->icplb_data[0] : &mmu->dcplb_data[0];
faults = 0;
hits = 0;
do_excp = false;
/* CPLBs disabled -> little to do. */
if (!(*mem_control & ENCPLB))
{
hits = 1;
goto implicit_check;
}
/* Check all the CPLBs first. */
for (i = 0; i < 16; ++i)
{
const bu32 pages[4] = { 0x400, 0x1000, 0x100000, 0x400000 };
bu32 addr_lo, addr_hi;
/* Skip invalid entries. */
if (!(cplb_data[i] & CPLB_VALID))
continue;
/* See if this entry covers this address. */
addr_lo = cplb_addr[i];
addr_hi = cplb_addr[i] + pages[(cplb_data[i] & PAGE_SIZE) >> 16];
if (addr < addr_lo || addr >= addr_hi)
continue;
++hits;
faults |= (1 << i);
if (write)
{
if (!supv && !(cplb_data[i] & CPLB_USER_WR))
do_excp = true;
if (supv && !(cplb_data[i] & CPLB_SUPV_WR))
do_excp = true;
if ((cplb_data[i] & (CPLB_WT | CPLB_L1_CHBL | CPLB_DIRTY)) == CPLB_L1_CHBL)
do_excp = true;
}
else
{
if (!supv && !(cplb_data[i] & CPLB_USER_RD))
do_excp = true;
}
}
/* Handle default/implicit CPLBs. */
if (!do_excp && hits < 2)
{
int ihits;
implicit_check:
ihits = mmu_check_implicit_addr (cpu, addr, inst, size, supv, dag1);
switch (ihits)
{
/* No faults and one match -> good to go. */
case -1: return 0;
case -2:
if (hits == 1)
return 0;
break;
case 4:
cec_hwerr (cpu, HWERR_EXTERN_ADDR);
return 0;
default:
hits = ihits;
}
}
else
/* Normalize hit count so hits==2 is always multiple hit exception. */
hits = MIN (2, hits);
_mmu_log_fault (cpu, mmu, addr, write, inst, hits == 0, supv, dag1, faults);
if (inst)
{
int iexcps[] = { VEC_CPLB_I_M, VEC_CPLB_I_VL, VEC_CPLB_I_MHIT, VEC_MISALI_I };
return iexcps[hits];
}
else
{
int dexcps[] = { VEC_CPLB_M, VEC_CPLB_VL, VEC_CPLB_MHIT, VEC_MISALI_D };
return dexcps[hits];
}
}
void
mmu_check_addr (SIM_CPU *cpu, bu32 addr, bool write, bool inst, int size)
{
int excp = _mmu_check_addr (cpu, addr, write, inst, size);
if (excp)
cec_exception (cpu, excp);
}
void
mmu_check_cache_addr (SIM_CPU *cpu, bu32 addr, bool write, bool inst)
{
bu32 cacheaddr;
int excp;
cacheaddr = addr & ~(BFIN_L1_CACHE_BYTES - 1);
excp = _mmu_check_addr (cpu, cacheaddr, write, inst, BFIN_L1_CACHE_BYTES);
if (excp == 0)
return;
/* Most exceptions are ignored with cache funcs. */
/* XXX: Not sure if we should be ignoring CPLB misses. */
if (inst)
{
if (excp == VEC_CPLB_I_VL)
return;
}
else
{
if (excp == VEC_CPLB_VL)
return;
}
cec_exception (cpu, excp);
}