639 lines
16 KiB
C
639 lines
16 KiB
C
|
/* Low level Unix child interface to ptrace, for GDB when running under Unix.
|
|||
|
Copyright 1988, 89, 90, 91, 92, 93, 94, 95, 96, 1998
|
|||
|
Free Software Foundation, Inc.
|
|||
|
|
|||
|
This file is part of GDB.
|
|||
|
|
|||
|
This program is free software; you can redistribute it and/or modify
|
|||
|
it under the terms of the GNU General Public License as published by
|
|||
|
the Free Software Foundation; either version 2 of the License, or
|
|||
|
(at your option) any later version.
|
|||
|
|
|||
|
This program is distributed in the hope that it will be useful,
|
|||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|||
|
GNU General Public License for more details.
|
|||
|
|
|||
|
You should have received a copy of the GNU General Public License
|
|||
|
along with this program; if not, write to the Free Software
|
|||
|
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
|||
|
|
|||
|
#include "defs.h"
|
|||
|
#include "frame.h"
|
|||
|
#include "inferior.h"
|
|||
|
#include "target.h"
|
|||
|
#include "gdb_string.h"
|
|||
|
#include "wait.h"
|
|||
|
#include "command.h"
|
|||
|
|
|||
|
#ifdef USG
|
|||
|
#include <sys/types.h>
|
|||
|
#endif
|
|||
|
|
|||
|
#include <sys/param.h>
|
|||
|
#include <sys/dir.h>
|
|||
|
#include <signal.h>
|
|||
|
#include <sys/ioctl.h>
|
|||
|
|
|||
|
#ifdef HAVE_PTRACE_H
|
|||
|
# include <ptrace.h>
|
|||
|
#else
|
|||
|
# ifdef HAVE_SYS_PTRACE_H
|
|||
|
# include <sys/ptrace.h>
|
|||
|
# endif
|
|||
|
#endif
|
|||
|
|
|||
|
#if !defined (PT_READ_I)
|
|||
|
#define PT_READ_I 1 /* Read word from text space */
|
|||
|
#endif
|
|||
|
#if !defined (PT_READ_D)
|
|||
|
#define PT_READ_D 2 /* Read word from data space */
|
|||
|
#endif
|
|||
|
#if !defined (PT_READ_U)
|
|||
|
#define PT_READ_U 3 /* Read word from kernel user struct */
|
|||
|
#endif
|
|||
|
#if !defined (PT_WRITE_I)
|
|||
|
#define PT_WRITE_I 4 /* Write word to text space */
|
|||
|
#endif
|
|||
|
#if !defined (PT_WRITE_D)
|
|||
|
#define PT_WRITE_D 5 /* Write word to data space */
|
|||
|
#endif
|
|||
|
#if !defined (PT_WRITE_U)
|
|||
|
#define PT_WRITE_U 6 /* Write word to kernel user struct */
|
|||
|
#endif
|
|||
|
#if !defined (PT_CONTINUE)
|
|||
|
#define PT_CONTINUE 7 /* Continue after signal */
|
|||
|
#endif
|
|||
|
#if !defined (PT_STEP)
|
|||
|
#define PT_STEP 9 /* Set flag for single stepping */
|
|||
|
#endif
|
|||
|
#if !defined (PT_KILL)
|
|||
|
#define PT_KILL 8 /* Send child a SIGKILL signal */
|
|||
|
#endif
|
|||
|
|
|||
|
#ifndef PT_ATTACH
|
|||
|
#define PT_ATTACH PTRACE_ATTACH
|
|||
|
#endif
|
|||
|
#ifndef PT_DETACH
|
|||
|
#define PT_DETACH PTRACE_DETACH
|
|||
|
#endif
|
|||
|
|
|||
|
#include "gdbcore.h"
|
|||
|
#ifndef NO_SYS_FILE
|
|||
|
#include <sys/file.h>
|
|||
|
#endif
|
|||
|
#if 0
|
|||
|
/* Don't think this is used anymore. On the sequent (not sure whether it's
|
|||
|
dynix or ptx or both), it is included unconditionally by sys/user.h and
|
|||
|
not protected against multiple inclusion. */
|
|||
|
#include "gdb_stat.h"
|
|||
|
#endif
|
|||
|
|
|||
|
#if !defined (FETCH_INFERIOR_REGISTERS)
|
|||
|
#include <sys/user.h> /* Probably need to poke the user structure */
|
|||
|
#if defined (KERNEL_U_ADDR_BSD)
|
|||
|
#include <a.out.h> /* For struct nlist */
|
|||
|
#endif /* KERNEL_U_ADDR_BSD. */
|
|||
|
#endif /* !FETCH_INFERIOR_REGISTERS */
|
|||
|
|
|||
|
#if !defined (CHILD_XFER_MEMORY)
|
|||
|
static void udot_info PARAMS ((char *, int));
|
|||
|
#endif
|
|||
|
|
|||
|
#if !defined (FETCH_INFERIOR_REGISTERS)
|
|||
|
static void fetch_register PARAMS ((int));
|
|||
|
static void store_register PARAMS ((int));
|
|||
|
#endif
|
|||
|
|
|||
|
void _initialize_kernel_u_addr PARAMS ((void));
|
|||
|
void _initialize_infptrace PARAMS ((void));
|
|||
|
|
|||
|
|
|||
|
/* This function simply calls ptrace with the given arguments.
|
|||
|
It exists so that all calls to ptrace are isolated in this
|
|||
|
machine-dependent file. */
|
|||
|
int
|
|||
|
call_ptrace (request, pid, addr, data)
|
|||
|
int request, pid;
|
|||
|
PTRACE_ARG3_TYPE addr;
|
|||
|
int data;
|
|||
|
{
|
|||
|
int pt_status = 0;
|
|||
|
|
|||
|
#if 0
|
|||
|
int saved_errno;
|
|||
|
|
|||
|
printf ("call_ptrace(request=%d, pid=%d, addr=0x%x, data=0x%x)",
|
|||
|
request, pid, addr, data);
|
|||
|
#endif
|
|||
|
#if defined(PT_SETTRC)
|
|||
|
/* If the parent can be told to attach to us, try to do it. */
|
|||
|
if (request == PT_SETTRC) {
|
|||
|
errno = 0;
|
|||
|
pt_status = ptrace (PT_SETTRC, pid, addr, data
|
|||
|
#if defined (FIVE_ARG_PTRACE)
|
|||
|
/* Deal with HPUX 8.0 braindamage. We never use the
|
|||
|
calls which require the fifth argument. */
|
|||
|
, 0
|
|||
|
#endif
|
|||
|
);
|
|||
|
|
|||
|
if (errno) perror_with_name ("ptrace");
|
|||
|
#if 0
|
|||
|
printf (" = %d\n", pt_status);
|
|||
|
#endif
|
|||
|
if (pt_status < 0)
|
|||
|
return pt_status;
|
|||
|
else
|
|||
|
return parent_attach_all (pid, addr, data);
|
|||
|
}
|
|||
|
#endif
|
|||
|
|
|||
|
#if defined(PT_CONTIN1)
|
|||
|
/* On HPUX, PT_CONTIN1 is a form of continue that preserves pending
|
|||
|
signals. If it's available, use it. */
|
|||
|
if (request == PT_CONTINUE)
|
|||
|
request = PT_CONTIN1;
|
|||
|
#endif
|
|||
|
|
|||
|
#if defined(PT_SINGLE1)
|
|||
|
/* On HPUX, PT_SINGLE1 is a form of step that preserves pending
|
|||
|
signals. If it's available, use it. */
|
|||
|
if (request == PT_STEP)
|
|||
|
request = PT_SINGLE1;
|
|||
|
#endif
|
|||
|
|
|||
|
#if 0
|
|||
|
saved_errno = errno;
|
|||
|
errno = 0;
|
|||
|
#endif
|
|||
|
pt_status = ptrace (request, pid, addr, data
|
|||
|
#if defined (FIVE_ARG_PTRACE)
|
|||
|
/* Deal with HPUX 8.0 braindamage. We never use the
|
|||
|
calls which require the fifth argument. */
|
|||
|
, 0
|
|||
|
#endif
|
|||
|
);
|
|||
|
#if 0
|
|||
|
if (errno)
|
|||
|
printf (" [errno = %d]", errno);
|
|||
|
|
|||
|
errno = saved_errno;
|
|||
|
printf (" = 0x%x\n", pt_status);
|
|||
|
#endif
|
|||
|
return pt_status;
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
#if defined (DEBUG_PTRACE) || defined (FIVE_ARG_PTRACE)
|
|||
|
/* For the rest of the file, use an extra level of indirection */
|
|||
|
/* This lets us breakpoint usefully on call_ptrace. */
|
|||
|
#define ptrace call_ptrace
|
|||
|
#endif
|
|||
|
|
|||
|
/* Wait for a process to finish, possibly running a target-specific
|
|||
|
hook before returning. */
|
|||
|
|
|||
|
int
|
|||
|
ptrace_wait (pid, status)
|
|||
|
int pid;
|
|||
|
int *status;
|
|||
|
{
|
|||
|
int wstate;
|
|||
|
|
|||
|
wstate = wait (status);
|
|||
|
target_post_wait (wstate, *status);
|
|||
|
return wstate;
|
|||
|
}
|
|||
|
|
|||
|
void
|
|||
|
kill_inferior ()
|
|||
|
{
|
|||
|
int status;
|
|||
|
|
|||
|
if (inferior_pid == 0)
|
|||
|
return;
|
|||
|
|
|||
|
/* This once used to call "kill" to kill the inferior just in case
|
|||
|
the inferior was still running. As others have noted in the past
|
|||
|
(kingdon) there shouldn't be any way to get here if the inferior
|
|||
|
is still running -- else there's a major problem elsewere in gdb
|
|||
|
and it needs to be fixed.
|
|||
|
|
|||
|
The kill call causes problems under hpux10, so it's been removed;
|
|||
|
if this causes problems we'll deal with them as they arise. */
|
|||
|
ptrace (PT_KILL, inferior_pid, (PTRACE_ARG3_TYPE) 0, 0);
|
|||
|
ptrace_wait (0, &status);
|
|||
|
target_mourn_inferior ();
|
|||
|
}
|
|||
|
|
|||
|
#ifndef CHILD_RESUME
|
|||
|
|
|||
|
/* Resume execution of the inferior process.
|
|||
|
If STEP is nonzero, single-step it.
|
|||
|
If SIGNAL is nonzero, give it that signal. */
|
|||
|
|
|||
|
void
|
|||
|
child_resume (pid, step, signal)
|
|||
|
int pid;
|
|||
|
int step;
|
|||
|
enum target_signal signal;
|
|||
|
{
|
|||
|
errno = 0;
|
|||
|
|
|||
|
if (pid == -1)
|
|||
|
/* Resume all threads. */
|
|||
|
/* I think this only gets used in the non-threaded case, where "resume
|
|||
|
all threads" and "resume inferior_pid" are the same. */
|
|||
|
pid = inferior_pid;
|
|||
|
|
|||
|
/* An address of (PTRACE_ARG3_TYPE)1 tells ptrace to continue from where
|
|||
|
it was. (If GDB wanted it to start some other way, we have already
|
|||
|
written a new PC value to the child.)
|
|||
|
|
|||
|
If this system does not support PT_STEP, a higher level function will
|
|||
|
have called single_step() to transmute the step request into a
|
|||
|
continue request (by setting breakpoints on all possible successor
|
|||
|
instructions), so we don't have to worry about that here. */
|
|||
|
|
|||
|
if (step)
|
|||
|
{
|
|||
|
if (SOFTWARE_SINGLE_STEP_P)
|
|||
|
abort(); /* Make sure this doesn't happen. */
|
|||
|
else
|
|||
|
ptrace (PT_STEP, pid, (PTRACE_ARG3_TYPE) 1,
|
|||
|
target_signal_to_host (signal));
|
|||
|
}
|
|||
|
else
|
|||
|
ptrace (PT_CONTINUE, pid, (PTRACE_ARG3_TYPE) 1,
|
|||
|
target_signal_to_host (signal));
|
|||
|
|
|||
|
if (errno)
|
|||
|
perror_with_name ("ptrace");
|
|||
|
}
|
|||
|
#endif /* CHILD_RESUME */
|
|||
|
|
|||
|
|
|||
|
#ifdef ATTACH_DETACH
|
|||
|
/* Start debugging the process whose number is PID. */
|
|||
|
int
|
|||
|
attach (pid)
|
|||
|
int pid;
|
|||
|
{
|
|||
|
errno = 0;
|
|||
|
ptrace (PT_ATTACH, pid, (PTRACE_ARG3_TYPE) 0, 0);
|
|||
|
if (errno)
|
|||
|
perror_with_name ("ptrace");
|
|||
|
attach_flag = 1;
|
|||
|
return pid;
|
|||
|
}
|
|||
|
|
|||
|
/* Stop debugging the process whose number is PID
|
|||
|
and continue it with signal number SIGNAL.
|
|||
|
SIGNAL = 0 means just continue it. */
|
|||
|
|
|||
|
void
|
|||
|
detach (signal)
|
|||
|
int signal;
|
|||
|
{
|
|||
|
errno = 0;
|
|||
|
ptrace (PT_DETACH, inferior_pid, (PTRACE_ARG3_TYPE) 1, signal);
|
|||
|
if (errno)
|
|||
|
perror_with_name ("ptrace");
|
|||
|
attach_flag = 0;
|
|||
|
}
|
|||
|
#endif /* ATTACH_DETACH */
|
|||
|
|
|||
|
/* Default the type of the ptrace transfer to int. */
|
|||
|
#ifndef PTRACE_XFER_TYPE
|
|||
|
#define PTRACE_XFER_TYPE int
|
|||
|
#endif
|
|||
|
|
|||
|
/* KERNEL_U_ADDR is the amount to subtract from u.u_ar0
|
|||
|
to get the offset in the core file of the register values. */
|
|||
|
#if defined (KERNEL_U_ADDR_BSD) && !defined (FETCH_INFERIOR_REGISTERS)
|
|||
|
/* Get kernel_u_addr using BSD-style nlist(). */
|
|||
|
CORE_ADDR kernel_u_addr;
|
|||
|
#endif /* KERNEL_U_ADDR_BSD. */
|
|||
|
|
|||
|
void
|
|||
|
_initialize_kernel_u_addr ()
|
|||
|
{
|
|||
|
#if defined (KERNEL_U_ADDR_BSD) && !defined (FETCH_INFERIOR_REGISTERS)
|
|||
|
struct nlist names[2];
|
|||
|
|
|||
|
names[0].n_un.n_name = "_u";
|
|||
|
names[1].n_un.n_name = NULL;
|
|||
|
if (nlist ("/vmunix", names) == 0)
|
|||
|
kernel_u_addr = names[0].n_value;
|
|||
|
else
|
|||
|
fatal ("Unable to get kernel u area address.");
|
|||
|
#endif /* KERNEL_U_ADDR_BSD. */
|
|||
|
}
|
|||
|
|
|||
|
#if !defined (FETCH_INFERIOR_REGISTERS)
|
|||
|
|
|||
|
#if !defined (offsetof)
|
|||
|
#define offsetof(TYPE, MEMBER) ((unsigned long) &((TYPE *)0)->MEMBER)
|
|||
|
#endif
|
|||
|
|
|||
|
/* U_REGS_OFFSET is the offset of the registers within the u area. */
|
|||
|
#if !defined (U_REGS_OFFSET)
|
|||
|
#define U_REGS_OFFSET \
|
|||
|
ptrace (PT_READ_U, inferior_pid, \
|
|||
|
(PTRACE_ARG3_TYPE) (offsetof (struct user, u_ar0)), 0) \
|
|||
|
- KERNEL_U_ADDR
|
|||
|
#endif
|
|||
|
|
|||
|
/* Registers we shouldn't try to fetch. */
|
|||
|
#if !defined (CANNOT_FETCH_REGISTER)
|
|||
|
#define CANNOT_FETCH_REGISTER(regno) 0
|
|||
|
#endif
|
|||
|
|
|||
|
/* Fetch one register. */
|
|||
|
|
|||
|
static void
|
|||
|
fetch_register (regno)
|
|||
|
int regno;
|
|||
|
{
|
|||
|
/* This isn't really an address. But ptrace thinks of it as one. */
|
|||
|
CORE_ADDR regaddr;
|
|||
|
char mess[128]; /* For messages */
|
|||
|
register int i;
|
|||
|
unsigned int offset; /* Offset of registers within the u area. */
|
|||
|
char buf[MAX_REGISTER_RAW_SIZE];
|
|||
|
|
|||
|
if (CANNOT_FETCH_REGISTER (regno))
|
|||
|
{
|
|||
|
memset (buf, '\0', REGISTER_RAW_SIZE (regno)); /* Supply zeroes */
|
|||
|
supply_register (regno, buf);
|
|||
|
return;
|
|||
|
}
|
|||
|
|
|||
|
offset = U_REGS_OFFSET;
|
|||
|
|
|||
|
regaddr = register_addr (regno, offset);
|
|||
|
for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (PTRACE_XFER_TYPE))
|
|||
|
{
|
|||
|
errno = 0;
|
|||
|
*(PTRACE_XFER_TYPE *) &buf[i] = ptrace (PT_READ_U, inferior_pid,
|
|||
|
(PTRACE_ARG3_TYPE) regaddr, 0);
|
|||
|
regaddr += sizeof (PTRACE_XFER_TYPE);
|
|||
|
if (errno != 0)
|
|||
|
{
|
|||
|
sprintf (mess, "reading register %s (#%d)", REGISTER_NAME (regno), regno);
|
|||
|
perror_with_name (mess);
|
|||
|
}
|
|||
|
}
|
|||
|
supply_register (regno, buf);
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
/* Fetch register values from the inferior.
|
|||
|
If REGNO is negative, do this for all registers.
|
|||
|
Otherwise, REGNO specifies which register (so we can save time). */
|
|||
|
|
|||
|
void
|
|||
|
fetch_inferior_registers (regno)
|
|||
|
int regno;
|
|||
|
{
|
|||
|
if (regno >= 0)
|
|||
|
{
|
|||
|
fetch_register (regno);
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
for (regno = 0; regno < ARCH_NUM_REGS; regno++)
|
|||
|
{
|
|||
|
fetch_register (regno);
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Registers we shouldn't try to store. */
|
|||
|
#if !defined (CANNOT_STORE_REGISTER)
|
|||
|
#define CANNOT_STORE_REGISTER(regno) 0
|
|||
|
#endif
|
|||
|
|
|||
|
/* Store one register. */
|
|||
|
|
|||
|
static void
|
|||
|
store_register (regno)
|
|||
|
int regno;
|
|||
|
{
|
|||
|
/* This isn't really an address. But ptrace thinks of it as one. */
|
|||
|
CORE_ADDR regaddr;
|
|||
|
char mess[128]; /* For messages */
|
|||
|
register int i;
|
|||
|
unsigned int offset; /* Offset of registers within the u area. */
|
|||
|
|
|||
|
if (CANNOT_STORE_REGISTER (regno))
|
|||
|
{
|
|||
|
return;
|
|||
|
}
|
|||
|
|
|||
|
offset = U_REGS_OFFSET;
|
|||
|
|
|||
|
regaddr = register_addr (regno, offset);
|
|||
|
for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof(PTRACE_XFER_TYPE))
|
|||
|
{
|
|||
|
errno = 0;
|
|||
|
ptrace (PT_WRITE_U, inferior_pid, (PTRACE_ARG3_TYPE) regaddr,
|
|||
|
*(PTRACE_XFER_TYPE *) ®isters[REGISTER_BYTE (regno) + i]);
|
|||
|
regaddr += sizeof (PTRACE_XFER_TYPE);
|
|||
|
if (errno != 0)
|
|||
|
{
|
|||
|
sprintf (mess, "writing register %s (#%d)", REGISTER_NAME (regno), regno);
|
|||
|
perror_with_name (mess);
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Store our register values back into the inferior.
|
|||
|
If REGNO is negative, do this for all registers.
|
|||
|
Otherwise, REGNO specifies which register (so we can save time). */
|
|||
|
|
|||
|
void
|
|||
|
store_inferior_registers (regno)
|
|||
|
int regno;
|
|||
|
{
|
|||
|
if (regno >= 0)
|
|||
|
{
|
|||
|
store_register (regno);
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
for (regno = 0; regno < ARCH_NUM_REGS; regno++)
|
|||
|
{
|
|||
|
store_register (regno);
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
#endif /* !defined (FETCH_INFERIOR_REGISTERS). */
|
|||
|
|
|||
|
|
|||
|
#if !defined (CHILD_XFER_MEMORY)
|
|||
|
/* NOTE! I tried using PTRACE_READDATA, etc., to read and write memory
|
|||
|
in the NEW_SUN_PTRACE case.
|
|||
|
It ought to be straightforward. But it appears that writing did
|
|||
|
not write the data that I specified. I cannot understand where
|
|||
|
it got the data that it actually did write. */
|
|||
|
|
|||
|
/* Copy LEN bytes to or from inferior's memory starting at MEMADDR
|
|||
|
to debugger memory starting at MYADDR. Copy to inferior if
|
|||
|
WRITE is nonzero.
|
|||
|
|
|||
|
Returns the length copied, which is either the LEN argument or zero.
|
|||
|
This xfer function does not do partial moves, since child_ops
|
|||
|
doesn't allow memory operations to cross below us in the target stack
|
|||
|
anyway. */
|
|||
|
|
|||
|
int
|
|||
|
child_xfer_memory (memaddr, myaddr, len, write, target)
|
|||
|
CORE_ADDR memaddr;
|
|||
|
char *myaddr;
|
|||
|
int len;
|
|||
|
int write;
|
|||
|
struct target_ops *target; /* ignored */
|
|||
|
{
|
|||
|
register int i;
|
|||
|
/* Round starting address down to longword boundary. */
|
|||
|
register CORE_ADDR addr = memaddr & - sizeof (PTRACE_XFER_TYPE);
|
|||
|
/* Round ending address up; get number of longwords that makes. */
|
|||
|
register int count
|
|||
|
= (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
|
|||
|
/ sizeof (PTRACE_XFER_TYPE);
|
|||
|
/* Allocate buffer of that many longwords. */
|
|||
|
register PTRACE_XFER_TYPE *buffer
|
|||
|
= (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
|
|||
|
|
|||
|
if (write)
|
|||
|
{
|
|||
|
/* Fill start and end extra bytes of buffer with existing memory data. */
|
|||
|
|
|||
|
if (addr != memaddr || len < (int) sizeof (PTRACE_XFER_TYPE)) {
|
|||
|
/* Need part of initial word -- fetch it. */
|
|||
|
buffer[0] = ptrace (PT_READ_I, inferior_pid, (PTRACE_ARG3_TYPE) addr,
|
|||
|
0);
|
|||
|
}
|
|||
|
|
|||
|
if (count > 1) /* FIXME, avoid if even boundary */
|
|||
|
{
|
|||
|
buffer[count - 1]
|
|||
|
= ptrace (PT_READ_I, inferior_pid,
|
|||
|
((PTRACE_ARG3_TYPE)
|
|||
|
(addr + (count - 1) * sizeof (PTRACE_XFER_TYPE))),
|
|||
|
0);
|
|||
|
}
|
|||
|
|
|||
|
/* Copy data to be written over corresponding part of buffer */
|
|||
|
|
|||
|
memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
|
|||
|
myaddr,
|
|||
|
len);
|
|||
|
|
|||
|
/* Write the entire buffer. */
|
|||
|
|
|||
|
for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
|
|||
|
{
|
|||
|
errno = 0;
|
|||
|
ptrace (PT_WRITE_D, inferior_pid, (PTRACE_ARG3_TYPE) addr,
|
|||
|
buffer[i]);
|
|||
|
if (errno)
|
|||
|
{
|
|||
|
/* Using the appropriate one (I or D) is necessary for
|
|||
|
Gould NP1, at least. */
|
|||
|
errno = 0;
|
|||
|
ptrace (PT_WRITE_I, inferior_pid, (PTRACE_ARG3_TYPE) addr,
|
|||
|
buffer[i]);
|
|||
|
}
|
|||
|
if (errno)
|
|||
|
return 0;
|
|||
|
}
|
|||
|
#ifdef CLEAR_INSN_CACHE
|
|||
|
CLEAR_INSN_CACHE();
|
|||
|
#endif
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
/* Read all the longwords */
|
|||
|
for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
|
|||
|
{
|
|||
|
errno = 0;
|
|||
|
buffer[i] = ptrace (PT_READ_I, inferior_pid,
|
|||
|
(PTRACE_ARG3_TYPE) addr, 0);
|
|||
|
if (errno)
|
|||
|
return 0;
|
|||
|
QUIT;
|
|||
|
}
|
|||
|
|
|||
|
/* Copy appropriate bytes out of the buffer. */
|
|||
|
memcpy (myaddr,
|
|||
|
(char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
|
|||
|
len);
|
|||
|
}
|
|||
|
return len;
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
static void
|
|||
|
udot_info (dummy1, dummy2)
|
|||
|
char *dummy1;
|
|||
|
int dummy2;
|
|||
|
{
|
|||
|
#if defined (KERNEL_U_SIZE)
|
|||
|
int udot_off; /* Offset into user struct */
|
|||
|
int udot_val; /* Value from user struct at udot_off */
|
|||
|
char mess[128]; /* For messages */
|
|||
|
#endif
|
|||
|
|
|||
|
if (!target_has_execution)
|
|||
|
{
|
|||
|
error ("The program is not being run.");
|
|||
|
}
|
|||
|
|
|||
|
#if !defined (KERNEL_U_SIZE)
|
|||
|
|
|||
|
/* Adding support for this command is easy. Typically you just add a
|
|||
|
routine, called "kernel_u_size" that returns the size of the user
|
|||
|
struct, to the appropriate *-nat.c file and then add to the native
|
|||
|
config file "#define KERNEL_U_SIZE kernel_u_size()" */
|
|||
|
error ("Don't know how large ``struct user'' is in this version of gdb.");
|
|||
|
|
|||
|
#else
|
|||
|
|
|||
|
for (udot_off = 0; udot_off < KERNEL_U_SIZE; udot_off += sizeof (udot_val))
|
|||
|
{
|
|||
|
if ((udot_off % 24) == 0)
|
|||
|
{
|
|||
|
if (udot_off > 0)
|
|||
|
{
|
|||
|
printf_filtered ("\n");
|
|||
|
}
|
|||
|
printf_filtered ("%04x:", udot_off);
|
|||
|
}
|
|||
|
udot_val = ptrace (PT_READ_U, inferior_pid, (PTRACE_ARG3_TYPE) udot_off, 0);
|
|||
|
if (errno != 0)
|
|||
|
{
|
|||
|
sprintf (mess, "\nreading user struct at offset 0x%x", udot_off);
|
|||
|
perror_with_name (mess);
|
|||
|
}
|
|||
|
/* Avoid using nonportable (?) "*" in print specs */
|
|||
|
printf_filtered (sizeof (int) == 4 ? " 0x%08x" : " 0x%16x", udot_val);
|
|||
|
}
|
|||
|
printf_filtered ("\n");
|
|||
|
|
|||
|
#endif
|
|||
|
}
|
|||
|
#endif /* !defined (CHILD_XFER_MEMORY). */
|
|||
|
|
|||
|
|
|||
|
void
|
|||
|
_initialize_infptrace ()
|
|||
|
{
|
|||
|
#if !defined (CHILD_XFER_MEMORY)
|
|||
|
add_info ("udot", udot_info,
|
|||
|
"Print contents of kernel ``struct user'' for current child.");
|
|||
|
#endif
|
|||
|
}
|