Add h/w watchpoint support to x86-linux, win32-i386.
* Makefile.in (SFILES): Add i386-low.c
(i386_low_h): Define.
(i386-low.o): Add dependencies.
(linux-x86-low.o): Add i386-low.h dependency.
(win32-i386-low.o): Ditto.
* i386-low.c: New file.
* i386-low.h: New file.
* configure.srv (i[34567]86-*-cygwin*): Add i386-low.o to srv_tgtobj.
(i[34567]86-*-linux*, i[34567]86-*-mingw*, x86_64-*-linux*): Ditto.
* linux-low.c (linux_add_process): Initialize arch_private.
(linux_remove_process): Free arch_private.
(add_lwp): Initialize arch_private.
(delete_lwp): Free arch_private.
(linux_resume_one_lwp): Call the_low_target.prepare_to_resume if
provided.
* linux-low.h (process_info_private): New member arch_private.
(lwp_info): New member arch_private.
(linux_target_ops): New members new_process, new_thread,
prepare_to_resume.
(ptid_of): New macro.
* linux-x86-low.c: Include stddef.h, i386-low.h.
(arch_process_info): New struct.
(arch_lwp_info): New struct.
(x86_linux_dr_get, x86_linux_dr_set): New functions.
(i386_dr_low_set_addr, i386_dr_low_set_control): New functions.
(i386_dr_low_get_status): New function.
(x86_insert_point, x86_remove_point): New functions.
(x86_stopped_by_watchpoint): New function.
(x86_stopped_data_address): New function.
(x86_linux_new_process, x86_linux_new_thread): New functions.
(x86_linux_prepare_to_resume): New function.
(the_low_target): Add entries for insert_point, remove_point,
stopped_by_watchpoint, stopped_data_address, new_process, new_thread,
prepare_to_resume.
* server.c (debug_hw_points): New global.
(monitor_show_help): Document set debug-hw-points.
(handle_query): Process "set debug-hw-points".
* server.h (debug_hw_points): Declare.
(paddress): Declare.
* utils.c (NUMCELLS, CELLSIZE): New macros.
(get_sell, xsnprintf, paddress): New functions.
* win32-arm-low.c (the_low_target): Add entries for insert_point,
remove_point, stopped_by_watchpoint, stopped_data_address.
* win32-i386-low.c: Include i386-low.h.
(debug_reg_state): Replaces dr.
(i386_dr_low_set_addr, i386_dr_low_set_control): New functions.
(i386_dr_low_get_status): New function.
(i386_insert_point, i386_remove_point): New functions.
(i386_stopped_by_watchpoint): New function.
(i386_stopped_data_address): New function.
(i386_initial_stuff): Update.
(get_thread_context,set_thread_context,i386_thread_added): Update.
(the_low_target): Add entries for insert_point,
remove_point, stopped_by_watchpoint, stopped_data_address.
* win32-low.c (win32_insert_watchpoint): New function.
(win32_remove_watchpoint): New function.
(win32_stopped_by_watchpoint): New function.
(win32_stopped_data_address): New function.
(win32_target_ops): Add entries for insert_watchpoint,
remove_watchpoint, stopped_by_watchpoint, stopped_data_address.
* win32-low.h (win32_target_ops): New members insert_point,
remove_point, stopped_by_watchpoint, stopped_data_address.
2009-06-30 21:31:32 +00:00
|
|
|
|
/* Debug register code for the i386.
|
|
|
|
|
|
2010-01-01 07:32:07 +00:00
|
|
|
|
Copyright (C) 2009, 2010 Free Software Foundation, Inc.
|
Add h/w watchpoint support to x86-linux, win32-i386.
* Makefile.in (SFILES): Add i386-low.c
(i386_low_h): Define.
(i386-low.o): Add dependencies.
(linux-x86-low.o): Add i386-low.h dependency.
(win32-i386-low.o): Ditto.
* i386-low.c: New file.
* i386-low.h: New file.
* configure.srv (i[34567]86-*-cygwin*): Add i386-low.o to srv_tgtobj.
(i[34567]86-*-linux*, i[34567]86-*-mingw*, x86_64-*-linux*): Ditto.
* linux-low.c (linux_add_process): Initialize arch_private.
(linux_remove_process): Free arch_private.
(add_lwp): Initialize arch_private.
(delete_lwp): Free arch_private.
(linux_resume_one_lwp): Call the_low_target.prepare_to_resume if
provided.
* linux-low.h (process_info_private): New member arch_private.
(lwp_info): New member arch_private.
(linux_target_ops): New members new_process, new_thread,
prepare_to_resume.
(ptid_of): New macro.
* linux-x86-low.c: Include stddef.h, i386-low.h.
(arch_process_info): New struct.
(arch_lwp_info): New struct.
(x86_linux_dr_get, x86_linux_dr_set): New functions.
(i386_dr_low_set_addr, i386_dr_low_set_control): New functions.
(i386_dr_low_get_status): New function.
(x86_insert_point, x86_remove_point): New functions.
(x86_stopped_by_watchpoint): New function.
(x86_stopped_data_address): New function.
(x86_linux_new_process, x86_linux_new_thread): New functions.
(x86_linux_prepare_to_resume): New function.
(the_low_target): Add entries for insert_point, remove_point,
stopped_by_watchpoint, stopped_data_address, new_process, new_thread,
prepare_to_resume.
* server.c (debug_hw_points): New global.
(monitor_show_help): Document set debug-hw-points.
(handle_query): Process "set debug-hw-points".
* server.h (debug_hw_points): Declare.
(paddress): Declare.
* utils.c (NUMCELLS, CELLSIZE): New macros.
(get_sell, xsnprintf, paddress): New functions.
* win32-arm-low.c (the_low_target): Add entries for insert_point,
remove_point, stopped_by_watchpoint, stopped_data_address.
* win32-i386-low.c: Include i386-low.h.
(debug_reg_state): Replaces dr.
(i386_dr_low_set_addr, i386_dr_low_set_control): New functions.
(i386_dr_low_get_status): New function.
(i386_insert_point, i386_remove_point): New functions.
(i386_stopped_by_watchpoint): New function.
(i386_stopped_data_address): New function.
(i386_initial_stuff): Update.
(get_thread_context,set_thread_context,i386_thread_added): Update.
(the_low_target): Add entries for insert_point,
remove_point, stopped_by_watchpoint, stopped_data_address.
* win32-low.c (win32_insert_watchpoint): New function.
(win32_remove_watchpoint): New function.
(win32_stopped_by_watchpoint): New function.
(win32_stopped_data_address): New function.
(win32_target_ops): Add entries for insert_watchpoint,
remove_watchpoint, stopped_by_watchpoint, stopped_data_address.
* win32-low.h (win32_target_ops): New members insert_point,
remove_point, stopped_by_watchpoint, stopped_data_address.
2009-06-30 21:31:32 +00:00
|
|
|
|
|
|
|
|
|
This file is part of GDB.
|
|
|
|
|
|
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
|
|
|
(at your option) any later version.
|
|
|
|
|
|
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
|
|
|
|
|
|
#include "server.h"
|
|
|
|
|
#include "target.h"
|
|
|
|
|
#include "i386-low.h"
|
|
|
|
|
|
|
|
|
|
/* Support for 8-byte wide hw watchpoints. */
|
|
|
|
|
#ifndef TARGET_HAS_DR_LEN_8
|
|
|
|
|
/* NOTE: sizeof (long) == 4 on win64. */
|
|
|
|
|
#define TARGET_HAS_DR_LEN_8 (sizeof (void *) == 8)
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
enum target_hw_bp_type
|
|
|
|
|
{
|
|
|
|
|
hw_write = 0, /* Common HW watchpoint */
|
|
|
|
|
hw_read = 1, /* Read HW watchpoint */
|
|
|
|
|
hw_access = 2, /* Access HW watchpoint */
|
|
|
|
|
hw_execute = 3 /* Execute HW breakpoint */
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/* DR7 Debug Control register fields. */
|
|
|
|
|
|
|
|
|
|
/* How many bits to skip in DR7 to get to R/W and LEN fields. */
|
|
|
|
|
#define DR_CONTROL_SHIFT 16
|
|
|
|
|
/* How many bits in DR7 per R/W and LEN field for each watchpoint. */
|
|
|
|
|
#define DR_CONTROL_SIZE 4
|
|
|
|
|
|
|
|
|
|
/* Watchpoint/breakpoint read/write fields in DR7. */
|
|
|
|
|
#define DR_RW_EXECUTE (0x0) /* Break on instruction execution. */
|
|
|
|
|
#define DR_RW_WRITE (0x1) /* Break on data writes. */
|
|
|
|
|
#define DR_RW_READ (0x3) /* Break on data reads or writes. */
|
|
|
|
|
|
|
|
|
|
/* This is here for completeness. No platform supports this
|
|
|
|
|
functionality yet (as of March 2001). Note that the DE flag in the
|
|
|
|
|
CR4 register needs to be set to support this. */
|
|
|
|
|
#ifndef DR_RW_IORW
|
|
|
|
|
#define DR_RW_IORW (0x2) /* Break on I/O reads or writes. */
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* Watchpoint/breakpoint length fields in DR7. The 2-bit left shift
|
|
|
|
|
is so we could OR this with the read/write field defined above. */
|
|
|
|
|
#define DR_LEN_1 (0x0 << 2) /* 1-byte region watch or breakpoint. */
|
|
|
|
|
#define DR_LEN_2 (0x1 << 2) /* 2-byte region watch. */
|
|
|
|
|
#define DR_LEN_4 (0x3 << 2) /* 4-byte region watch. */
|
|
|
|
|
#define DR_LEN_8 (0x2 << 2) /* 8-byte region watch (AMD64). */
|
|
|
|
|
|
|
|
|
|
/* Local and Global Enable flags in DR7.
|
|
|
|
|
|
|
|
|
|
When the Local Enable flag is set, the breakpoint/watchpoint is
|
|
|
|
|
enabled only for the current task; the processor automatically
|
|
|
|
|
clears this flag on every task switch. When the Global Enable flag
|
|
|
|
|
is set, the breakpoint/watchpoint is enabled for all tasks; the
|
|
|
|
|
processor never clears this flag.
|
|
|
|
|
|
|
|
|
|
Currently, all watchpoint are locally enabled. If you need to
|
|
|
|
|
enable them globally, read the comment which pertains to this in
|
|
|
|
|
i386_insert_aligned_watchpoint below. */
|
|
|
|
|
#define DR_LOCAL_ENABLE_SHIFT 0 /* Extra shift to the local enable bit. */
|
|
|
|
|
#define DR_GLOBAL_ENABLE_SHIFT 1 /* Extra shift to the global enable bit. */
|
|
|
|
|
#define DR_ENABLE_SIZE 2 /* Two enable bits per debug register. */
|
|
|
|
|
|
|
|
|
|
/* Local and global exact breakpoint enable flags (a.k.a. slowdown
|
|
|
|
|
flags). These are only required on i386, to allow detection of the
|
|
|
|
|
exact instruction which caused a watchpoint to break; i486 and
|
|
|
|
|
later processors do that automatically. We set these flags for
|
|
|
|
|
backwards compatibility. */
|
|
|
|
|
#define DR_LOCAL_SLOWDOWN (0x100)
|
|
|
|
|
#define DR_GLOBAL_SLOWDOWN (0x200)
|
|
|
|
|
|
|
|
|
|
/* Fields reserved by Intel. This includes the GD (General Detect
|
|
|
|
|
Enable) flag, which causes a debug exception to be generated when a
|
|
|
|
|
MOV instruction accesses one of the debug registers.
|
|
|
|
|
|
|
|
|
|
FIXME: My Intel manual says we should use 0xF800, not 0xFC00. */
|
|
|
|
|
#define DR_CONTROL_RESERVED (0xFC00)
|
|
|
|
|
|
|
|
|
|
/* Auxiliary helper macros. */
|
|
|
|
|
|
|
|
|
|
/* A value that masks all fields in DR7 that are reserved by Intel. */
|
|
|
|
|
#define I386_DR_CONTROL_MASK (~DR_CONTROL_RESERVED)
|
|
|
|
|
|
|
|
|
|
/* The I'th debug register is vacant if its Local and Global Enable
|
|
|
|
|
bits are reset in the Debug Control register. */
|
|
|
|
|
#define I386_DR_VACANT(state, i) \
|
|
|
|
|
(((state)->dr_control_mirror & (3 << (DR_ENABLE_SIZE * (i)))) == 0)
|
|
|
|
|
|
|
|
|
|
/* Locally enable the break/watchpoint in the I'th debug register. */
|
|
|
|
|
#define I386_DR_LOCAL_ENABLE(state, i) \
|
|
|
|
|
do { \
|
|
|
|
|
(state)->dr_control_mirror |= \
|
|
|
|
|
(1 << (DR_LOCAL_ENABLE_SHIFT + DR_ENABLE_SIZE * (i))); \
|
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
|
|
/* Globally enable the break/watchpoint in the I'th debug register. */
|
|
|
|
|
#define I386_DR_GLOBAL_ENABLE(state, i) \
|
|
|
|
|
do { \
|
|
|
|
|
(state)->dr_control_mirror |= \
|
|
|
|
|
(1 << (DR_GLOBAL_ENABLE_SHIFT + DR_ENABLE_SIZE * (i))); \
|
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
|
|
/* Disable the break/watchpoint in the I'th debug register. */
|
|
|
|
|
#define I386_DR_DISABLE(state, i) \
|
|
|
|
|
do { \
|
|
|
|
|
(state)->dr_control_mirror &= \
|
|
|
|
|
~(3 << (DR_ENABLE_SIZE * (i))); \
|
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
|
|
/* Set in DR7 the RW and LEN fields for the I'th debug register. */
|
|
|
|
|
#define I386_DR_SET_RW_LEN(state, i,rwlen) \
|
|
|
|
|
do { \
|
|
|
|
|
(state)->dr_control_mirror &= \
|
|
|
|
|
~(0x0f << (DR_CONTROL_SHIFT + DR_CONTROL_SIZE * (i))); \
|
|
|
|
|
(state)->dr_control_mirror |= \
|
|
|
|
|
((rwlen) << (DR_CONTROL_SHIFT + DR_CONTROL_SIZE * (i))); \
|
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
|
|
/* Get from DR7 the RW and LEN fields for the I'th debug register. */
|
|
|
|
|
#define I386_DR_GET_RW_LEN(state, i) \
|
|
|
|
|
(((state)->dr_control_mirror \
|
|
|
|
|
>> (DR_CONTROL_SHIFT + DR_CONTROL_SIZE * (i))) & 0x0f)
|
|
|
|
|
|
|
|
|
|
/* Did the watchpoint whose address is in the I'th register break? */
|
|
|
|
|
#define I386_DR_WATCH_HIT(state,i) ((state)->dr_status_mirror & (1 << (i)))
|
|
|
|
|
|
|
|
|
|
/* A macro to loop over all debug registers. */
|
|
|
|
|
#define ALL_DEBUG_REGISTERS(i) for (i = 0; i < DR_NADDR; i++)
|
|
|
|
|
|
|
|
|
|
/* Types of operations supported by i386_handle_nonaligned_watchpoint. */
|
|
|
|
|
typedef enum { WP_INSERT, WP_REMOVE, WP_COUNT } i386_wp_op_t;
|
|
|
|
|
|
|
|
|
|
/* Implementation. */
|
|
|
|
|
|
|
|
|
|
/* Clear the reference counts and forget everything we knew about the
|
|
|
|
|
debug registers. */
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
i386_low_init_dregs (struct i386_debug_reg_state *state)
|
|
|
|
|
{
|
|
|
|
|
int i;
|
|
|
|
|
|
|
|
|
|
ALL_DEBUG_REGISTERS (i)
|
|
|
|
|
{
|
|
|
|
|
state->dr_mirror[i] = 0;
|
|
|
|
|
state->dr_ref_count[i] = 0;
|
|
|
|
|
}
|
|
|
|
|
state->dr_control_mirror = 0;
|
|
|
|
|
state->dr_status_mirror = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Print the values of the mirrored debug registers. This is enabled via
|
|
|
|
|
the "set debug-hw-points 1" monitor command. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
i386_show_dr (struct i386_debug_reg_state *state,
|
|
|
|
|
const char *func, CORE_ADDR addr,
|
|
|
|
|
int len, enum target_hw_bp_type type)
|
|
|
|
|
{
|
|
|
|
|
int i;
|
|
|
|
|
|
|
|
|
|
fprintf (stderr, "%s", func);
|
|
|
|
|
if (addr || len)
|
|
|
|
|
fprintf (stderr, " (addr=%lx, len=%d, type=%s)",
|
|
|
|
|
(unsigned long) addr, len,
|
|
|
|
|
type == hw_write ? "data-write"
|
|
|
|
|
: (type == hw_read ? "data-read"
|
|
|
|
|
: (type == hw_access ? "data-read/write"
|
|
|
|
|
: (type == hw_execute ? "instruction-execute"
|
|
|
|
|
/* FIXME: if/when I/O read/write
|
|
|
|
|
watchpoints are supported, add them
|
|
|
|
|
here. */
|
|
|
|
|
: "??unknown??"))));
|
|
|
|
|
fprintf (stderr, ":\n");
|
|
|
|
|
fprintf (stderr, "\tCONTROL (DR7): %08x STATUS (DR6): %08x\n",
|
|
|
|
|
state->dr_control_mirror, state->dr_status_mirror);
|
|
|
|
|
ALL_DEBUG_REGISTERS (i)
|
|
|
|
|
{
|
|
|
|
|
fprintf (stderr, "\
|
|
|
|
|
\tDR%d: addr=0x%s, ref.count=%d DR%d: addr=0x%s, ref.count=%d\n",
|
|
|
|
|
i, paddress (state->dr_mirror[i]),
|
|
|
|
|
state->dr_ref_count[i],
|
|
|
|
|
i + 1, paddress (state->dr_mirror[i + 1]),
|
|
|
|
|
state->dr_ref_count[i + 1]);
|
|
|
|
|
i++;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Return the value of a 4-bit field for DR7 suitable for watching a
|
|
|
|
|
region of LEN bytes for accesses of type TYPE. LEN is assumed to
|
|
|
|
|
have the value of 1, 2, or 4. */
|
|
|
|
|
|
|
|
|
|
static unsigned
|
|
|
|
|
i386_length_and_rw_bits (int len, enum target_hw_bp_type type)
|
|
|
|
|
{
|
|
|
|
|
unsigned rw;
|
|
|
|
|
|
|
|
|
|
switch (type)
|
|
|
|
|
{
|
|
|
|
|
case hw_execute:
|
|
|
|
|
rw = DR_RW_EXECUTE;
|
|
|
|
|
break;
|
|
|
|
|
case hw_write:
|
|
|
|
|
rw = DR_RW_WRITE;
|
|
|
|
|
break;
|
|
|
|
|
case hw_read:
|
|
|
|
|
/* The i386 doesn't support data-read watchpoints. */
|
|
|
|
|
case hw_access:
|
|
|
|
|
rw = DR_RW_READ;
|
|
|
|
|
break;
|
|
|
|
|
#if 0
|
|
|
|
|
/* Not yet supported. */
|
|
|
|
|
case hw_io_access:
|
|
|
|
|
rw = DR_RW_IORW;
|
|
|
|
|
break;
|
|
|
|
|
#endif
|
|
|
|
|
default:
|
|
|
|
|
error ("\
|
|
|
|
|
Invalid hardware breakpoint type %d in i386_length_and_rw_bits.\n",
|
|
|
|
|
(int) type);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
switch (len)
|
|
|
|
|
{
|
|
|
|
|
case 1:
|
|
|
|
|
return (DR_LEN_1 | rw);
|
|
|
|
|
case 2:
|
|
|
|
|
return (DR_LEN_2 | rw);
|
|
|
|
|
case 4:
|
|
|
|
|
return (DR_LEN_4 | rw);
|
|
|
|
|
case 8:
|
|
|
|
|
if (TARGET_HAS_DR_LEN_8)
|
|
|
|
|
return (DR_LEN_8 | rw);
|
|
|
|
|
default:
|
|
|
|
|
error ("\
|
|
|
|
|
Invalid hardware breakpoint length %d in i386_length_and_rw_bits.\n", len);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Insert a watchpoint at address ADDR, which is assumed to be aligned
|
|
|
|
|
according to the length of the region to watch. LEN_RW_BITS is the
|
|
|
|
|
value of the bits from DR7 which describes the length and access
|
|
|
|
|
type of the region to be watched by this watchpoint. Return 0 on
|
|
|
|
|
success, -1 on failure. */
|
|
|
|
|
|
|
|
|
|
static int
|
|
|
|
|
i386_insert_aligned_watchpoint (struct i386_debug_reg_state *state,
|
|
|
|
|
CORE_ADDR addr, unsigned len_rw_bits)
|
|
|
|
|
{
|
|
|
|
|
int i;
|
|
|
|
|
|
|
|
|
|
/* First, look for an occupied debug register with the same address
|
|
|
|
|
and the same RW and LEN definitions. If we find one, we can
|
|
|
|
|
reuse it for this watchpoint as well (and save a register). */
|
|
|
|
|
ALL_DEBUG_REGISTERS (i)
|
|
|
|
|
{
|
|
|
|
|
if (!I386_DR_VACANT (state, i)
|
|
|
|
|
&& state->dr_mirror[i] == addr
|
|
|
|
|
&& I386_DR_GET_RW_LEN (state, i) == len_rw_bits)
|
|
|
|
|
{
|
|
|
|
|
state->dr_ref_count[i]++;
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Next, look for a vacant debug register. */
|
|
|
|
|
ALL_DEBUG_REGISTERS (i)
|
|
|
|
|
{
|
|
|
|
|
if (I386_DR_VACANT (state, i))
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* No more debug registers! */
|
|
|
|
|
if (i >= DR_NADDR)
|
|
|
|
|
return -1;
|
|
|
|
|
|
|
|
|
|
/* Now set up the register I to watch our region. */
|
|
|
|
|
|
|
|
|
|
/* Record the info in our local mirrored array. */
|
|
|
|
|
state->dr_mirror[i] = addr;
|
|
|
|
|
state->dr_ref_count[i] = 1;
|
|
|
|
|
I386_DR_SET_RW_LEN (state, i, len_rw_bits);
|
|
|
|
|
/* Note: we only enable the watchpoint locally, i.e. in the current
|
|
|
|
|
task. Currently, no i386 target allows or supports global
|
|
|
|
|
watchpoints; however, if any target would want that in the
|
|
|
|
|
future, GDB should probably provide a command to control whether
|
|
|
|
|
to enable watchpoints globally or locally, and the code below
|
|
|
|
|
should use global or local enable and slow-down flags as
|
|
|
|
|
appropriate. */
|
|
|
|
|
I386_DR_LOCAL_ENABLE (state, i);
|
|
|
|
|
state->dr_control_mirror |= DR_LOCAL_SLOWDOWN;
|
|
|
|
|
state->dr_control_mirror &= I386_DR_CONTROL_MASK;
|
|
|
|
|
|
|
|
|
|
/* Finally, actually pass the info to the inferior. */
|
|
|
|
|
i386_dr_low_set_addr (state, i);
|
|
|
|
|
i386_dr_low_set_control (state);
|
|
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Remove a watchpoint at address ADDR, which is assumed to be aligned
|
|
|
|
|
according to the length of the region to watch. LEN_RW_BITS is the
|
|
|
|
|
value of the bits from DR7 which describes the length and access
|
|
|
|
|
type of the region watched by this watchpoint. Return 0 on
|
|
|
|
|
success, -1 on failure. */
|
|
|
|
|
|
|
|
|
|
static int
|
|
|
|
|
i386_remove_aligned_watchpoint (struct i386_debug_reg_state *state,
|
|
|
|
|
CORE_ADDR addr, unsigned len_rw_bits)
|
|
|
|
|
{
|
|
|
|
|
int i, retval = -1;
|
|
|
|
|
|
|
|
|
|
ALL_DEBUG_REGISTERS (i)
|
|
|
|
|
{
|
|
|
|
|
if (!I386_DR_VACANT (state, i)
|
|
|
|
|
&& state->dr_mirror[i] == addr
|
|
|
|
|
&& I386_DR_GET_RW_LEN (state, i) == len_rw_bits)
|
|
|
|
|
{
|
|
|
|
|
if (--state->dr_ref_count[i] == 0) /* No longer in use? */
|
|
|
|
|
{
|
|
|
|
|
/* Reset our mirror. */
|
|
|
|
|
state->dr_mirror[i] = 0;
|
|
|
|
|
I386_DR_DISABLE (state, i);
|
|
|
|
|
/* Reset it in the inferior. */
|
|
|
|
|
i386_dr_low_set_control (state);
|
|
|
|
|
i386_dr_low_set_addr (state, i);
|
|
|
|
|
}
|
|
|
|
|
retval = 0;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return retval;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Insert or remove a (possibly non-aligned) watchpoint, or count the
|
|
|
|
|
number of debug registers required to watch a region at address
|
|
|
|
|
ADDR whose length is LEN for accesses of type TYPE. Return 0 on
|
|
|
|
|
successful insertion or removal, a positive number when queried
|
|
|
|
|
about the number of registers, or -1 on failure. If WHAT is not a
|
|
|
|
|
valid value, bombs through internal_error. */
|
|
|
|
|
|
|
|
|
|
static int
|
|
|
|
|
i386_handle_nonaligned_watchpoint (struct i386_debug_reg_state *state,
|
|
|
|
|
i386_wp_op_t what, CORE_ADDR addr, int len,
|
|
|
|
|
enum target_hw_bp_type type)
|
|
|
|
|
{
|
|
|
|
|
int retval = 0, status = 0;
|
|
|
|
|
int max_wp_len = TARGET_HAS_DR_LEN_8 ? 8 : 4;
|
|
|
|
|
|
|
|
|
|
static const int size_try_array[8][8] =
|
|
|
|
|
{
|
|
|
|
|
{1, 1, 1, 1, 1, 1, 1, 1}, /* Trying size one. */
|
|
|
|
|
{2, 1, 2, 1, 2, 1, 2, 1}, /* Trying size two. */
|
|
|
|
|
{2, 1, 2, 1, 2, 1, 2, 1}, /* Trying size three. */
|
|
|
|
|
{4, 1, 2, 1, 4, 1, 2, 1}, /* Trying size four. */
|
|
|
|
|
{4, 1, 2, 1, 4, 1, 2, 1}, /* Trying size five. */
|
|
|
|
|
{4, 1, 2, 1, 4, 1, 2, 1}, /* Trying size six. */
|
|
|
|
|
{4, 1, 2, 1, 4, 1, 2, 1}, /* Trying size seven. */
|
|
|
|
|
{8, 1, 2, 1, 4, 1, 2, 1}, /* Trying size eight. */
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
while (len > 0)
|
|
|
|
|
{
|
|
|
|
|
int align = addr % max_wp_len;
|
|
|
|
|
/* Four (eight on AMD64) is the maximum length a debug register
|
|
|
|
|
can watch. */
|
|
|
|
|
int try = (len > max_wp_len ? (max_wp_len - 1) : len - 1);
|
|
|
|
|
int size = size_try_array[try][align];
|
|
|
|
|
|
|
|
|
|
if (what == WP_COUNT)
|
|
|
|
|
{
|
|
|
|
|
/* size_try_array[] is defined such that each iteration
|
|
|
|
|
through the loop is guaranteed to produce an address and a
|
|
|
|
|
size that can be watched with a single debug register.
|
|
|
|
|
Thus, for counting the registers required to watch a
|
|
|
|
|
region, we simply need to increment the count on each
|
|
|
|
|
iteration. */
|
|
|
|
|
retval++;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
unsigned len_rw = i386_length_and_rw_bits (size, type);
|
|
|
|
|
|
|
|
|
|
if (what == WP_INSERT)
|
|
|
|
|
status = i386_insert_aligned_watchpoint (state, addr, len_rw);
|
|
|
|
|
else if (what == WP_REMOVE)
|
|
|
|
|
status = i386_remove_aligned_watchpoint (state, addr, len_rw);
|
|
|
|
|
else
|
|
|
|
|
fatal ("\
|
|
|
|
|
Invalid value %d of operation in i386_handle_nonaligned_watchpoint.\n",
|
|
|
|
|
(int) what);
|
|
|
|
|
|
|
|
|
|
/* We keep the loop going even after a failure, because some
|
|
|
|
|
of the other aligned watchpoints might still succeed
|
|
|
|
|
(e.g. if they watch addresses that are already watched,
|
|
|
|
|
in which case we just increment the reference counts of
|
|
|
|
|
occupied debug registers). If we break out of the loop
|
|
|
|
|
too early, we could cause those addresses watched by
|
|
|
|
|
other watchpoints to be disabled when breakpoint.c reacts
|
|
|
|
|
to our failure to insert this watchpoint and tries to
|
|
|
|
|
remove it. */
|
|
|
|
|
if (status)
|
|
|
|
|
retval = status;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
addr += size;
|
|
|
|
|
len -= size;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return retval;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#define Z_PACKET_WRITE_WP '2'
|
|
|
|
|
#define Z_PACKET_READ_WP '3'
|
|
|
|
|
#define Z_PACKET_ACCESS_WP '4'
|
|
|
|
|
|
|
|
|
|
/* Map the protocol watchpoint type TYPE to enum target_hw_bp_type. */
|
|
|
|
|
|
|
|
|
|
static enum target_hw_bp_type
|
|
|
|
|
Z_packet_to_hw_type (char type)
|
|
|
|
|
{
|
|
|
|
|
switch (type)
|
|
|
|
|
{
|
|
|
|
|
case Z_PACKET_WRITE_WP:
|
|
|
|
|
return hw_write;
|
|
|
|
|
case Z_PACKET_READ_WP:
|
|
|
|
|
return hw_read;
|
|
|
|
|
case Z_PACKET_ACCESS_WP:
|
|
|
|
|
return hw_access;
|
|
|
|
|
default:
|
|
|
|
|
fatal ("Z_packet_to_hw_type: bad watchpoint type %c", type);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Insert a watchpoint to watch a memory region which starts at
|
|
|
|
|
address ADDR and whose length is LEN bytes. Watch memory accesses
|
|
|
|
|
of the type TYPE_FROM_PACKET. Return 0 on success, -1 on failure. */
|
|
|
|
|
|
|
|
|
|
int
|
|
|
|
|
i386_low_insert_watchpoint (struct i386_debug_reg_state *state,
|
|
|
|
|
char type_from_packet, CORE_ADDR addr, int len)
|
|
|
|
|
{
|
|
|
|
|
int retval;
|
|
|
|
|
enum target_hw_bp_type type = Z_packet_to_hw_type (type_from_packet);
|
|
|
|
|
|
|
|
|
|
if (((len != 1 && len != 2 && len != 4)
|
|
|
|
|
&& !(TARGET_HAS_DR_LEN_8 && len == 8))
|
|
|
|
|
|| addr % len != 0)
|
|
|
|
|
{
|
|
|
|
|
retval = i386_handle_nonaligned_watchpoint (state, WP_INSERT,
|
|
|
|
|
addr, len, type);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
unsigned len_rw = i386_length_and_rw_bits (len, type);
|
|
|
|
|
|
|
|
|
|
retval = i386_insert_aligned_watchpoint (state, addr, len_rw);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (debug_hw_points)
|
|
|
|
|
i386_show_dr (state, "insert_watchpoint", addr, len, type);
|
|
|
|
|
|
|
|
|
|
return retval;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Remove a watchpoint that watched the memory region which starts at
|
|
|
|
|
address ADDR, whose length is LEN bytes, and for accesses of the
|
|
|
|
|
type TYPE_FROM_PACKET. Return 0 on success, -1 on failure. */
|
|
|
|
|
|
|
|
|
|
int
|
|
|
|
|
i386_low_remove_watchpoint (struct i386_debug_reg_state *state,
|
|
|
|
|
char type_from_packet, CORE_ADDR addr, int len)
|
|
|
|
|
{
|
|
|
|
|
int retval;
|
|
|
|
|
enum target_hw_bp_type type = Z_packet_to_hw_type (type_from_packet);
|
|
|
|
|
|
|
|
|
|
if (((len != 1 && len != 2 && len != 4)
|
|
|
|
|
&& !(TARGET_HAS_DR_LEN_8 && len == 8))
|
|
|
|
|
|| addr % len != 0)
|
|
|
|
|
{
|
|
|
|
|
retval = i386_handle_nonaligned_watchpoint (state, WP_REMOVE,
|
|
|
|
|
addr, len, type);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
unsigned len_rw = i386_length_and_rw_bits (len, type);
|
|
|
|
|
|
|
|
|
|
retval = i386_remove_aligned_watchpoint (state, addr, len_rw);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (debug_hw_points)
|
|
|
|
|
i386_show_dr (state, "remove_watchpoint", addr, len, type);
|
|
|
|
|
|
|
|
|
|
return retval;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Return non-zero if we can watch a memory region that starts at
|
|
|
|
|
address ADDR and whose length is LEN bytes. */
|
|
|
|
|
|
|
|
|
|
int
|
|
|
|
|
i386_low_region_ok_for_watchpoint (struct i386_debug_reg_state *state,
|
|
|
|
|
CORE_ADDR addr, int len)
|
|
|
|
|
{
|
|
|
|
|
int nregs;
|
|
|
|
|
|
|
|
|
|
/* Compute how many aligned watchpoints we would need to cover this
|
|
|
|
|
region. */
|
|
|
|
|
nregs = i386_handle_nonaligned_watchpoint (state, WP_COUNT,
|
|
|
|
|
addr, len, hw_write);
|
|
|
|
|
return nregs <= DR_NADDR ? 1 : 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* If the inferior has some break/watchpoint that triggered, set the
|
|
|
|
|
address associated with that break/watchpoint and return true.
|
|
|
|
|
Otherwise, return false. */
|
|
|
|
|
|
|
|
|
|
int
|
|
|
|
|
i386_low_stopped_data_address (struct i386_debug_reg_state *state,
|
|
|
|
|
CORE_ADDR *addr_p)
|
|
|
|
|
{
|
|
|
|
|
CORE_ADDR addr = 0;
|
|
|
|
|
int i;
|
|
|
|
|
int rc = 0;
|
|
|
|
|
|
|
|
|
|
/* Get dr_status_mirror for use by I386_DR_WATCH_HIT. */
|
|
|
|
|
i386_dr_low_get_status (state);
|
|
|
|
|
|
|
|
|
|
ALL_DEBUG_REGISTERS (i)
|
|
|
|
|
{
|
|
|
|
|
if (I386_DR_WATCH_HIT (state, i)
|
|
|
|
|
/* This second condition makes sure DRi is set up for a data
|
|
|
|
|
watchpoint, not a hardware breakpoint. The reason is
|
|
|
|
|
that GDB doesn't call the target_stopped_data_address
|
|
|
|
|
method except for data watchpoints. In other words, I'm
|
|
|
|
|
being paranoiac. */
|
|
|
|
|
&& I386_DR_GET_RW_LEN (state, i) != 0)
|
|
|
|
|
{
|
|
|
|
|
addr = state->dr_mirror[i];
|
|
|
|
|
rc = 1;
|
|
|
|
|
if (debug_hw_points)
|
|
|
|
|
i386_show_dr (state, "watchpoint_hit", addr, -1, hw_write);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (debug_hw_points && addr == 0)
|
|
|
|
|
i386_show_dr (state, "stopped_data_addr", 0, 0, hw_write);
|
|
|
|
|
|
|
|
|
|
if (rc)
|
|
|
|
|
*addr_p = addr;
|
|
|
|
|
return rc;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Return true if the inferior has some watchpoint that triggered.
|
|
|
|
|
Otherwise return false. */
|
|
|
|
|
|
|
|
|
|
int
|
|
|
|
|
i386_low_stopped_by_watchpoint (struct i386_debug_reg_state *state)
|
|
|
|
|
{
|
|
|
|
|
CORE_ADDR addr = 0;
|
|
|
|
|
return i386_low_stopped_data_address (state, &addr);
|
|
|
|
|
}
|