old-cross-binutils/gdb/config/i386/tm-symmetry.h

292 lines
13 KiB
C
Raw Normal View History

// OBSOLETE /* Target machine definitions for GDB on a Sequent Symmetry under dynix 3.0,
// OBSOLETE with Weitek 1167 and i387 support.
// OBSOLETE
// OBSOLETE Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 2003 Free
// OBSOLETE Software Foundation, Inc.
// OBSOLETE
// OBSOLETE Symmetry version by Jay Vosburgh (fubar@sequent.com).
// OBSOLETE
// OBSOLETE This file is part of GDB.
// OBSOLETE
// OBSOLETE This program is free software; you can redistribute it and/or modify
// OBSOLETE it under the terms of the GNU General Public License as published by
// OBSOLETE the Free Software Foundation; either version 2 of the License, or
// OBSOLETE (at your option) any later version.
// OBSOLETE
// OBSOLETE This program is distributed in the hope that it will be useful,
// OBSOLETE but WITHOUT ANY WARRANTY; without even the implied warranty of
// OBSOLETE MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// OBSOLETE GNU General Public License for more details.
// OBSOLETE
// OBSOLETE You should have received a copy of the GNU General Public License
// OBSOLETE along with this program; if not, write to the Free Software
// OBSOLETE Foundation, Inc., 59 Temple Place - Suite 330,
// OBSOLETE Boston, MA 02111-1307, USA. */
// OBSOLETE
// OBSOLETE #ifndef TM_SYMMETRY_H
// OBSOLETE #define TM_SYMMETRY_H 1
// OBSOLETE
// OBSOLETE #include "regcache.h"
// OBSOLETE #include "doublest.h"
// OBSOLETE
// OBSOLETE /* I don't know if this will work for cross-debugging, even if you do get
// OBSOLETE a copy of the right include file. */
// OBSOLETE #include <machine/reg.h>
// OBSOLETE
// OBSOLETE #include "i386/tm-i386.h"
// OBSOLETE
// OBSOLETE /* Amount PC must be decremented by after a breakpoint. This is often the
// OBSOLETE number of bytes in BREAKPOINT but not always (such as now). */
// OBSOLETE
// OBSOLETE #undef DECR_PC_AFTER_BREAK
// OBSOLETE #define DECR_PC_AFTER_BREAK 0
// OBSOLETE
// OBSOLETE /* Number of machine registers */
// OBSOLETE
// OBSOLETE #undef NUM_REGS
// OBSOLETE #define NUM_REGS 49
// OBSOLETE
// OBSOLETE /* Initializer for an array of names of registers.
// OBSOLETE There should be NUM_REGS strings in this initializer. */
// OBSOLETE
// OBSOLETE /* Initializer for an array of names of registers. There should be at least
// OBSOLETE NUM_REGS strings in this initializer. Any excess ones are simply ignored.
// OBSOLETE Symmetry registers are in this weird order to match the register numbers
// OBSOLETE in the symbol table entries. If you change the order, things will probably
// OBSOLETE break mysteriously for no apparent reason. Also note that the st(0)...
// OBSOLETE st(7) 387 registers are represented as st0...st7. */
// OBSOLETE
// OBSOLETE #undef REGISTER_NAME
// OBSOLETE #define REGISTER_NAMES { "eax", "edx", "ecx", "st0", "st1", \
// OBSOLETE "ebx", "esi", "edi", "st2", "st3", \
// OBSOLETE "st4", "st5", "st6", "st7", "esp", \
// OBSOLETE "ebp", "eip", "eflags","fp1", "fp2", \
// OBSOLETE "fp3", "fp4", "fp5", "fp6", "fp7", \
// OBSOLETE "fp8", "fp9", "fp10", "fp11", "fp12", \
// OBSOLETE "fp13", "fp14", "fp15", "fp16", "fp17", \
// OBSOLETE "fp18", "fp19", "fp20", "fp21", "fp22", \
// OBSOLETE "fp23", "fp24", "fp25", "fp26", "fp27", \
// OBSOLETE "fp28", "fp29", "fp30", "fp31" }
// OBSOLETE
// OBSOLETE /* Register numbers of various important registers.
// OBSOLETE Note that some of these values are "real" register numbers,
// OBSOLETE and correspond to the general registers of the machine,
// OBSOLETE and some are "phony" register numbers which are too large
// OBSOLETE to be actual register numbers as far as the user is concerned
// OBSOLETE but do serve to get the desired values when passed to read_register. */
// OBSOLETE
// OBSOLETE #define EAX_REGNUM 0
// OBSOLETE #define EDX_REGNUM 1
// OBSOLETE #define ECX_REGNUM 2
// OBSOLETE #define ST0_REGNUM 3
// OBSOLETE #define ST1_REGNUM 4
// OBSOLETE #define EBX_REGNUM 5
// OBSOLETE #define ESI_REGNUM 6
// OBSOLETE #define EDI_REGNUM 7
// OBSOLETE #define ST2_REGNUM 8
// OBSOLETE #define ST3_REGNUM 9
// OBSOLETE
// OBSOLETE #define ST4_REGNUM 10
// OBSOLETE #define ST5_REGNUM 11
// OBSOLETE #define ST6_REGNUM 12
// OBSOLETE #define ST7_REGNUM 13
// OBSOLETE
// OBSOLETE #define FP1_REGNUM 18 /* first 1167 register */
// OBSOLETE /* Get %fp2 - %fp31 by addition, since they are contiguous */
// OBSOLETE
// OBSOLETE #undef SP_REGNUM
// OBSOLETE #define SP_REGNUM 14 /* (usp) Contains address of top of stack */
// OBSOLETE #define ESP_REGNUM 14
// OBSOLETE #undef FP_REGNUM
// OBSOLETE #define FP_REGNUM 15 /* (ebp) Contains address of executing stack frame */
// OBSOLETE #define EBP_REGNUM 15
// OBSOLETE #undef PC_REGNUM
// OBSOLETE #define PC_REGNUM 16 /* (eip) Contains program counter */
// OBSOLETE #define EIP_REGNUM 16
// OBSOLETE #undef PS_REGNUM
// OBSOLETE #define PS_REGNUM 17 /* (ps) Contains processor status */
// OBSOLETE #define EFLAGS_REGNUM 17
// OBSOLETE
// OBSOLETE /*
// OBSOLETE * Following macro translates i386 opcode register numbers to Symmetry
// OBSOLETE * register numbers. This is used by i386_frame_find_saved_regs.
// OBSOLETE *
// OBSOLETE * %eax %ecx %edx %ebx %esp %ebp %esi %edi
// OBSOLETE * i386 0 1 2 3 4 5 6 7
// OBSOLETE * Symmetry 0 2 1 5 14 15 6 7
// OBSOLETE *
// OBSOLETE */
// OBSOLETE #define I386_REGNO_TO_SYMMETRY(n) \
// OBSOLETE ((n)==0?0 :(n)==1?2 :(n)==2?1 :(n)==3?5 :(n)==4?14 :(n)==5?15 :(n))
// OBSOLETE
// OBSOLETE /* The magic numbers below are offsets into u_ar0 in the user struct.
// OBSOLETE * They live in <machine/reg.h>. Gdb calls this macro with blockend
// OBSOLETE * holding u.u_ar0 - KERNEL_U_ADDR. Only the registers listed are
// OBSOLETE * saved in the u area (along with a few others that aren't useful
// OBSOLETE * here. See <machine/reg.h>).
// OBSOLETE */
// OBSOLETE
// OBSOLETE #define REGISTER_U_ADDR(addr, blockend, regno) \
// OBSOLETE { struct user foo; /* needed for finding fpu regs */ \
// OBSOLETE switch (regno) { \
// OBSOLETE case 0: \
// OBSOLETE addr = blockend + EAX * sizeof(int); break; \
// OBSOLETE case 1: \
// OBSOLETE addr = blockend + EDX * sizeof(int); break; \
// OBSOLETE case 2: \
// OBSOLETE addr = blockend + ECX * sizeof(int); break; \
// OBSOLETE case 3: /* st(0) */ \
// OBSOLETE addr = ((int)&foo.u_fpusave.fpu_stack[0][0] - (int)&foo); \
// OBSOLETE break; \
// OBSOLETE case 4: /* st(1) */ \
// OBSOLETE addr = ((int) &foo.u_fpusave.fpu_stack[1][0] - (int)&foo); \
// OBSOLETE break; \
// OBSOLETE case 5: \
// OBSOLETE addr = blockend + EBX * sizeof(int); break; \
// OBSOLETE case 6: \
// OBSOLETE addr = blockend + ESI * sizeof(int); break; \
// OBSOLETE case 7: \
// OBSOLETE addr = blockend + EDI * sizeof(int); break; \
// OBSOLETE case 8: /* st(2) */ \
// OBSOLETE addr = ((int) &foo.u_fpusave.fpu_stack[2][0] - (int)&foo); \
// OBSOLETE break; \
// OBSOLETE case 9: /* st(3) */ \
// OBSOLETE addr = ((int) &foo.u_fpusave.fpu_stack[3][0] - (int)&foo); \
// OBSOLETE break; \
// OBSOLETE case 10: /* st(4) */ \
// OBSOLETE addr = ((int) &foo.u_fpusave.fpu_stack[4][0] - (int)&foo); \
// OBSOLETE break; \
// OBSOLETE case 11: /* st(5) */ \
// OBSOLETE addr = ((int) &foo.u_fpusave.fpu_stack[5][0] - (int)&foo); \
// OBSOLETE break; \
// OBSOLETE case 12: /* st(6) */ \
// OBSOLETE addr = ((int) &foo.u_fpusave.fpu_stack[6][0] - (int)&foo); \
// OBSOLETE break; \
// OBSOLETE case 13: /* st(7) */ \
// OBSOLETE addr = ((int) &foo.u_fpusave.fpu_stack[7][0] - (int)&foo); \
// OBSOLETE break; \
// OBSOLETE case 14: \
// OBSOLETE addr = blockend + ESP * sizeof(int); break; \
// OBSOLETE case 15: \
// OBSOLETE addr = blockend + EBP * sizeof(int); break; \
// OBSOLETE case 16: \
// OBSOLETE addr = blockend + EIP * sizeof(int); break; \
// OBSOLETE case 17: \
// OBSOLETE addr = blockend + FLAGS * sizeof(int); break; \
// OBSOLETE case 18: /* fp1 */ \
// OBSOLETE case 19: /* fp2 */ \
// OBSOLETE case 20: /* fp3 */ \
// OBSOLETE case 21: /* fp4 */ \
// OBSOLETE case 22: /* fp5 */ \
// OBSOLETE case 23: /* fp6 */ \
// OBSOLETE case 24: /* fp7 */ \
// OBSOLETE case 25: /* fp8 */ \
// OBSOLETE case 26: /* fp9 */ \
// OBSOLETE case 27: /* fp10 */ \
// OBSOLETE case 28: /* fp11 */ \
// OBSOLETE case 29: /* fp12 */ \
// OBSOLETE case 30: /* fp13 */ \
// OBSOLETE case 31: /* fp14 */ \
// OBSOLETE case 32: /* fp15 */ \
// OBSOLETE case 33: /* fp16 */ \
// OBSOLETE case 34: /* fp17 */ \
// OBSOLETE case 35: /* fp18 */ \
// OBSOLETE case 36: /* fp19 */ \
// OBSOLETE case 37: /* fp20 */ \
// OBSOLETE case 38: /* fp21 */ \
// OBSOLETE case 39: /* fp22 */ \
// OBSOLETE case 40: /* fp23 */ \
// OBSOLETE case 41: /* fp24 */ \
// OBSOLETE case 42: /* fp25 */ \
// OBSOLETE case 43: /* fp26 */ \
// OBSOLETE case 44: /* fp27 */ \
// OBSOLETE case 45: /* fp28 */ \
// OBSOLETE case 46: /* fp29 */ \
// OBSOLETE case 47: /* fp30 */ \
// OBSOLETE case 48: /* fp31 */ \
// OBSOLETE addr = ((int) &foo.u_fpasave.fpa_regs[(regno)-18] - (int)&foo); \
// OBSOLETE } \
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* Total amount of space needed to store our copies of the machine's
// OBSOLETE register state, the array `registers'. 10 i*86 registers, 8 i387
// OBSOLETE registers, and 31 Weitek 1167 registers */
// OBSOLETE
// OBSOLETE #undef REGISTER_BYTES
// OBSOLETE #define REGISTER_BYTES ((10 * 4) + (8 * 10) + (31 * 4))
// OBSOLETE
// OBSOLETE /* Nonzero if register N requires conversion
// OBSOLETE from raw format to virtual format. */
// OBSOLETE
// OBSOLETE #undef REGISTER_CONVERTIBLE
// OBSOLETE #define REGISTER_CONVERTIBLE(N) \
// OBSOLETE (((N) < 3) ? 0 : \
// OBSOLETE ((N) < 5) ? 1 : \
// OBSOLETE ((N) < 8) ? 0 : \
// OBSOLETE ((N) < 14) ? 1 : \
// OBSOLETE 0)
// OBSOLETE
// OBSOLETE #include "floatformat.h"
// OBSOLETE
// OBSOLETE /* Convert data from raw format for register REGNUM in buffer FROM
// OBSOLETE to virtual format with type TYPE in buffer TO. */
// OBSOLETE
// OBSOLETE #undef REGISTER_CONVERT_TO_VIRTUAL
// OBSOLETE #define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,TYPE,FROM,TO) \
// OBSOLETE { \
// OBSOLETE DOUBLEST val; \
// OBSOLETE floatformat_to_doublest (&floatformat_i387_ext, (FROM), &val); \
// OBSOLETE deprecated_store_floating ((TO), TYPE_LENGTH (TYPE), val); \
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* Convert data from virtual format with type TYPE in buffer FROM
// OBSOLETE to raw format for register REGNUM in buffer TO. */
// OBSOLETE
// OBSOLETE #undef REGISTER_CONVERT_TO_RAW
// OBSOLETE #define REGISTER_CONVERT_TO_RAW(TYPE,REGNUM,FROM,TO) \
// OBSOLETE { \
// OBSOLETE DOUBLEST val = deprecated_extract_floating ((FROM), TYPE_LENGTH (TYPE)); \
// OBSOLETE floatformat_from_doublest (&floatformat_i387_ext, &val, (TO)); \
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* Return the GDB type object for the "standard" data type
// OBSOLETE of data in register N. */
// OBSOLETE
// OBSOLETE #undef REGISTER_VIRTUAL_TYPE
// OBSOLETE #define REGISTER_VIRTUAL_TYPE(N) \
// OBSOLETE ((N < 3) ? builtin_type_int : \
// OBSOLETE (N < 5) ? builtin_type_double : \
// OBSOLETE (N < 8) ? builtin_type_int : \
// OBSOLETE (N < 14) ? builtin_type_double : \
// OBSOLETE builtin_type_int)
// OBSOLETE
// OBSOLETE /* Store the address of the place in which to copy the structure the
// OBSOLETE subroutine will return. This is called from call_function.
// OBSOLETE Native cc passes the address in eax, gcc (up to version 2.5.8)
// OBSOLETE passes it on the stack. gcc should be fixed in future versions to
// OBSOLETE adopt native cc conventions. */
// OBSOLETE
// OBSOLETE #undef DEPRECATED_PUSH_ARGUMENTS
// OBSOLETE #undef STORE_STRUCT_RETURN
// OBSOLETE #define STORE_STRUCT_RETURN(ADDR, SP) write_register(0, (ADDR))
// OBSOLETE
// OBSOLETE /* Extract from an array REGBUF containing the (raw) register state
// OBSOLETE a function return value of type TYPE, and copy that, in virtual format,
// OBSOLETE into VALBUF. */
// OBSOLETE
// OBSOLETE #undef DEPRECATED_EXTRACT_RETURN_VALUE
// OBSOLETE #define DEPRECATED_EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
// OBSOLETE symmetry_extract_return_value(TYPE, REGBUF, VALBUF)
// OBSOLETE
// OBSOLETE /* The following redefines make backtracing through sigtramp work.
// OBSOLETE They manufacture a fake sigtramp frame and obtain the saved pc in sigtramp
// OBSOLETE from the sigcontext structure which is pushed by the kernel on the
// OBSOLETE user stack, along with a pointer to it. */
// OBSOLETE
// OBSOLETE #define IN_SIGTRAMP(pc, name) ((name) && STREQ ("_sigcode", name))
// OBSOLETE
// OBSOLETE /* Offset to saved PC in sigcontext, from <signal.h>. */
// OBSOLETE #define SIGCONTEXT_PC_OFFSET 16
// OBSOLETE
// OBSOLETE #endif /* ifndef TM_SYMMETRY_H */