2013-02-04 18:20:05 +00:00
|
|
|
/* GNU/Linux/AArch64 specific low level interface, for the remote server for
|
|
|
|
GDB.
|
|
|
|
|
2015-01-01 09:32:14 +00:00
|
|
|
Copyright (C) 2009-2015 Free Software Foundation, Inc.
|
2013-02-04 18:20:05 +00:00
|
|
|
Contributed by ARM Ltd.
|
|
|
|
|
|
|
|
This file is part of GDB.
|
|
|
|
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
|
|
(at your option) any later version.
|
|
|
|
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
|
|
|
|
#include "server.h"
|
|
|
|
#include "linux-low.h"
|
2015-08-25 10:38:29 +00:00
|
|
|
#include "nat/aarch64-linux.h"
|
Move common aarch64 HW breakpoint/watchpoint code to nat/
When I look at test fails related to watchpoint on aarch64-linux,
I find there are some code duplicates between GDB and GDBserver.
This patch is to move some of them to a nat/aarch64-linux-hw-point.{h,c}.
The only change I do is about the dr_changed_t typedef, which was
ULONGEST in GDB and 'unsigned long long' in GDBserver. Each bit
of dr_changed_t represents a status of each HW breakpoint or
watchpoint register, and the max number of HW breakpoint or watchpoint
registers is 16, so the width of 'unsigned long long' is sufficient.
gdb:
2015-07-17 Yao Qi <yao.qi@linaro.org>
* Makefile.in (HFILES_NO_SRCDIR): Add
nat/aarch64-linux-hw-point.h.
(aarch64-linux-hw-point.o): New rule.
* nat/aarch64-linux-hw-point.h: New file.
* nat/aarch64-linux-hw-point.c: New file.
* aarch64-linux-nat.c: Include nat/aarch64-linux-hw-point.h.
(AARCH64_HBP_MAX_NUM): Move to nat/aarch64-linux-hw-point.h.
(AARCH64_HWP_MAX_NUM, AARCH64_HBP_ALIGNMENT): Likewise.
(AARCH64_HWP_ALIGNMENT): Likewise.
(AARCH64_HWP_MAX_LEN_PER_REG): Likewise.
(AARCH64_DEBUG_NUM_SLOTS, AARCH64_DEBUG_ARCH): Likewise.
(AARCH64_DEBUG_ARCH_V8, DR_MARK_ALL_CHANGED): Likewise.
(DR_MARK_N_CHANGED, DR_CLEAR_CHANGED): Likewise.
(DR_HAS_CHANGED, DR_N_HAS_CHANGE): Likewise.
(aarch64_num_bp_regs, aarch64_num_wp_regs): Likewise.
(struct aarch64_debug_reg_state): Likewise.
(struct arch_lwp_info): Likewise.
(aarch64_linux_set_debug_regs): Likewise.
(aarch64_notify_debug_reg_change): Remove static.
(aarch64_align_watchpoint): Likewise.
(DR_CONTROL_ENABLED, DR_CONTROL_LENGTH): Likewise.
(aarch64_watchpoint_length): Likewise.
(aarch64_point_encode_ctrl_reg): Likewise
(aarch64_point_is_aligned): Likewise.
(aarch64_dr_state_insert_one_point): Likewise.
(aarch64_dr_state_remove_one_point): Likewise.
(aarch64_handle_breakpoint): Likewise.
(aarch64_handle_aligned_watchpoint): Likewise.
(aarch64_handle_unaligned_watchpoint): Likewise.
(aarch64_handle_watchpoint): Likewise.
* config/aarch64/linux.mh (NAT_FILE): Add
aarch64-linux-hw-point.o.
gdb/gdbserver:
2015-07-17 Yao Qi <yao.qi@linaro.org>
* Makefile.in (aarch64-linux-hw-point.o): New rule.
* configure.srv (srv_tgtobj): Append aarch64-linux-hw-point.o.
* linux-aarch64-low.c: Include nat/aarch64-linux-hw-point.h.
(AARCH64_HBP_MAX_NUM): Move to nat/aarch64-linux-hw-point.h.
(AARCH64_HWP_MAX_NUM, AARCH64_HBP_ALIGNMENT): Likewise.
(AARCH64_HWP_ALIGNMENT): Likewise.
(AARCH64_HWP_MAX_LEN_PER_REG): Likewise.
(AARCH64_DEBUG_NUM_SLOTS, AARCH64_DEBUG_ARCH): Likewise.
(aarch64_num_bp_regs, aarch64_num_wp_regs): Likewise.
(AARCH64_DEBUG_ARCH_V8, DR_MARK_ALL_CHANGED): Likewise.
(DR_MARK_N_CHANGED, DR_CLEAR_CHANGED): Likewise.
(DR_HAS_CHANGED, DR_N_HAS_CHANGE): Likewise.
(struct aarch64_debug_reg_state): Likewise.
(struct arch_lwp_info): Likewise.
(aarch64_align_watchpoint): Likewise.
(DR_CONTROL_ENABLED, DR_CONTROL_LENGTH): Likewise.
(aarch64_watchpoint_length): Likewise.
(aarch64_point_encode_ctrl_reg): Likewise
(aarch64_point_is_aligned): Likewise.
(aarch64_align_watchpoint): Likewise.
(aarch64_linux_set_debug_regs):
(aarch64_dr_state_insert_one_point): Likewise.
(aarch64_dr_state_remove_one_point): Likewise.
(aarch64_handle_breakpoint): Likewise.
(aarch64_handle_aligned_watchpoint): Likewise.
(aarch64_handle_unaligned_watchpoint): Likewise.
(aarch64_handle_watchpoint): Likewise.
2015-07-17 13:32:40 +00:00
|
|
|
#include "nat/aarch64-linux-hw-point.h"
|
2015-08-04 13:34:14 +00:00
|
|
|
#include "linux-aarch32-low.h"
|
2013-02-04 18:20:05 +00:00
|
|
|
#include "elf/common.h"
|
|
|
|
|
|
|
|
#include <signal.h>
|
|
|
|
#include <sys/user.h>
|
2015-07-24 13:57:20 +00:00
|
|
|
#include "nat/gdb_ptrace.h"
|
2014-05-23 08:01:14 +00:00
|
|
|
#include <asm/ptrace.h>
|
2013-02-04 18:20:05 +00:00
|
|
|
#include <sys/uio.h>
|
|
|
|
|
|
|
|
#include "gdb_proc_service.h"
|
|
|
|
|
|
|
|
/* Defined in auto-generated files. */
|
|
|
|
void init_registers_aarch64 (void);
|
[GDBserver] Multi-process + multi-arch
This patch makes GDBserver support multi-process + biarch.
Currently, if you're debugging more than one process at once with a
single gdbserver (in extended-remote mode), then all processes must
have the same architecture (e.g., 64-bit vs 32-bit). Otherwise, you
see this:
Added inferior 2
[Switching to inferior 2 [<null>] (<noexec>)]
Reading symbols from /home/pedro/gdb/tests/main32...done.
Temporary breakpoint 2 at 0x4004cf: main. (2 locations)
Starting program: /home/pedro/gdb/tests/main32
warning: Selected architecture i386 is not compatible with reported target architecture i386:x86-64
warning: Architecture rejected target-supplied description
Remote 'g' packet reply is too long: 000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000090cfffff0000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000000000000000000b042f7460000000000020000230000002b0000002b0000002b000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000007f03000000000000ffff0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000801f00003b0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
... etc, etc ...
Even though the process was running a 32-bit program, GDBserver sent
back to GDB a register set in 64-bit layout.
A patch (http://sourceware.org/ml/gdb-patches/2012-11/msg00228.html) a
while ago made GDB track a target_gdbarch per inferior, and as
consequence, fetch a target description per-inferior. This patch is
the GDBserver counterpart, that makes GDBserver keep track of each
process'es XML target description and register layout. So in the
example above, GDBserver will send the correct register set in 32-bit
layout to GDB.
A new "struct target_desc" object (tdesc for short) is added, that
holds the target description and register layout information about
each process. Each `struct process_info' holds a pointer to a target
description. The regcache also gains a pointer to a target
description, mainly for convenience, and parallel with GDB (and
possible future support for programs that flip processor modes).
The low target's arch_setup routines are responsible for setting the
process'es correct tdesc. This isn't that much different to how
things were done before, except that instead of detecting the inferior
process'es architecture and calling the corresponding
init_registers_FOO routine, which would change the regcache layout
globals and recreate the threads' regcaches, the regcache.c globals
are gone, and the init_registers_$BAR routines now each initialize a
separate global struct target_desc object (one for each arch variant
GDBserver supports), and so all the init_registers_$BAR routines that
are built into GDBserver are called early at GDBserver startup time
(similarly to how GDB handles its built-in target descriptions), and
then the arch_setup routine is responsible for making
process_info->tdesc point to one of these target description globals.
The regcache module is all parameterized to get the regcache's layout
from the tdesc object instead of the old register_bytes, etc. globals.
The threads' regcaches are now created lazily. The old scheme where
we created each of them when we added a new thread doesn't work
anymore, because we add the main thread/lwp before we see it stop for
the first time, and it is only when we see the thread stop for the
first time that we have a chance of determining the inferior's
architecture (through the_low_target.arch_setup). Therefore when we
add the main thread we don't know which architecture/tdesc its
regcache should have.
This patch makes the gdb.multi/multi-arch.exp test now pass against
(extended-remote) GDBserver. It currently fails, without this patch.
The IPA also uses the regcache, so it gains a new global struct
target_desc pointer, which points at the description of the process it
is loaded in.
Re. the linux-low.c & friends changes. Since the register map
etc. may differ between processes (64-bit vs 32-bit) etc., the
linux_target_ops num_regs, regmap and regset_bitmap data fields are no
longer sufficient. A new method is added in their place that returns
a pointer to a new struct that includes all info linux-low.c needs to
access registers of the current inferior.
The patch/discussion that originally introduced
linux-low.c:disabled_regsets mentions that the disabled_regsets set
may be different per mode (in a biarch setup), and indeed that is
cleared whenever we start a new (first) inferior, so that global is
moved as well behind the new `struct regs_info'.
On the x86 side:
I simply replaced the i387-fp.c:num_xmm_registers global with a check
for 64-bit or 32-bit process, which is equivalent to how the global
was set. This avoided coming up with some more general mechanism that
would work for all targets that use this module (GNU/Linux, Windows,
etc.).
Tested:
GNU/Linux IA64
GNU/Linux MIPS64
GNU/Linux PowerPC (Fedora 16)
GNU/Linux s390x (Fedora 16)
GNU/Linux sparc64 (Debian)
GNU/Linux x86_64, -m64 and -m32 (Fedora 17)
Cross built, and smoke tested:
i686-w64-mingw32, under Wine.
GNU/Linux TI C6x, by Yao Qi.
Cross built but otherwise not tested:
aarch64-linux-gnu
arm-linux-gnu
m68k-linux
nios2-linux-gnu
sh-linux-gnu
spu
tilegx-unknown-linux-gnu
Completely untested:
GNU/Linux Blackfin
GNU/Linux CRIS
GNU/Linux CRISv32
GNU/Linux TI Xtensa
GNU/Linux M32R
LynxOS
QNX NTO
gdb/gdbserver/
2013-06-07 Pedro Alves <palves@redhat.com>
* Makefile.in (OBS): Add tdesc.o.
(IPA_OBJS): Add tdesc-ipa.o.
(tdesc-ipa.o): New rule.
* ax.c (gdb_eval_agent_expr): Adjust register_size call to new
interface.
* linux-low.c (new_inferior): Delete.
(disabled_regsets, num_regsets): Delete.
(linux_add_process): Adjust to set the new per-process
new_inferior flag.
(linux_detach_one_lwp): Adjust to call regcache_invalidate_thread.
(linux_wait_for_lwp): Adjust. Only call arch_setup if the event
was a stop. When calling arch_setup, switch the current inferior
to the thread that got an event.
(linux_resume_one_lwp): Adjust to call regcache_invalidate_thread.
(regsets_fetch_inferior_registers)
(regsets_store_inferior_registers): New regsets_info parameter.
Adjust to use it.
(linux_register_in_regsets): New regs_info parameter. Adjust to
use it.
(register_addr, fetch_register, store_register): New usrregs_info
parameter. Adjust to use it.
(usr_fetch_inferior_registers, usr_store_inferior_registers): New
parameter regs_info. Adjust to use it.
(linux_fetch_registers): Get the current inferior's regs_info, and
adjust to use it.
(linux_store_registers): Ditto.
[HAVE_LINUX_REGSETS] (initialize_regsets_info): New.
(initialize_low): Don't initialize the target_regsets here. Call
initialize_low_arch.
* linux-low.h (target_regsets): Delete declaration.
(struct regsets_info): New.
(struct usrregs_info): New.
(struct regs_info): New.
(struct process_info_private) <new_inferior>: New field.
(struct linux_target_ops): Delete the num_regs, regmap, and
regset_bitmap fields. New field regs_info.
[HAVE_LINUX_REGSETS] (initialize_regsets_info): Declare.
* i387-fp.c (num_xmm_registers): Delete.
(i387_cache_to_fsave, i387_fsave_to_cache): Adjust find_regno
calls to new interface.
(i387_cache_to_fxsave, i387_cache_to_xsave, i387_fxsave_to_cache)
(i387_xsave_to_cache): Adjust find_regno calls to new interface.
Infer the number of xmm registers from the regcache's target
description.
* i387-fp.h (num_xmm_registers): Delete.
* inferiors.c (add_thread): Don't install the thread's regcache
here.
* proc-service.c (gregset_info): Fetch the current inferior's
regs_info. Adjust to use it.
* regcache.c: Include tdesc.h.
(register_bytes, reg_defs, num_registers)
(gdbserver_expedite_regs): Delete.
(get_thread_regcache): If the thread doesn't have a regcache yet,
create one, instead of aborting gdbserver.
(regcache_invalidate_one): Rename to ...
(regcache_invalidate_thread): ... this.
(regcache_invalidate_one): New.
(regcache_invalidate): Only invalidate registers of the current
process.
(init_register_cache): Add target_desc parameter, and use it.
(new_register_cache): Ditto. Assert the target description has a
non zero registers_size.
(regcache_cpy): Add assertions. Adjust.
(realloc_register_cache, set_register_cache): Delete.
(registers_to_string, registers_from_string): Adjust.
(find_register_by_name, find_regno, find_register_by_number)
(register_cache_size): Add target_desc parameter, and use it.
(free_register_cache_thread, free_register_cache_thread_one)
(regcache_release, register_cache_size): New.
(register_size): Add target_desc parameter, and use it.
(register_data, supply_register, supply_register_zeroed)
(supply_regblock, supply_register_by_name, collect_register)
(collect_register_as_string, collect_register_by_name): Adjust.
* regcache.h (struct target_desc): Forward declare.
(struct regcache) <tdesc>: New field.
(init_register_cache, new_register_cache): Add target_desc
parameter.
(regcache_invalidate_thread): Declare.
(regcache_invalidate_one): Delete declaration.
(regcache_release): Declare.
(find_register_by_number, register_cache_size, register_size)
(find_regno): Add target_desc parameter.
(gdbserver_expedite_regs, gdbserver_xmltarget): Delete
declarations.
* remote-utils.c: Include tdesc.h.
(outreg, prepare_resume_reply): Adjust.
* server.c: Include tdesc.h.
(gdbserver_xmltarget): Delete declaration.
(get_features_xml, process_serial_event): Adjust.
* server.h [IN_PROCESS_AGENT] (struct target_desc): Forward
declare.
(struct process_info) <tdesc>: New field.
(ipa_tdesc): Declare.
* tdesc.c: New file.
* tdesc.h: New file.
* tracepoint.c: Include tdesc.h.
[IN_PROCESS_AGENT] (ipa_tdesc): Define.
(get_context_regcache): Adjust to pass ipa_tdesc down.
(do_action_at_tracepoint): Adjust to get the register cache size
from the context regcache's description.
(traceframe_walk_blocks): Adjust to get the register cache size
from the current trace frame's description.
(traceframe_get_pc): Adjust to get current trace frame's
description and pass it down.
(gdb_collect): Adjust to get the register cache size from the
IPA's description.
* linux-amd64-ipa.c (tdesc_amd64_linux): Declare.
(gdbserver_xmltarget): Delete.
(initialize_low_tracepoint): Set the ipa's target description.
* linux-i386-ipa.c (tdesc_i386_linux): Declare.
(initialize_low_tracepoint): Set the ipa's target description.
* linux-x86-low.c: Include tdesc.h.
[__x86_64__] (is_64bit_tdesc): New.
(ps_get_thread_area, x86_get_thread_area): Use it.
(i386_cannot_store_register): Rename to ...
(x86_cannot_store_register): ... this. Use is_64bit_tdesc.
(i386_cannot_fetch_register): Rename to ...
(x86_cannot_fetch_register): ... this. Use is_64bit_tdesc.
(x86_fill_gregset, x86_store_gregset): Adjust register_size calls
to new interface.
(target_regsets): Rename to ...
(x86_regsets): ... this.
(x86_get_pc, x86_set_pc): Adjust register_size calls to new
interface.
(x86_siginfo_fixup): Use is_64bit_tdesc.
[__x86_64__] (tdesc_amd64_linux, tdesc_amd64_avx_linux)
(tdesc_x32_avx_linux, tdesc_x32_linux)
(tdesc_i386_linux, tdesc_i386_mmx_linux, tdesc_i386_avx_linux):
Declare.
(x86_linux_update_xmltarget): Delete.
(I386_LINUX_XSAVE_XCR0_OFFSET): Define.
(have_ptrace_getfpxregs, have_ptrace_getregset): New.
(AMD64_LINUX_USER64_CS): New.
(x86_linux_read_description): New, based on
x86_linux_update_xmltarget.
(same_process_callback): New.
(x86_arch_setup_process_callback): New.
(x86_linux_update_xmltarget): New.
(x86_regsets_info): New.
(amd64_linux_regs_info): New.
(i386_linux_usrregs_info): New.
(i386_linux_regs_info): New.
(x86_linux_regs_info): New.
(x86_arch_setup): Reimplement.
(x86_install_fast_tracepoint_jump_pad): Use is_64bit_tdesc.
(x86_emit_ops): Ditto.
(the_low_target): Adjust. Install x86_linux_regs_info,
x86_cannot_fetch_register, and x86_cannot_store_register.
(initialize_low_arch): New.
* linux-ia64-low.c (tdesc_ia64): Declare.
(ia64_fetch_register): Adjust.
(ia64_usrregs_info, regs_info): New globals.
(ia64_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-sparc-low.c (tdesc_sparc64): Declare.
(sparc_fill_gregset_to_stack, sparc_store_gregset_from_stack):
Adjust.
(sparc_arch_setup): New function.
(sparc_regsets_info, sparc_usrregs_info, regs_info): New globals.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-ppc-low.c (tdesc_powerpc_32l, tdesc_powerpc_altivec32l)
(tdesc_powerpc_cell32l, tdesc_powerpc_vsx32l)
(tdesc_powerpc_isa205_32l, tdesc_powerpc_isa205_altivec32l)
(tdesc_powerpc_isa205_vsx32l, tdesc_powerpc_e500l)
(tdesc_powerpc_64l, tdesc_powerpc_altivec64l)
(tdesc_powerpc_cell64l, tdesc_powerpc_vsx64l)
(tdesc_powerpc_isa205_64l, tdesc_powerpc_isa205_altivec64l)
(tdesc_powerpc_isa205_vsx64l): Declare.
(ppc_cannot_store_register, ppc_collect_ptrace_register)
(ppc_supply_ptrace_register, parse_spufs_run, ppc_get_pc)
(ppc_set_pc, ppc_get_hwcap): Adjust.
(ppc_usrregs_info): Forward declare.
(!__powerpc64__) ppc_regmap_adjusted: New global.
(ppc_arch_setup): Adjust to the current process'es target
description.
(ppc_fill_vsxregset, ppc_store_vsxregset, ppc_fill_vrregset)
(ppc_store_vrregset, ppc_fill_evrregset, ppc_store_evrregse)
(ppc_store_evrregset): Adjust.
(target_regsets): Rename to ...
(ppc_regsets): ... this, and make static.
(ppc_usrregs_info, ppc_regsets_info, regs_info): New globals.
(ppc_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-s390-low.c (tdesc_s390_linux32, tdesc_s390_linux32v1)
(tdesc_s390_linux32v2, tdesc_s390_linux64, tdesc_s390_linux64v1)
(tdesc_s390_linux64v2, tdesc_s390x_linux64, tdesc_s390x_linux64v1)
(tdesc_s390x_linux64v2): Declare.
(s390_collect_ptrace_register, s390_supply_ptrace_register)
(s390_fill_gregset, s390_store_last_break): Adjust.
(target_regsets): Rename to ...
(s390_regsets): ... this, and make static.
(s390_get_pc, s390_set_pc): Adjust.
(s390_get_hwcap): New target_desc parameter, and use it.
[__s390x__] (have_hwcap_s390_high_gprs): New global.
(s390_arch_setup): Adjust to set the current process'es target
description. Don't adjust the regmap.
(s390_usrregs_info, s390_regsets_info, regs_info): New globals.
[__s390x__] (s390_usrregs_info_3264, s390_regsets_info_3264)
(regs_info_3264): New globals.
(s390_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-mips-low.c (tdesc_mips_linux, tdesc_mips_dsp_linux)
(tdesc_mips64_linux, tdesc_mips64_dsp_linux): Declare.
[__mips64] (init_registers_mips_linux)
(init_registers_mips_dsp_linux): Delete defines.
[__mips64] (tdesc_mips_linux, tdesc_mips_dsp_linux): New defines.
(have_dsp): New global.
(mips_read_description): New, based on mips_arch_setup.
(mips_arch_setup): Reimplement.
(get_usrregs_info): New function.
(mips_cannot_fetch_register, mips_cannot_store_register)
(mips_get_pc, mips_set_pc, mips_fill_gregset, mips_store_gregset)
(mips_fill_fpregset, mips_store_fpregset): Adjust.
(target_regsets): Rename to ...
(mips_regsets): ... this, and make static.
(mips_regsets_info, mips_dsp_usrregs_info, mips_usrregs_info)
(dsp_regs_info, regs_info): New globals.
(mips_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-arm-low.c (tdesc_arm, tdesc_arm_with_iwmmxt)
(tdesc_arm_with_vfpv2, tdesc_arm_with_vfpv3, tdesc_arm_with_neon):
Declare.
(arm_fill_vfpregset, arm_store_vfpregset): Adjust.
(arm_read_description): New, with bits factored from
arm_arch_setup.
(arm_arch_setup): Reimplement.
(target_regsets): Rename to ...
(arm_regsets): ... this, and make static.
(arm_regsets_info, arm_usrregs_info, regs_info): New globals.
(arm_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-m68k-low.c (tdesc_m68k): Declare.
(target_regsets): Rename to ...
(m68k_regsets): ... this, and make static.
(m68k_regsets_info, m68k_usrregs_info, regs_info): New globals.
(m68k_regs_info): New function.
(m68k_arch_setup): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-sh-low.c (tdesc_sharch): Declare.
(target_regsets): Rename to ...
(sh_regsets): ... this, and make static.
(sh_regsets_info, sh_usrregs_info, regs_info): New globals.
(sh_regs_info, sh_arch_setup): New functions.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-bfin-low.c (tdesc_bfin): Declare.
(bfin_arch_setup): New function.
(bfin_usrregs_info, regs_info): New globals.
(bfin_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-cris-low.c (tdesc_cris): Declare.
(cris_arch_setup): New function.
(cris_usrregs_info, regs_info): New globals.
(cris_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-cris-low.c (tdesc_crisv32): Declare.
(cris_arch_setup): New function.
(cris_regsets_info, cris_usrregs_info, regs_info): New globals.
(cris_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-m32r-low.c (tdesc_m32r): Declare.
(m32r_arch_setup): New function.
(m32r_usrregs_info, regs_info): New globals.
(m32r_regs_info): Adjust.
(initialize_low_arch): New function.
* linux-tic6x-low.c (tdesc_tic6x_c64xp_linux)
(tdesc_tic6x_c64x_linux, tdesc_tic6x_c62x_linux): Declare.
(tic6x_usrregs_info): Forward declare.
(tic6x_read_description): New function, based on ...
(tic6x_arch_setup): ... this. Reimplement.
(target_regsets): Rename to ...
(tic6x_regsets): ... this, and make static.
(tic6x_regsets_info, tic6x_usrregs_info, regs_info): New globals.
(tic6x_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-xtensa-low.c (tdesc_xtensa): Declare.
(xtensa_fill_gregset, xtensa_store_gregset): Adjust.
(target_regsets): Rename to ...
(xtensa_regsets): ... this, and make static.
(xtensa_regsets_info, xtensa_usrregs_info, regs_info): New
globals.
(xtensa_arch_setup, xtensa_regs_info): New functions.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-nios2-low.c (tdesc_nios2_linux): Declare.
(nios2_arch_setup): Set the current process'es tdesc.
(target_regsets): Rename to ...
(nios2_regsets): ... this.
(nios2_regsets_info, nios2_usrregs_info, regs_info): New globals.
(nios2_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-aarch64-low.c (tdesc_aarch64): Declare.
(aarch64_arch_setup): Set the current process'es tdesc.
(target_regsets): Rename to ...
(aarch64_regsets): ... this.
(aarch64_regsets_info, aarch64_usrregs_info, regs_info): New globals.
(aarch64_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-tile-low.c (tdesc_tilegx, tdesc_tilegx32): Declare
globals.
(target_regsets): Rename to ...
(tile_regsets): ... this.
(tile_regsets_info, tile_usrregs_info, regs_info): New globals.
(tile_regs_info): New function.
(tile_arch_setup): Set the current process'es tdesc.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* spu-low.c (tdesc_spu): Declare.
(spu_create_inferior, spu_attach): Set the new process'es tdesc.
* win32-arm-low.c (tdesc_arm): Declare.
(arm_arch_setup): New function.
(the_low_target): Install arm_arch_setup instead of
init_registers_arm.
* win32-i386-low.c (tdesc_i386, tdesc_amd64): Declare.
(init_windows_x86): Rename to ...
(i386_arch_setup): ... this. Set `win32_tdesc'.
(the_low_target): Adjust.
* win32-low.c (win32_tdesc): New global.
(child_add_thread): Don't create the thread cache here.
(do_initial_child_stuff): Set the new process'es tdesc.
* win32-low.h (struct target_desc): Forward declare.
(win32_tdesc): Declare.
* lynx-i386-low.c (tdesc_i386): Declare global.
(lynx_i386_arch_setup): Set `lynx_tdesc'.
* lynx-low.c (lynx_tdesc): New global.
(lynx_add_process): Set the new process'es tdesc.
* lynx-low.h (struct target_desc): Forward declare.
(lynx_tdesc): Declare global.
* lynx-ppc-low.c (tdesc_powerpc_32): Declare global.
(lynx_ppc_arch_setup): Set `lynx_tdesc'.
* nto-low.c (nto_tdesc): New global.
(do_attach): Set the new process'es tdesc.
* nto-low.h (struct target_desc): Forward declare.
(nto_tdesc): Declare.
* nto-x86-low.c (tdesc_i386): Declare.
(nto_x86_arch_setup): Set `nto_tdesc'.
gdb/
2013-06-07 Pedro Alves <palves@redhat.com>
* regformats/regdat.sh: Output #include tdesc.h. Make globals
static. Output a global target description pointer.
(init_registers_${name}): Adjust to initialize a
target description structure.
2013-06-07 10:46:59 +00:00
|
|
|
extern const struct target_desc *tdesc_aarch64;
|
2013-02-04 18:20:05 +00:00
|
|
|
|
|
|
|
#ifdef HAVE_SYS_REG_H
|
|
|
|
#include <sys/reg.h>
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#define AARCH64_X_REGS_NUM 31
|
|
|
|
#define AARCH64_V_REGS_NUM 32
|
|
|
|
#define AARCH64_X0_REGNO 0
|
|
|
|
#define AARCH64_SP_REGNO 31
|
|
|
|
#define AARCH64_PC_REGNO 32
|
|
|
|
#define AARCH64_CPSR_REGNO 33
|
|
|
|
#define AARCH64_V0_REGNO 34
|
2014-12-16 07:51:42 +00:00
|
|
|
#define AARCH64_FPSR_REGNO (AARCH64_V0_REGNO + AARCH64_V_REGS_NUM)
|
|
|
|
#define AARCH64_FPCR_REGNO (AARCH64_V0_REGNO + AARCH64_V_REGS_NUM + 1)
|
2013-02-04 18:20:05 +00:00
|
|
|
|
2014-12-16 07:51:42 +00:00
|
|
|
#define AARCH64_NUM_REGS (AARCH64_V0_REGNO + AARCH64_V_REGS_NUM + 2)
|
2013-02-04 18:20:05 +00:00
|
|
|
|
|
|
|
/* Per-process arch-specific data we want to keep. */
|
|
|
|
|
|
|
|
struct arch_process_info
|
|
|
|
{
|
|
|
|
/* Hardware breakpoint/watchpoint data.
|
|
|
|
The reason for them to be per-process rather than per-thread is
|
|
|
|
due to the lack of information in the gdbserver environment;
|
|
|
|
gdbserver is not told that whether a requested hardware
|
|
|
|
breakpoint/watchpoint is thread specific or not, so it has to set
|
|
|
|
each hw bp/wp for every thread in the current process. The
|
|
|
|
higher level bp/wp management in gdb will resume a thread if a hw
|
|
|
|
bp/wp trap is not expected for it. Since the hw bp/wp setting is
|
|
|
|
same for each thread, it is reasonable for the data to live here.
|
|
|
|
*/
|
|
|
|
struct aarch64_debug_reg_state debug_reg_state;
|
|
|
|
};
|
|
|
|
|
2015-08-04 13:34:14 +00:00
|
|
|
/* Return true if the size of register 0 is 8 byte. */
|
|
|
|
|
|
|
|
static int
|
|
|
|
is_64bit_tdesc (void)
|
|
|
|
{
|
|
|
|
struct regcache *regcache = get_thread_regcache (current_thread, 0);
|
|
|
|
|
|
|
|
return register_size (regcache->tdesc, 0) == 8;
|
|
|
|
}
|
|
|
|
|
2015-07-02 11:11:47 +00:00
|
|
|
/* Implementation of linux_target_ops method "cannot_store_register". */
|
|
|
|
|
2013-02-04 18:20:05 +00:00
|
|
|
static int
|
|
|
|
aarch64_cannot_store_register (int regno)
|
|
|
|
{
|
|
|
|
return regno >= AARCH64_NUM_REGS;
|
|
|
|
}
|
|
|
|
|
2015-07-02 11:11:47 +00:00
|
|
|
/* Implementation of linux_target_ops method "cannot_fetch_register". */
|
|
|
|
|
2013-02-04 18:20:05 +00:00
|
|
|
static int
|
|
|
|
aarch64_cannot_fetch_register (int regno)
|
|
|
|
{
|
|
|
|
return regno >= AARCH64_NUM_REGS;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
aarch64_fill_gregset (struct regcache *regcache, void *buf)
|
|
|
|
{
|
|
|
|
struct user_pt_regs *regset = buf;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; i < AARCH64_X_REGS_NUM; i++)
|
|
|
|
collect_register (regcache, AARCH64_X0_REGNO + i, ®set->regs[i]);
|
|
|
|
collect_register (regcache, AARCH64_SP_REGNO, ®set->sp);
|
|
|
|
collect_register (regcache, AARCH64_PC_REGNO, ®set->pc);
|
|
|
|
collect_register (regcache, AARCH64_CPSR_REGNO, ®set->pstate);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
aarch64_store_gregset (struct regcache *regcache, const void *buf)
|
|
|
|
{
|
|
|
|
const struct user_pt_regs *regset = buf;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; i < AARCH64_X_REGS_NUM; i++)
|
|
|
|
supply_register (regcache, AARCH64_X0_REGNO + i, ®set->regs[i]);
|
|
|
|
supply_register (regcache, AARCH64_SP_REGNO, ®set->sp);
|
|
|
|
supply_register (regcache, AARCH64_PC_REGNO, ®set->pc);
|
|
|
|
supply_register (regcache, AARCH64_CPSR_REGNO, ®set->pstate);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
aarch64_fill_fpregset (struct regcache *regcache, void *buf)
|
|
|
|
{
|
|
|
|
struct user_fpsimd_state *regset = buf;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; i < AARCH64_V_REGS_NUM; i++)
|
|
|
|
collect_register (regcache, AARCH64_V0_REGNO + i, ®set->vregs[i]);
|
2014-12-16 07:51:42 +00:00
|
|
|
collect_register (regcache, AARCH64_FPSR_REGNO, ®set->fpsr);
|
|
|
|
collect_register (regcache, AARCH64_FPCR_REGNO, ®set->fpcr);
|
2013-02-04 18:20:05 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
aarch64_store_fpregset (struct regcache *regcache, const void *buf)
|
|
|
|
{
|
|
|
|
const struct user_fpsimd_state *regset = buf;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; i < AARCH64_V_REGS_NUM; i++)
|
|
|
|
supply_register (regcache, AARCH64_V0_REGNO + i, ®set->vregs[i]);
|
2014-12-16 07:51:42 +00:00
|
|
|
supply_register (regcache, AARCH64_FPSR_REGNO, ®set->fpsr);
|
|
|
|
supply_register (regcache, AARCH64_FPCR_REGNO, ®set->fpcr);
|
2013-02-04 18:20:05 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Enable miscellaneous debugging output. The name is historical - it
|
|
|
|
was originally used to debug LinuxThreads support. */
|
|
|
|
extern int debug_threads;
|
|
|
|
|
2015-07-02 11:11:47 +00:00
|
|
|
/* Implementation of linux_target_ops method "get_pc". */
|
|
|
|
|
2013-02-04 18:20:05 +00:00
|
|
|
static CORE_ADDR
|
|
|
|
aarch64_get_pc (struct regcache *regcache)
|
|
|
|
{
|
2015-08-04 13:34:14 +00:00
|
|
|
if (register_size (regcache->tdesc, 0) == 8)
|
|
|
|
{
|
|
|
|
unsigned long pc;
|
|
|
|
|
|
|
|
collect_register_by_name (regcache, "pc", &pc);
|
|
|
|
if (debug_threads)
|
|
|
|
debug_printf ("stop pc is %08lx\n", pc);
|
|
|
|
return pc;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
unsigned int pc;
|
|
|
|
|
|
|
|
collect_register_by_name (regcache, "pc", &pc);
|
|
|
|
if (debug_threads)
|
|
|
|
debug_printf ("stop pc is %04x\n", pc);
|
|
|
|
return pc;
|
|
|
|
}
|
2013-02-04 18:20:05 +00:00
|
|
|
}
|
|
|
|
|
2015-07-02 11:11:47 +00:00
|
|
|
/* Implementation of linux_target_ops method "set_pc". */
|
|
|
|
|
2013-02-04 18:20:05 +00:00
|
|
|
static void
|
|
|
|
aarch64_set_pc (struct regcache *regcache, CORE_ADDR pc)
|
|
|
|
{
|
2015-08-04 13:34:14 +00:00
|
|
|
if (register_size (regcache->tdesc, 0) == 8)
|
|
|
|
{
|
|
|
|
unsigned long newpc = pc;
|
|
|
|
supply_register_by_name (regcache, "pc", &newpc);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
unsigned int newpc = pc;
|
|
|
|
supply_register_by_name (regcache, "pc", &newpc);
|
|
|
|
}
|
2013-02-04 18:20:05 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
#define aarch64_breakpoint_len 4
|
|
|
|
|
2015-06-29 09:34:42 +00:00
|
|
|
/* AArch64 BRK software debug mode instruction.
|
|
|
|
This instruction needs to match gdb/aarch64-tdep.c
|
|
|
|
(aarch64_default_breakpoint). */
|
|
|
|
static const gdb_byte aarch64_breakpoint[] = {0x00, 0x00, 0x20, 0xd4};
|
2013-02-04 18:20:05 +00:00
|
|
|
|
2015-07-02 11:11:47 +00:00
|
|
|
/* Implementation of linux_target_ops method "breakpoint_at". */
|
|
|
|
|
2013-02-04 18:20:05 +00:00
|
|
|
static int
|
|
|
|
aarch64_breakpoint_at (CORE_ADDR where)
|
|
|
|
{
|
2015-06-29 09:34:42 +00:00
|
|
|
gdb_byte insn[aarch64_breakpoint_len];
|
2013-02-04 18:20:05 +00:00
|
|
|
|
2015-06-29 09:34:42 +00:00
|
|
|
(*the_target->read_memory) (where, (unsigned char *) &insn,
|
|
|
|
aarch64_breakpoint_len);
|
|
|
|
if (memcmp (insn, aarch64_breakpoint, aarch64_breakpoint_len) == 0)
|
2013-02-04 18:20:05 +00:00
|
|
|
return 1;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
aarch64_init_debug_reg_state (struct aarch64_debug_reg_state *state)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; i < AARCH64_HBP_MAX_NUM; ++i)
|
|
|
|
{
|
|
|
|
state->dr_addr_bp[i] = 0;
|
|
|
|
state->dr_ctrl_bp[i] = 0;
|
|
|
|
state->dr_ref_count_bp[i] = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = 0; i < AARCH64_HWP_MAX_NUM; ++i)
|
|
|
|
{
|
|
|
|
state->dr_addr_wp[i] = 0;
|
|
|
|
state->dr_ctrl_wp[i] = 0;
|
|
|
|
state->dr_ref_count_wp[i] = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Return the pointer to the debug register state structure in the
|
|
|
|
current process' arch-specific data area. */
|
|
|
|
|
2015-08-25 10:38:29 +00:00
|
|
|
struct aarch64_debug_reg_state *
|
2015-08-25 10:38:29 +00:00
|
|
|
aarch64_get_debug_reg_state (pid_t pid)
|
2013-02-04 18:20:05 +00:00
|
|
|
{
|
2015-08-25 10:38:29 +00:00
|
|
|
struct process_info *proc = find_process_pid (pid);
|
2013-02-04 18:20:05 +00:00
|
|
|
|
2015-02-27 16:33:07 +00:00
|
|
|
return &proc->priv->arch_private->debug_reg_state;
|
2013-02-04 18:20:05 +00:00
|
|
|
}
|
|
|
|
|
2015-07-02 11:11:47 +00:00
|
|
|
/* Implementation of linux_target_ops method "supports_z_point_type". */
|
|
|
|
|
2014-05-20 17:24:27 +00:00
|
|
|
static int
|
|
|
|
aarch64_supports_z_point_type (char z_type)
|
|
|
|
{
|
|
|
|
switch (z_type)
|
|
|
|
{
|
2015-06-29 09:36:55 +00:00
|
|
|
case Z_PACKET_SW_BP:
|
Disable Z0 packet on aarch64 on multi-arch debugging
In multi-arch debugging, if GDB sends Z0 packet, GDBserver should be
able to do several things below:
- choose the right breakpoint instruction to insert according to the
information available, such as 'kind' in Z0 packet and address,
- choose the right breakpoint instruction to check memory writes and
validate inserted memory breakpoint
- be aware of different breakpoint instructions in $ARCH_breakpoint_at.
unfortunately GDBserver can't do them now. Although x86 GDBserver
supports multi-arch, it doesn't need to support them above because
breakpoint instruction on i686 and x86_64 is the same. However,
breakpoint instructions on aarch64 and arm (arm mode, thumb1, and thumb2)
are different.
I tried to teach aarch64 GDBserver backend to be really
multi-arch-capable in the following ways,
- linux_low_target return the right breakpoint instruction according to
the 'kind' in Z0 packet, and insert_memory_breakpoint can do the right
thing.
- once breakpoint is inserted, the breakpoint data and length is recorded
in each breakpoint object, so that validate_breakpoint and
check_mem_write can get the right breakpoint instruction from each
breakpoint object, rather than from global variable breakpoint_data.
- linux_low_target needs another hook function for pc increment after
hitting a breakpoint.
- let set_breakpoint_at, which is widely used for tracepoint, use the
'default' breakpoint instruction. We can always use aarch64 breakpoint
instruction since arm doesn't support tracepoint yet.
looks it is not a small piece of work, so I decide to disable Z0 packet
on multi-arch, which means aarch64 GDBserver only supports Z0 packet
if it is started to debug only one process (extended protocol is not
used) and process target description is 64-bit.
gdb/gdbserver:
2015-08-04 Yao Qi <yao.qi@linaro.org>
* linux-aarch64-low.c (aarch64_supports_z_point_type): Return
0 for Z_PACKET_SW_BP if it may be used in multi-arch debugging.
* server.c (extended_protocol): Remove "static".
* server.h (extended_protocol): Declare it.
2015-08-04 13:34:14 +00:00
|
|
|
{
|
|
|
|
if (!extended_protocol && is_64bit_tdesc ())
|
|
|
|
{
|
|
|
|
/* Only enable Z0 packet in non-multi-arch debugging. If
|
|
|
|
extended protocol is used, don't enable Z0 packet because
|
|
|
|
GDBserver may attach to 32-bit process. */
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
/* Disable Z0 packet so that GDBserver doesn't have to handle
|
|
|
|
different breakpoint instructions (aarch64, arm, thumb etc)
|
|
|
|
in multi-arch debugging. */
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
2014-05-20 17:24:27 +00:00
|
|
|
case Z_PACKET_HW_BP:
|
|
|
|
case Z_PACKET_WRITE_WP:
|
|
|
|
case Z_PACKET_READ_WP:
|
|
|
|
case Z_PACKET_ACCESS_WP:
|
|
|
|
return 1;
|
|
|
|
default:
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-07-02 11:11:47 +00:00
|
|
|
/* Implementation of linux_target_ops method "insert_point".
|
2013-02-04 18:20:05 +00:00
|
|
|
|
2015-07-02 11:11:47 +00:00
|
|
|
It actually only records the info of the to-be-inserted bp/wp;
|
|
|
|
the actual insertion will happen when threads are resumed. */
|
2013-02-04 18:20:05 +00:00
|
|
|
|
|
|
|
static int
|
[GDBserver] Make Zx/zx packet handling idempotent.
This patch fixes hardware breakpoint regressions exposed by my fix for
"PR breakpoints/7143 - Watchpoint does not trigger when first set", at
https://sourceware.org/ml/gdb-patches/2014-03/msg00167.html
The testsuite caught them on Linux/x86_64, at least. gdb.sum:
gdb.sum:
FAIL: gdb.base/hbreak2.exp: next over recursive call
FAIL: gdb.base/hbreak2.exp: backtrace from factorial(5.1)
FAIL: gdb.base/hbreak2.exp: continue until exit at recursive next test
gdb.log:
(gdb) next
Program received signal SIGTRAP, Trace/breakpoint trap.
factorial (value=4) at ../../../src/gdb/testsuite/gdb.base/break.c:113
113 if (value > 1) { /* set breakpoint 7 here */
(gdb) FAIL: gdb.base/hbreak2.exp: next over recursive call
Actually, that patch just exposed a latent issue to "breakpoints
always-inserted off" mode, not really caused it. After that patch,
GDB no longer removes breakpoints at each internal event, thus making
some scenarios behave like breakpoint always-inserted on. The bug is
easy to trigger with always-inserted on.
The issue is that since the target-side breakpoint conditions support,
if the stub/server supports evaluating breakpoint conditions on the
target side, then GDB is sending duplicate Zx packets to the target
without removing them before, and GDBserver is not really expecting
that for Z packets other than Z0/z0. E.g., with "set breakpoint
always-inserted on" and "set debug remote 1":
(gdb) b main
Sending packet: $m410943,1#ff...Packet received: 48
Breakpoint 4 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028.
Sending packet: $Z0,410943,1#48...Packet received: OK
^^^^^^^^^^^^
(gdb) b main
Note: breakpoint 4 also set at pc 0x410943.
Sending packet: $m410943,1#ff...Packet received: 48
Breakpoint 5 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028.
Sending packet: $Z0,410943,1#48...Packet received: OK
^^^^^^^^^^^^
(gdb) b main
Note: breakpoints 4 and 5 also set at pc 0x410943.
Sending packet: $m410943,1#ff...Packet received: 48
Breakpoint 6 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028.
Sending packet: $Z0,410943,1#48...Packet received: OK
^^^^^^^^^^^^
(gdb) del
Delete all breakpoints? (y or n) y
Sending packet: $Z0,410943,1#48...Packet received: OK
Sending packet: $Z0,410943,1#48...Packet received: OK
Sending packet: $z0,410943,1#68...Packet received: OK
And for Z1, similarly:
(gdb) hbreak main
Sending packet: $m410943,1#ff...Packet received: 48
Hardware assisted breakpoint 4 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028.
Sending packet: $Z1,410943,1#49...Packet received: OK
^^^^^^^^^^^^
Packet Z1 (hardware-breakpoint) is supported
(gdb) hbreak main
Note: breakpoint 4 also set at pc 0x410943.
Sending packet: $m410943,1#ff...Packet received: 48
Hardware assisted breakpoint 5 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028.
Sending packet: $Z1,410943,1#49...Packet received: OK
^^^^^^^^^^^^
(gdb) hbreak main
Note: breakpoints 4 and 5 also set at pc 0x410943.
Sending packet: $m410943,1#ff...Packet received: 48
Hardware assisted breakpoint 6 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028.
Sending packet: $Z1,410943,1#49...Packet received: OK
^^^^^^^^^^^^
(gdb) del
Delete all breakpoints? (y or n) y
Sending packet: $Z1,410943,1#49...Packet received: OK
^^^^^^^^^^^^
Sending packet: $Z1,410943,1#49...Packet received: OK
^^^^^^^^^^^^
Sending packet: $z1,410943,1#69...Packet received: OK
^^^^^^^^^^^^
So GDB sent a bunch of Z1 packets, and then when finally removing the
breakpoint, only one z1 packet was sent. On the GDBserver side (with
monitor set debug-hw-points 1), in the Z1 case, we see:
$ ./gdbserver :9999 ./gdbserver
Process ./gdbserver created; pid = 8629
Listening on port 9999
Remote debugging from host 127.0.0.1
insert_watchpoint (addr=410943, len=1, type=instruction-execute):
CONTROL (DR7): 00000101 STATUS (DR6): 00000000
DR0: addr=0x410943, ref.count=1 DR1: addr=0x0, ref.count=0
DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0
insert_watchpoint (addr=410943, len=1, type=instruction-execute):
CONTROL (DR7): 00000101 STATUS (DR6): 00000000
DR0: addr=0x410943, ref.count=2 DR1: addr=0x0, ref.count=0
DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0
insert_watchpoint (addr=410943, len=1, type=instruction-execute):
CONTROL (DR7): 00000101 STATUS (DR6): 00000000
DR0: addr=0x410943, ref.count=3 DR1: addr=0x0, ref.count=0
DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0
insert_watchpoint (addr=410943, len=1, type=instruction-execute):
CONTROL (DR7): 00000101 STATUS (DR6): 00000000
DR0: addr=0x410943, ref.count=4 DR1: addr=0x0, ref.count=0
DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0
insert_watchpoint (addr=410943, len=1, type=instruction-execute):
CONTROL (DR7): 00000101 STATUS (DR6): 00000000
DR0: addr=0x410943, ref.count=5 DR1: addr=0x0, ref.count=0
DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0
remove_watchpoint (addr=410943, len=1, type=instruction-execute):
CONTROL (DR7): 00000101 STATUS (DR6): 00000000
DR0: addr=0x410943, ref.count=4 DR1: addr=0x0, ref.count=0
DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0
That's one insert_watchpoint call for each Z1 packet, and then one
remove_watchpoint call for the z1 packet. Notice how ref.count
increased for each insert_watchpoint call, and then in the end, after
GDB told GDBserver to forget about the hardware breakpoint, GDBserver
ends with the the first debug register still with ref.count=4! IOW,
the hardware breakpoint is left armed on the target, while on the GDB
end it's gone. If the program happens to execute 0x410943 afterwards,
then the CPU traps, GDBserver reports the trap to GDB, and GDB not
having a breakpoint set at that address anymore, reports to the user a
spurious SIGTRAP.
This is exactly what is happening in the hbreak2.exp test, though in
that case, it's a shared library event that triggers a
breakpoint_re_set, when breakpoints are still inserted (because
nowadays GDB doesn't remove breakpoints while handling internal
events), and that recreates breakpoint locations, which likewise
forces breakpoint reinsertion and Zx packet resends...
That is a lot of bogus Zx duplication that should possibly be
addressed on the GDB side. GDB resends Zx packets because the way to
change the target-side condition, is to resend the breakpoint to the
server with the new condition. (That's an option in the packet: e.g.,
"Z1,410943,1;X3,220027" for "hbreak main if 0". The packets in the
examples above are shorter because the breakpoints don't have
conditions attached). GDB doesn't remove the breakpoint first before
reinserting it because that'd be bad for non-stop, as it'd open a
window where the inferior could miss the breakpoint. The conditions
actually haven't changed between the resends, but GDB isn't smart
enough to realize that.
(TBC, if the target doesn't support target-side conditions, then GDB
doesn't trigger these resends (init_bp_location calls
mark_breakpoint_location_modified, and that does nothing if condition
evaluation is on the host side. The resends are caused by the
'loc->condition_changed = condition_modified.' line.)
But, even if GDB was made smarter, GDBserver should really still
handle the resends anyway. So target-side conditions also aren't
really to blame. The documentation of the Z/z packets says:
"To avoid potential problems with duplicate packets, the operations
should be implemented in an idempotent way."
As such, we may want to fix GDB, but we should definitely fix
GDBserver. The fix is a prerequisite for target-side conditions on
hardware breakpoints anyway (and while at it, on watchpoints too).
GDBserver indeed already treats duplicate Z0 packets in an idempotent
way. mem-break.c has the concept of high-level and low-level
breakpoints, somewhat similar to GDB's split of breakpoints vs
breakpoint locations, and keeps track of multiple breakpoints
referencing the same address/location, for the case of an internal
GDBserver breakpoint or a tracepoint being set at the same address as
a GDB breakpoint. But, it only allows GDB to ever contribute one
reference to a software breakpoint location. IOW, if gdbserver sees a
Z0 packet for the same address where it already had a GDB breakpoint
set, then GDBserver won't create another high-level GDB breakpoint.
However, mem-break.c only tracks GDB Z0 breakpoints. The same logic
should apply to all kinds of Zx packets. Currently, gdbserver passes
down each duplicate Zx (other than Z0) request directly to the
target->insert_point routine. The x86 watchpoint support itself
refcounts watchpoint / hw breakpoint requests, to handle overlapping
watchpoints, and save debug registers. But that code doesn't (and
really shouldn't) handle the duplicate requests, assuming that for
each insert there will be a corresponding remove.
So the fix is to generalize mem-break.c to track all kinds of Zx
breakpoints, and filter out duplicates. As mentioned, this ends up
adding support for target-side conditions on hardware breakpoints and
watchpoints too (though GDB itself doesn't support the latter yet).
Probably the least obvious change in the patch is that it kind of
turns the breakpoint insert/remove APIs inside out. Before, the
target methods were only called for GDB breakpoints. The internal
breakpoint set/delete methods inserted memory breakpoints directly
bypassing the insert/remove target methods. That's not good when the
target should use a debug API to set software breakpoints, instead of
relying on GDBserver patching memory with breakpoint instructions, as
is the case of NTO.
Now removal/insertion of all kinds of breakpoints/watchpoints, either
internal, or from GDB, always go through the target methods. The
insert_point/remove_point methods no longer get passed a Z packet
type, but an internal/raw breakpoint type. They're also passed a
pointer to the raw breakpoint itself (note that's still opaque outside
mem-break.c), so that insert_memory_breakpoint /
remove_memory_breakpoint have access to the breakpoint's shadow
buffer. I first tried passing down a new structure based on GDB's
"struct bp_target_info" (actually with that name exactly), but then
decided against it as unnecessary complication.
As software/memory breakpoints work by poking at memory, when setting
a GDB Z0 breakpoint (but not internal breakpoints, as those can assume
the conditions are already right), we need to tell the target to
prepare to access memory (which on Linux means stop threads). If that
operation fails, we need to return error to GDB. Seeing an error, if
this is the first breakpoint of that type that GDB tries to insert,
GDB would then assume the breakpoint type is supported, but it may
actually not be. So we need to check whether the type is supported at
all before preparing to access memory. And to solve that, the patch
adds a new target->supports_z_point_type method that is called before
actually trying to insert the breakpoint.
Other than that, hopefully the change is more or less obvious.
New test added that exercises the hbreak2.exp regression in a more
direct way, without relying on a breakpoint re-set happening before
main is reached.
Tested by building GDBserver for:
aarch64-linux-gnu
arm-linux-gnueabihf
i686-pc-linux-gnu
i686-w64-mingw32
m68k-linux-gnu
mips-linux-gnu
mips-uclinux
nios2-linux-gnu
powerpc-linux-gnu
sh-linux-gnu
tilegx-unknown-linux-gnu
x86_64-redhat-linux
x86_64-w64-mingw32
And also regression tested on x86_64 Fedora 20.
gdb/gdbserver/
2014-05-20 Pedro Alves <palves@redhat.com>
* linux-aarch64-low.c (aarch64_insert_point)
(aarch64_remove_point): No longer check whether the type is
supported here. Adjust to new interface.
(the_low_target): Install aarch64_supports_z_point_type as
supports_z_point_type method.
* linux-arm-low.c (raw_bkpt_type_to_arm_hwbp_type): New function.
(arm_linux_hw_point_initialize): Take an enum raw_bkpt_type
instead of a Z packet char. Adjust.
(arm_supports_z_point_type): New function.
(arm_insert_point, arm_remove_point): Adjust to new interface.
(the_low_target): Install arm_supports_z_point_type.
* linux-crisv32-low.c (cris_supports_z_point_type): New function.
(cris_insert_point, cris_remove_point): Adjust to new interface.
Don't check whether the type is supported here.
(the_low_target): Install cris_supports_z_point_type.
* linux-low.c (linux_supports_z_point_type): New function.
(linux_insert_point, linux_remove_point): Adjust to new interface.
* linux-low.h (struct linux_target_ops) <insert_point,
remove_point>: Take an enum raw_bkpt_type instead of a char. Add
raw_breakpoint pointer parameter.
<supports_z_point_type>: New method.
* linux-mips-low.c (mips_supports_z_point_type): New function.
(mips_insert_point, mips_remove_point): Adjust to new interface.
Use mips_supports_z_point_type.
(the_low_target): Install mips_supports_z_point_type.
* linux-ppc-low.c (the_low_target): Install NULL as
supports_z_point_type method.
* linux-s390-low.c (the_low_target): Install NULL as
supports_z_point_type method.
* linux-sparc-low.c (the_low_target): Install NULL as
supports_z_point_type method.
* linux-x86-low.c (x86_supports_z_point_type): New function.
(x86_insert_point): Adjust to new insert_point interface. Use
insert_memory_breakpoint. Adjust to new
i386_low_insert_watchpoint interface.
(x86_remove_point): Adjust to remove_point interface. Use
remove_memory_breakpoint. Adjust to new
i386_low_remove_watchpoint interface.
(the_low_target): Install x86_supports_z_point_type.
* lynx-low.c (lynx_target_ops): Install NULL as
supports_z_point_type callback.
* nto-low.c (nto_supports_z_point_type): New.
(nto_insert_point, nto_remove_point): Adjust to new interface.
(nto_target_ops): Install nto_supports_z_point_type.
* mem-break.c: Adjust intro comment.
(struct raw_breakpoint) <raw_type, size>: New fields.
<inserted>: Update comment.
<shlib_disabled>: Delete field.
(enum bkpt_type) <gdb_breakpoint>: Delete value.
<gdb_breakpoint_Z0, gdb_breakpoint_Z1, gdb_breakpoint_Z2,
gdb_breakpoint_Z3, gdb_breakpoint_Z4>: New values.
(raw_bkpt_type_to_target_hw_bp_type): New function.
(find_enabled_raw_code_breakpoint_at): New function.
(find_raw_breakpoint_at): New type and size parameters. Use them.
(insert_memory_breakpoint): New function, based off
set_raw_breakpoint_at.
(remove_memory_breakpoint): New function.
(set_raw_breakpoint_at): Reimplement.
(set_breakpoint): New, based on set_breakpoint_at.
(set_breakpoint_at): Reimplement.
(delete_raw_breakpoint): Go through the_target->remove_point
instead of assuming memory breakpoints.
(find_gdb_breakpoint_at): Delete.
(Z_packet_to_bkpt_type, Z_packet_to_raw_bkpt_type): New functions.
(find_gdb_breakpoint): New function.
(set_gdb_breakpoint_at): Delete.
(z_type_supported): New function.
(set_gdb_breakpoint_1): New function, loosely based off
set_gdb_breakpoint_at.
(check_gdb_bp_preconditions, set_gdb_breakpoint): New functions.
(delete_gdb_breakpoint_at): Delete.
(delete_gdb_breakpoint_1): New function, loosely based off
delete_gdb_breakpoint_at.
(delete_gdb_breakpoint): New function.
(clear_gdb_breakpoint_conditions): Rename to ...
(clear_breakpoint_conditions): ... this. Don't handle a NULL
breakpoint.
(add_condition_to_breakpoint): Make static.
(add_breakpoint_condition): Take a struct breakpoint pointer
instead of an address. Adjust.
(gdb_condition_true_at_breakpoint): Rename to ...
(gdb_condition_true_at_breakpoint_z_type): ... this, and add
z_type parameter.
(gdb_condition_true_at_breakpoint): Reimplement.
(add_breakpoint_commands): Take a struct breakpoint pointer
instead of an address. Adjust.
(gdb_no_commands_at_breakpoint): Rename to ...
(gdb_no_commands_at_breakpoint_z_type): ... this. Add z_type
parameter. Return true if no breakpoint was found. Change debug
output.
(gdb_no_commands_at_breakpoint): Reimplement.
(run_breakpoint_commands): Rename to ...
(run_breakpoint_commands_z_type): ... this. Add z_type parameter,
and change return type to boolean.
(run_breakpoint_commands): New function.
(gdb_breakpoint_here): Also check for Z1 breakpoints.
(uninsert_raw_breakpoint): Don't try to reinsert a disabled
breakpoint. Go through the_target->remove_point instead of
assuming memory breakpoint.
(uninsert_breakpoints_at, uninsert_all_breakpoints): Uninsert
software and hardware breakpoints.
(reinsert_raw_breakpoint): Go through the_target->insert_point
instead of assuming memory breakpoint.
(reinsert_breakpoints_at, reinsert_all_breakpoints): Reinsert
software and hardware breakpoints.
(check_breakpoints, breakpoint_here, breakpoint_inserted_here):
Check both software and hardware breakpoints.
(validate_inserted_breakpoint): Assert the breakpoint is a
software breakpoint. Set the inserted flag to -1 instead of
setting shlib_disabled.
(delete_disabled_breakpoints): Adjust.
(validate_breakpoints): Only validate software breakpoints.
Adjust to inserted flag change.
(check_mem_read, check_mem_write): Skip breakpoint types other
than software breakpoints. Adjust to inserted flag change.
* mem-break.h (enum raw_bkpt_type): New enum.
(raw_breakpoint, struct process_info): Forward declare.
(Z_packet_to_target_hw_bp_type): Delete declaration.
(raw_bkpt_type_to_target_hw_bp_type, Z_packet_to_raw_bkpt_type)
(set_gdb_breakpoint, delete_gdb_breakpoint)
(clear_breakpoint_conditions): New declarations.
(set_gdb_breakpoint_at, clear_gdb_breakpoint_conditions): Delete.
(breakpoint_inserted_here): Update comment.
(add_breakpoint_condition, add_breakpoint_commands): Replace
address parameter with a breakpoint pointer parameter.
(gdb_breakpoint_here): Update comment.
(delete_gdb_breakpoint_at): Delete.
(insert_memory_breakpoint, remove_memory_breakpoint): Declare.
* server.c (process_point_options): Take a struct breakpoint
pointer instead of an address. Adjust.
(process_serial_event) <Z/z packets>: Use set_gdb_breakpoint and
delete_gdb_breakpoint.
* spu-low.c (spu_target_ops): Install NULL as
supports_z_point_type method.
* target.h: Include mem-break.h.
(struct target_ops) <prepare_to_access_memory>: Update comment.
<supports_z_point_type>: New field.
<insert_point, remove_point>: Take an enum raw_bkpt_type argument
instead of a char. Also take a raw breakpoint pointer.
* win32-arm-low.c (the_low_target): Install NULL as
supports_z_point_type.
* win32-i386-low.c (i386_supports_z_point_type): New function.
(i386_insert_point, i386_remove_point): Adjust to new interface.
(the_low_target): Install i386_supports_z_point_type.
* win32-low.c (win32_supports_z_point_type): New function.
(win32_insert_point, win32_remove_point): Adjust to new interface.
(win32_target_ops): Install win32_supports_z_point_type.
* win32-low.h (struct win32_target_ops):
<supports_z_point_type>: New method.
<insert_point, remove_point>: Take an enum raw_bkpt_type argument
instead of a char. Also take a raw breakpoint pointer.
gdb/testsuite/
2014-05-20 Pedro Alves <palves@redhat.com>
* gdb.base/break-idempotent.c: New file.
* gdb.base/break-idempotent.exp: New file.
2014-05-20 17:24:28 +00:00
|
|
|
aarch64_insert_point (enum raw_bkpt_type type, CORE_ADDR addr,
|
|
|
|
int len, struct raw_breakpoint *bp)
|
2013-02-04 18:20:05 +00:00
|
|
|
{
|
|
|
|
int ret;
|
2014-05-20 17:24:27 +00:00
|
|
|
enum target_hw_bp_type targ_type;
|
2015-08-25 10:38:29 +00:00
|
|
|
struct aarch64_debug_reg_state *state
|
|
|
|
= aarch64_get_debug_reg_state (pid_of (current_thread));
|
2014-05-20 17:24:27 +00:00
|
|
|
|
2014-09-11 10:19:56 +00:00
|
|
|
if (show_debug_regs)
|
2013-02-04 18:20:05 +00:00
|
|
|
fprintf (stderr, "insert_point on entry (addr=0x%08lx, len=%d)\n",
|
|
|
|
(unsigned long) addr, len);
|
|
|
|
|
[GDBserver] Make Zx/zx packet handling idempotent.
This patch fixes hardware breakpoint regressions exposed by my fix for
"PR breakpoints/7143 - Watchpoint does not trigger when first set", at
https://sourceware.org/ml/gdb-patches/2014-03/msg00167.html
The testsuite caught them on Linux/x86_64, at least. gdb.sum:
gdb.sum:
FAIL: gdb.base/hbreak2.exp: next over recursive call
FAIL: gdb.base/hbreak2.exp: backtrace from factorial(5.1)
FAIL: gdb.base/hbreak2.exp: continue until exit at recursive next test
gdb.log:
(gdb) next
Program received signal SIGTRAP, Trace/breakpoint trap.
factorial (value=4) at ../../../src/gdb/testsuite/gdb.base/break.c:113
113 if (value > 1) { /* set breakpoint 7 here */
(gdb) FAIL: gdb.base/hbreak2.exp: next over recursive call
Actually, that patch just exposed a latent issue to "breakpoints
always-inserted off" mode, not really caused it. After that patch,
GDB no longer removes breakpoints at each internal event, thus making
some scenarios behave like breakpoint always-inserted on. The bug is
easy to trigger with always-inserted on.
The issue is that since the target-side breakpoint conditions support,
if the stub/server supports evaluating breakpoint conditions on the
target side, then GDB is sending duplicate Zx packets to the target
without removing them before, and GDBserver is not really expecting
that for Z packets other than Z0/z0. E.g., with "set breakpoint
always-inserted on" and "set debug remote 1":
(gdb) b main
Sending packet: $m410943,1#ff...Packet received: 48
Breakpoint 4 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028.
Sending packet: $Z0,410943,1#48...Packet received: OK
^^^^^^^^^^^^
(gdb) b main
Note: breakpoint 4 also set at pc 0x410943.
Sending packet: $m410943,1#ff...Packet received: 48
Breakpoint 5 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028.
Sending packet: $Z0,410943,1#48...Packet received: OK
^^^^^^^^^^^^
(gdb) b main
Note: breakpoints 4 and 5 also set at pc 0x410943.
Sending packet: $m410943,1#ff...Packet received: 48
Breakpoint 6 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028.
Sending packet: $Z0,410943,1#48...Packet received: OK
^^^^^^^^^^^^
(gdb) del
Delete all breakpoints? (y or n) y
Sending packet: $Z0,410943,1#48...Packet received: OK
Sending packet: $Z0,410943,1#48...Packet received: OK
Sending packet: $z0,410943,1#68...Packet received: OK
And for Z1, similarly:
(gdb) hbreak main
Sending packet: $m410943,1#ff...Packet received: 48
Hardware assisted breakpoint 4 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028.
Sending packet: $Z1,410943,1#49...Packet received: OK
^^^^^^^^^^^^
Packet Z1 (hardware-breakpoint) is supported
(gdb) hbreak main
Note: breakpoint 4 also set at pc 0x410943.
Sending packet: $m410943,1#ff...Packet received: 48
Hardware assisted breakpoint 5 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028.
Sending packet: $Z1,410943,1#49...Packet received: OK
^^^^^^^^^^^^
(gdb) hbreak main
Note: breakpoints 4 and 5 also set at pc 0x410943.
Sending packet: $m410943,1#ff...Packet received: 48
Hardware assisted breakpoint 6 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028.
Sending packet: $Z1,410943,1#49...Packet received: OK
^^^^^^^^^^^^
(gdb) del
Delete all breakpoints? (y or n) y
Sending packet: $Z1,410943,1#49...Packet received: OK
^^^^^^^^^^^^
Sending packet: $Z1,410943,1#49...Packet received: OK
^^^^^^^^^^^^
Sending packet: $z1,410943,1#69...Packet received: OK
^^^^^^^^^^^^
So GDB sent a bunch of Z1 packets, and then when finally removing the
breakpoint, only one z1 packet was sent. On the GDBserver side (with
monitor set debug-hw-points 1), in the Z1 case, we see:
$ ./gdbserver :9999 ./gdbserver
Process ./gdbserver created; pid = 8629
Listening on port 9999
Remote debugging from host 127.0.0.1
insert_watchpoint (addr=410943, len=1, type=instruction-execute):
CONTROL (DR7): 00000101 STATUS (DR6): 00000000
DR0: addr=0x410943, ref.count=1 DR1: addr=0x0, ref.count=0
DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0
insert_watchpoint (addr=410943, len=1, type=instruction-execute):
CONTROL (DR7): 00000101 STATUS (DR6): 00000000
DR0: addr=0x410943, ref.count=2 DR1: addr=0x0, ref.count=0
DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0
insert_watchpoint (addr=410943, len=1, type=instruction-execute):
CONTROL (DR7): 00000101 STATUS (DR6): 00000000
DR0: addr=0x410943, ref.count=3 DR1: addr=0x0, ref.count=0
DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0
insert_watchpoint (addr=410943, len=1, type=instruction-execute):
CONTROL (DR7): 00000101 STATUS (DR6): 00000000
DR0: addr=0x410943, ref.count=4 DR1: addr=0x0, ref.count=0
DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0
insert_watchpoint (addr=410943, len=1, type=instruction-execute):
CONTROL (DR7): 00000101 STATUS (DR6): 00000000
DR0: addr=0x410943, ref.count=5 DR1: addr=0x0, ref.count=0
DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0
remove_watchpoint (addr=410943, len=1, type=instruction-execute):
CONTROL (DR7): 00000101 STATUS (DR6): 00000000
DR0: addr=0x410943, ref.count=4 DR1: addr=0x0, ref.count=0
DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0
That's one insert_watchpoint call for each Z1 packet, and then one
remove_watchpoint call for the z1 packet. Notice how ref.count
increased for each insert_watchpoint call, and then in the end, after
GDB told GDBserver to forget about the hardware breakpoint, GDBserver
ends with the the first debug register still with ref.count=4! IOW,
the hardware breakpoint is left armed on the target, while on the GDB
end it's gone. If the program happens to execute 0x410943 afterwards,
then the CPU traps, GDBserver reports the trap to GDB, and GDB not
having a breakpoint set at that address anymore, reports to the user a
spurious SIGTRAP.
This is exactly what is happening in the hbreak2.exp test, though in
that case, it's a shared library event that triggers a
breakpoint_re_set, when breakpoints are still inserted (because
nowadays GDB doesn't remove breakpoints while handling internal
events), and that recreates breakpoint locations, which likewise
forces breakpoint reinsertion and Zx packet resends...
That is a lot of bogus Zx duplication that should possibly be
addressed on the GDB side. GDB resends Zx packets because the way to
change the target-side condition, is to resend the breakpoint to the
server with the new condition. (That's an option in the packet: e.g.,
"Z1,410943,1;X3,220027" for "hbreak main if 0". The packets in the
examples above are shorter because the breakpoints don't have
conditions attached). GDB doesn't remove the breakpoint first before
reinserting it because that'd be bad for non-stop, as it'd open a
window where the inferior could miss the breakpoint. The conditions
actually haven't changed between the resends, but GDB isn't smart
enough to realize that.
(TBC, if the target doesn't support target-side conditions, then GDB
doesn't trigger these resends (init_bp_location calls
mark_breakpoint_location_modified, and that does nothing if condition
evaluation is on the host side. The resends are caused by the
'loc->condition_changed = condition_modified.' line.)
But, even if GDB was made smarter, GDBserver should really still
handle the resends anyway. So target-side conditions also aren't
really to blame. The documentation of the Z/z packets says:
"To avoid potential problems with duplicate packets, the operations
should be implemented in an idempotent way."
As such, we may want to fix GDB, but we should definitely fix
GDBserver. The fix is a prerequisite for target-side conditions on
hardware breakpoints anyway (and while at it, on watchpoints too).
GDBserver indeed already treats duplicate Z0 packets in an idempotent
way. mem-break.c has the concept of high-level and low-level
breakpoints, somewhat similar to GDB's split of breakpoints vs
breakpoint locations, and keeps track of multiple breakpoints
referencing the same address/location, for the case of an internal
GDBserver breakpoint or a tracepoint being set at the same address as
a GDB breakpoint. But, it only allows GDB to ever contribute one
reference to a software breakpoint location. IOW, if gdbserver sees a
Z0 packet for the same address where it already had a GDB breakpoint
set, then GDBserver won't create another high-level GDB breakpoint.
However, mem-break.c only tracks GDB Z0 breakpoints. The same logic
should apply to all kinds of Zx packets. Currently, gdbserver passes
down each duplicate Zx (other than Z0) request directly to the
target->insert_point routine. The x86 watchpoint support itself
refcounts watchpoint / hw breakpoint requests, to handle overlapping
watchpoints, and save debug registers. But that code doesn't (and
really shouldn't) handle the duplicate requests, assuming that for
each insert there will be a corresponding remove.
So the fix is to generalize mem-break.c to track all kinds of Zx
breakpoints, and filter out duplicates. As mentioned, this ends up
adding support for target-side conditions on hardware breakpoints and
watchpoints too (though GDB itself doesn't support the latter yet).
Probably the least obvious change in the patch is that it kind of
turns the breakpoint insert/remove APIs inside out. Before, the
target methods were only called for GDB breakpoints. The internal
breakpoint set/delete methods inserted memory breakpoints directly
bypassing the insert/remove target methods. That's not good when the
target should use a debug API to set software breakpoints, instead of
relying on GDBserver patching memory with breakpoint instructions, as
is the case of NTO.
Now removal/insertion of all kinds of breakpoints/watchpoints, either
internal, or from GDB, always go through the target methods. The
insert_point/remove_point methods no longer get passed a Z packet
type, but an internal/raw breakpoint type. They're also passed a
pointer to the raw breakpoint itself (note that's still opaque outside
mem-break.c), so that insert_memory_breakpoint /
remove_memory_breakpoint have access to the breakpoint's shadow
buffer. I first tried passing down a new structure based on GDB's
"struct bp_target_info" (actually with that name exactly), but then
decided against it as unnecessary complication.
As software/memory breakpoints work by poking at memory, when setting
a GDB Z0 breakpoint (but not internal breakpoints, as those can assume
the conditions are already right), we need to tell the target to
prepare to access memory (which on Linux means stop threads). If that
operation fails, we need to return error to GDB. Seeing an error, if
this is the first breakpoint of that type that GDB tries to insert,
GDB would then assume the breakpoint type is supported, but it may
actually not be. So we need to check whether the type is supported at
all before preparing to access memory. And to solve that, the patch
adds a new target->supports_z_point_type method that is called before
actually trying to insert the breakpoint.
Other than that, hopefully the change is more or less obvious.
New test added that exercises the hbreak2.exp regression in a more
direct way, without relying on a breakpoint re-set happening before
main is reached.
Tested by building GDBserver for:
aarch64-linux-gnu
arm-linux-gnueabihf
i686-pc-linux-gnu
i686-w64-mingw32
m68k-linux-gnu
mips-linux-gnu
mips-uclinux
nios2-linux-gnu
powerpc-linux-gnu
sh-linux-gnu
tilegx-unknown-linux-gnu
x86_64-redhat-linux
x86_64-w64-mingw32
And also regression tested on x86_64 Fedora 20.
gdb/gdbserver/
2014-05-20 Pedro Alves <palves@redhat.com>
* linux-aarch64-low.c (aarch64_insert_point)
(aarch64_remove_point): No longer check whether the type is
supported here. Adjust to new interface.
(the_low_target): Install aarch64_supports_z_point_type as
supports_z_point_type method.
* linux-arm-low.c (raw_bkpt_type_to_arm_hwbp_type): New function.
(arm_linux_hw_point_initialize): Take an enum raw_bkpt_type
instead of a Z packet char. Adjust.
(arm_supports_z_point_type): New function.
(arm_insert_point, arm_remove_point): Adjust to new interface.
(the_low_target): Install arm_supports_z_point_type.
* linux-crisv32-low.c (cris_supports_z_point_type): New function.
(cris_insert_point, cris_remove_point): Adjust to new interface.
Don't check whether the type is supported here.
(the_low_target): Install cris_supports_z_point_type.
* linux-low.c (linux_supports_z_point_type): New function.
(linux_insert_point, linux_remove_point): Adjust to new interface.
* linux-low.h (struct linux_target_ops) <insert_point,
remove_point>: Take an enum raw_bkpt_type instead of a char. Add
raw_breakpoint pointer parameter.
<supports_z_point_type>: New method.
* linux-mips-low.c (mips_supports_z_point_type): New function.
(mips_insert_point, mips_remove_point): Adjust to new interface.
Use mips_supports_z_point_type.
(the_low_target): Install mips_supports_z_point_type.
* linux-ppc-low.c (the_low_target): Install NULL as
supports_z_point_type method.
* linux-s390-low.c (the_low_target): Install NULL as
supports_z_point_type method.
* linux-sparc-low.c (the_low_target): Install NULL as
supports_z_point_type method.
* linux-x86-low.c (x86_supports_z_point_type): New function.
(x86_insert_point): Adjust to new insert_point interface. Use
insert_memory_breakpoint. Adjust to new
i386_low_insert_watchpoint interface.
(x86_remove_point): Adjust to remove_point interface. Use
remove_memory_breakpoint. Adjust to new
i386_low_remove_watchpoint interface.
(the_low_target): Install x86_supports_z_point_type.
* lynx-low.c (lynx_target_ops): Install NULL as
supports_z_point_type callback.
* nto-low.c (nto_supports_z_point_type): New.
(nto_insert_point, nto_remove_point): Adjust to new interface.
(nto_target_ops): Install nto_supports_z_point_type.
* mem-break.c: Adjust intro comment.
(struct raw_breakpoint) <raw_type, size>: New fields.
<inserted>: Update comment.
<shlib_disabled>: Delete field.
(enum bkpt_type) <gdb_breakpoint>: Delete value.
<gdb_breakpoint_Z0, gdb_breakpoint_Z1, gdb_breakpoint_Z2,
gdb_breakpoint_Z3, gdb_breakpoint_Z4>: New values.
(raw_bkpt_type_to_target_hw_bp_type): New function.
(find_enabled_raw_code_breakpoint_at): New function.
(find_raw_breakpoint_at): New type and size parameters. Use them.
(insert_memory_breakpoint): New function, based off
set_raw_breakpoint_at.
(remove_memory_breakpoint): New function.
(set_raw_breakpoint_at): Reimplement.
(set_breakpoint): New, based on set_breakpoint_at.
(set_breakpoint_at): Reimplement.
(delete_raw_breakpoint): Go through the_target->remove_point
instead of assuming memory breakpoints.
(find_gdb_breakpoint_at): Delete.
(Z_packet_to_bkpt_type, Z_packet_to_raw_bkpt_type): New functions.
(find_gdb_breakpoint): New function.
(set_gdb_breakpoint_at): Delete.
(z_type_supported): New function.
(set_gdb_breakpoint_1): New function, loosely based off
set_gdb_breakpoint_at.
(check_gdb_bp_preconditions, set_gdb_breakpoint): New functions.
(delete_gdb_breakpoint_at): Delete.
(delete_gdb_breakpoint_1): New function, loosely based off
delete_gdb_breakpoint_at.
(delete_gdb_breakpoint): New function.
(clear_gdb_breakpoint_conditions): Rename to ...
(clear_breakpoint_conditions): ... this. Don't handle a NULL
breakpoint.
(add_condition_to_breakpoint): Make static.
(add_breakpoint_condition): Take a struct breakpoint pointer
instead of an address. Adjust.
(gdb_condition_true_at_breakpoint): Rename to ...
(gdb_condition_true_at_breakpoint_z_type): ... this, and add
z_type parameter.
(gdb_condition_true_at_breakpoint): Reimplement.
(add_breakpoint_commands): Take a struct breakpoint pointer
instead of an address. Adjust.
(gdb_no_commands_at_breakpoint): Rename to ...
(gdb_no_commands_at_breakpoint_z_type): ... this. Add z_type
parameter. Return true if no breakpoint was found. Change debug
output.
(gdb_no_commands_at_breakpoint): Reimplement.
(run_breakpoint_commands): Rename to ...
(run_breakpoint_commands_z_type): ... this. Add z_type parameter,
and change return type to boolean.
(run_breakpoint_commands): New function.
(gdb_breakpoint_here): Also check for Z1 breakpoints.
(uninsert_raw_breakpoint): Don't try to reinsert a disabled
breakpoint. Go through the_target->remove_point instead of
assuming memory breakpoint.
(uninsert_breakpoints_at, uninsert_all_breakpoints): Uninsert
software and hardware breakpoints.
(reinsert_raw_breakpoint): Go through the_target->insert_point
instead of assuming memory breakpoint.
(reinsert_breakpoints_at, reinsert_all_breakpoints): Reinsert
software and hardware breakpoints.
(check_breakpoints, breakpoint_here, breakpoint_inserted_here):
Check both software and hardware breakpoints.
(validate_inserted_breakpoint): Assert the breakpoint is a
software breakpoint. Set the inserted flag to -1 instead of
setting shlib_disabled.
(delete_disabled_breakpoints): Adjust.
(validate_breakpoints): Only validate software breakpoints.
Adjust to inserted flag change.
(check_mem_read, check_mem_write): Skip breakpoint types other
than software breakpoints. Adjust to inserted flag change.
* mem-break.h (enum raw_bkpt_type): New enum.
(raw_breakpoint, struct process_info): Forward declare.
(Z_packet_to_target_hw_bp_type): Delete declaration.
(raw_bkpt_type_to_target_hw_bp_type, Z_packet_to_raw_bkpt_type)
(set_gdb_breakpoint, delete_gdb_breakpoint)
(clear_breakpoint_conditions): New declarations.
(set_gdb_breakpoint_at, clear_gdb_breakpoint_conditions): Delete.
(breakpoint_inserted_here): Update comment.
(add_breakpoint_condition, add_breakpoint_commands): Replace
address parameter with a breakpoint pointer parameter.
(gdb_breakpoint_here): Update comment.
(delete_gdb_breakpoint_at): Delete.
(insert_memory_breakpoint, remove_memory_breakpoint): Declare.
* server.c (process_point_options): Take a struct breakpoint
pointer instead of an address. Adjust.
(process_serial_event) <Z/z packets>: Use set_gdb_breakpoint and
delete_gdb_breakpoint.
* spu-low.c (spu_target_ops): Install NULL as
supports_z_point_type method.
* target.h: Include mem-break.h.
(struct target_ops) <prepare_to_access_memory>: Update comment.
<supports_z_point_type>: New field.
<insert_point, remove_point>: Take an enum raw_bkpt_type argument
instead of a char. Also take a raw breakpoint pointer.
* win32-arm-low.c (the_low_target): Install NULL as
supports_z_point_type.
* win32-i386-low.c (i386_supports_z_point_type): New function.
(i386_insert_point, i386_remove_point): Adjust to new interface.
(the_low_target): Install i386_supports_z_point_type.
* win32-low.c (win32_supports_z_point_type): New function.
(win32_insert_point, win32_remove_point): Adjust to new interface.
(win32_target_ops): Install win32_supports_z_point_type.
* win32-low.h (struct win32_target_ops):
<supports_z_point_type>: New method.
<insert_point, remove_point>: Take an enum raw_bkpt_type argument
instead of a char. Also take a raw breakpoint pointer.
gdb/testsuite/
2014-05-20 Pedro Alves <palves@redhat.com>
* gdb.base/break-idempotent.c: New file.
* gdb.base/break-idempotent.exp: New file.
2014-05-20 17:24:28 +00:00
|
|
|
/* Determine the type from the raw breakpoint type. */
|
|
|
|
targ_type = raw_bkpt_type_to_target_hw_bp_type (type);
|
2013-02-04 18:20:05 +00:00
|
|
|
|
|
|
|
if (targ_type != hw_execute)
|
|
|
|
ret =
|
2015-07-17 13:32:40 +00:00
|
|
|
aarch64_handle_watchpoint (targ_type, addr, len, 1 /* is_insert */,
|
|
|
|
state);
|
2013-02-04 18:20:05 +00:00
|
|
|
else
|
|
|
|
ret =
|
2015-07-17 13:32:40 +00:00
|
|
|
aarch64_handle_breakpoint (targ_type, addr, len, 1 /* is_insert */,
|
|
|
|
state);
|
2013-02-04 18:20:05 +00:00
|
|
|
|
2015-03-06 14:14:27 +00:00
|
|
|
if (show_debug_regs)
|
2015-08-25 10:38:29 +00:00
|
|
|
aarch64_show_debug_reg_state (state, "insert_point", addr, len,
|
|
|
|
targ_type);
|
2013-02-04 18:20:05 +00:00
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2015-07-02 11:11:47 +00:00
|
|
|
/* Implementation of linux_target_ops method "remove_point".
|
2013-02-04 18:20:05 +00:00
|
|
|
|
2015-07-02 11:11:47 +00:00
|
|
|
It actually only records the info of the to-be-removed bp/wp,
|
|
|
|
the actual removal will be done when threads are resumed. */
|
2013-02-04 18:20:05 +00:00
|
|
|
|
|
|
|
static int
|
[GDBserver] Make Zx/zx packet handling idempotent.
This patch fixes hardware breakpoint regressions exposed by my fix for
"PR breakpoints/7143 - Watchpoint does not trigger when first set", at
https://sourceware.org/ml/gdb-patches/2014-03/msg00167.html
The testsuite caught them on Linux/x86_64, at least. gdb.sum:
gdb.sum:
FAIL: gdb.base/hbreak2.exp: next over recursive call
FAIL: gdb.base/hbreak2.exp: backtrace from factorial(5.1)
FAIL: gdb.base/hbreak2.exp: continue until exit at recursive next test
gdb.log:
(gdb) next
Program received signal SIGTRAP, Trace/breakpoint trap.
factorial (value=4) at ../../../src/gdb/testsuite/gdb.base/break.c:113
113 if (value > 1) { /* set breakpoint 7 here */
(gdb) FAIL: gdb.base/hbreak2.exp: next over recursive call
Actually, that patch just exposed a latent issue to "breakpoints
always-inserted off" mode, not really caused it. After that patch,
GDB no longer removes breakpoints at each internal event, thus making
some scenarios behave like breakpoint always-inserted on. The bug is
easy to trigger with always-inserted on.
The issue is that since the target-side breakpoint conditions support,
if the stub/server supports evaluating breakpoint conditions on the
target side, then GDB is sending duplicate Zx packets to the target
without removing them before, and GDBserver is not really expecting
that for Z packets other than Z0/z0. E.g., with "set breakpoint
always-inserted on" and "set debug remote 1":
(gdb) b main
Sending packet: $m410943,1#ff...Packet received: 48
Breakpoint 4 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028.
Sending packet: $Z0,410943,1#48...Packet received: OK
^^^^^^^^^^^^
(gdb) b main
Note: breakpoint 4 also set at pc 0x410943.
Sending packet: $m410943,1#ff...Packet received: 48
Breakpoint 5 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028.
Sending packet: $Z0,410943,1#48...Packet received: OK
^^^^^^^^^^^^
(gdb) b main
Note: breakpoints 4 and 5 also set at pc 0x410943.
Sending packet: $m410943,1#ff...Packet received: 48
Breakpoint 6 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028.
Sending packet: $Z0,410943,1#48...Packet received: OK
^^^^^^^^^^^^
(gdb) del
Delete all breakpoints? (y or n) y
Sending packet: $Z0,410943,1#48...Packet received: OK
Sending packet: $Z0,410943,1#48...Packet received: OK
Sending packet: $z0,410943,1#68...Packet received: OK
And for Z1, similarly:
(gdb) hbreak main
Sending packet: $m410943,1#ff...Packet received: 48
Hardware assisted breakpoint 4 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028.
Sending packet: $Z1,410943,1#49...Packet received: OK
^^^^^^^^^^^^
Packet Z1 (hardware-breakpoint) is supported
(gdb) hbreak main
Note: breakpoint 4 also set at pc 0x410943.
Sending packet: $m410943,1#ff...Packet received: 48
Hardware assisted breakpoint 5 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028.
Sending packet: $Z1,410943,1#49...Packet received: OK
^^^^^^^^^^^^
(gdb) hbreak main
Note: breakpoints 4 and 5 also set at pc 0x410943.
Sending packet: $m410943,1#ff...Packet received: 48
Hardware assisted breakpoint 6 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028.
Sending packet: $Z1,410943,1#49...Packet received: OK
^^^^^^^^^^^^
(gdb) del
Delete all breakpoints? (y or n) y
Sending packet: $Z1,410943,1#49...Packet received: OK
^^^^^^^^^^^^
Sending packet: $Z1,410943,1#49...Packet received: OK
^^^^^^^^^^^^
Sending packet: $z1,410943,1#69...Packet received: OK
^^^^^^^^^^^^
So GDB sent a bunch of Z1 packets, and then when finally removing the
breakpoint, only one z1 packet was sent. On the GDBserver side (with
monitor set debug-hw-points 1), in the Z1 case, we see:
$ ./gdbserver :9999 ./gdbserver
Process ./gdbserver created; pid = 8629
Listening on port 9999
Remote debugging from host 127.0.0.1
insert_watchpoint (addr=410943, len=1, type=instruction-execute):
CONTROL (DR7): 00000101 STATUS (DR6): 00000000
DR0: addr=0x410943, ref.count=1 DR1: addr=0x0, ref.count=0
DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0
insert_watchpoint (addr=410943, len=1, type=instruction-execute):
CONTROL (DR7): 00000101 STATUS (DR6): 00000000
DR0: addr=0x410943, ref.count=2 DR1: addr=0x0, ref.count=0
DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0
insert_watchpoint (addr=410943, len=1, type=instruction-execute):
CONTROL (DR7): 00000101 STATUS (DR6): 00000000
DR0: addr=0x410943, ref.count=3 DR1: addr=0x0, ref.count=0
DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0
insert_watchpoint (addr=410943, len=1, type=instruction-execute):
CONTROL (DR7): 00000101 STATUS (DR6): 00000000
DR0: addr=0x410943, ref.count=4 DR1: addr=0x0, ref.count=0
DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0
insert_watchpoint (addr=410943, len=1, type=instruction-execute):
CONTROL (DR7): 00000101 STATUS (DR6): 00000000
DR0: addr=0x410943, ref.count=5 DR1: addr=0x0, ref.count=0
DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0
remove_watchpoint (addr=410943, len=1, type=instruction-execute):
CONTROL (DR7): 00000101 STATUS (DR6): 00000000
DR0: addr=0x410943, ref.count=4 DR1: addr=0x0, ref.count=0
DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0
That's one insert_watchpoint call for each Z1 packet, and then one
remove_watchpoint call for the z1 packet. Notice how ref.count
increased for each insert_watchpoint call, and then in the end, after
GDB told GDBserver to forget about the hardware breakpoint, GDBserver
ends with the the first debug register still with ref.count=4! IOW,
the hardware breakpoint is left armed on the target, while on the GDB
end it's gone. If the program happens to execute 0x410943 afterwards,
then the CPU traps, GDBserver reports the trap to GDB, and GDB not
having a breakpoint set at that address anymore, reports to the user a
spurious SIGTRAP.
This is exactly what is happening in the hbreak2.exp test, though in
that case, it's a shared library event that triggers a
breakpoint_re_set, when breakpoints are still inserted (because
nowadays GDB doesn't remove breakpoints while handling internal
events), and that recreates breakpoint locations, which likewise
forces breakpoint reinsertion and Zx packet resends...
That is a lot of bogus Zx duplication that should possibly be
addressed on the GDB side. GDB resends Zx packets because the way to
change the target-side condition, is to resend the breakpoint to the
server with the new condition. (That's an option in the packet: e.g.,
"Z1,410943,1;X3,220027" for "hbreak main if 0". The packets in the
examples above are shorter because the breakpoints don't have
conditions attached). GDB doesn't remove the breakpoint first before
reinserting it because that'd be bad for non-stop, as it'd open a
window where the inferior could miss the breakpoint. The conditions
actually haven't changed between the resends, but GDB isn't smart
enough to realize that.
(TBC, if the target doesn't support target-side conditions, then GDB
doesn't trigger these resends (init_bp_location calls
mark_breakpoint_location_modified, and that does nothing if condition
evaluation is on the host side. The resends are caused by the
'loc->condition_changed = condition_modified.' line.)
But, even if GDB was made smarter, GDBserver should really still
handle the resends anyway. So target-side conditions also aren't
really to blame. The documentation of the Z/z packets says:
"To avoid potential problems with duplicate packets, the operations
should be implemented in an idempotent way."
As such, we may want to fix GDB, but we should definitely fix
GDBserver. The fix is a prerequisite for target-side conditions on
hardware breakpoints anyway (and while at it, on watchpoints too).
GDBserver indeed already treats duplicate Z0 packets in an idempotent
way. mem-break.c has the concept of high-level and low-level
breakpoints, somewhat similar to GDB's split of breakpoints vs
breakpoint locations, and keeps track of multiple breakpoints
referencing the same address/location, for the case of an internal
GDBserver breakpoint or a tracepoint being set at the same address as
a GDB breakpoint. But, it only allows GDB to ever contribute one
reference to a software breakpoint location. IOW, if gdbserver sees a
Z0 packet for the same address where it already had a GDB breakpoint
set, then GDBserver won't create another high-level GDB breakpoint.
However, mem-break.c only tracks GDB Z0 breakpoints. The same logic
should apply to all kinds of Zx packets. Currently, gdbserver passes
down each duplicate Zx (other than Z0) request directly to the
target->insert_point routine. The x86 watchpoint support itself
refcounts watchpoint / hw breakpoint requests, to handle overlapping
watchpoints, and save debug registers. But that code doesn't (and
really shouldn't) handle the duplicate requests, assuming that for
each insert there will be a corresponding remove.
So the fix is to generalize mem-break.c to track all kinds of Zx
breakpoints, and filter out duplicates. As mentioned, this ends up
adding support for target-side conditions on hardware breakpoints and
watchpoints too (though GDB itself doesn't support the latter yet).
Probably the least obvious change in the patch is that it kind of
turns the breakpoint insert/remove APIs inside out. Before, the
target methods were only called for GDB breakpoints. The internal
breakpoint set/delete methods inserted memory breakpoints directly
bypassing the insert/remove target methods. That's not good when the
target should use a debug API to set software breakpoints, instead of
relying on GDBserver patching memory with breakpoint instructions, as
is the case of NTO.
Now removal/insertion of all kinds of breakpoints/watchpoints, either
internal, or from GDB, always go through the target methods. The
insert_point/remove_point methods no longer get passed a Z packet
type, but an internal/raw breakpoint type. They're also passed a
pointer to the raw breakpoint itself (note that's still opaque outside
mem-break.c), so that insert_memory_breakpoint /
remove_memory_breakpoint have access to the breakpoint's shadow
buffer. I first tried passing down a new structure based on GDB's
"struct bp_target_info" (actually with that name exactly), but then
decided against it as unnecessary complication.
As software/memory breakpoints work by poking at memory, when setting
a GDB Z0 breakpoint (but not internal breakpoints, as those can assume
the conditions are already right), we need to tell the target to
prepare to access memory (which on Linux means stop threads). If that
operation fails, we need to return error to GDB. Seeing an error, if
this is the first breakpoint of that type that GDB tries to insert,
GDB would then assume the breakpoint type is supported, but it may
actually not be. So we need to check whether the type is supported at
all before preparing to access memory. And to solve that, the patch
adds a new target->supports_z_point_type method that is called before
actually trying to insert the breakpoint.
Other than that, hopefully the change is more or less obvious.
New test added that exercises the hbreak2.exp regression in a more
direct way, without relying on a breakpoint re-set happening before
main is reached.
Tested by building GDBserver for:
aarch64-linux-gnu
arm-linux-gnueabihf
i686-pc-linux-gnu
i686-w64-mingw32
m68k-linux-gnu
mips-linux-gnu
mips-uclinux
nios2-linux-gnu
powerpc-linux-gnu
sh-linux-gnu
tilegx-unknown-linux-gnu
x86_64-redhat-linux
x86_64-w64-mingw32
And also regression tested on x86_64 Fedora 20.
gdb/gdbserver/
2014-05-20 Pedro Alves <palves@redhat.com>
* linux-aarch64-low.c (aarch64_insert_point)
(aarch64_remove_point): No longer check whether the type is
supported here. Adjust to new interface.
(the_low_target): Install aarch64_supports_z_point_type as
supports_z_point_type method.
* linux-arm-low.c (raw_bkpt_type_to_arm_hwbp_type): New function.
(arm_linux_hw_point_initialize): Take an enum raw_bkpt_type
instead of a Z packet char. Adjust.
(arm_supports_z_point_type): New function.
(arm_insert_point, arm_remove_point): Adjust to new interface.
(the_low_target): Install arm_supports_z_point_type.
* linux-crisv32-low.c (cris_supports_z_point_type): New function.
(cris_insert_point, cris_remove_point): Adjust to new interface.
Don't check whether the type is supported here.
(the_low_target): Install cris_supports_z_point_type.
* linux-low.c (linux_supports_z_point_type): New function.
(linux_insert_point, linux_remove_point): Adjust to new interface.
* linux-low.h (struct linux_target_ops) <insert_point,
remove_point>: Take an enum raw_bkpt_type instead of a char. Add
raw_breakpoint pointer parameter.
<supports_z_point_type>: New method.
* linux-mips-low.c (mips_supports_z_point_type): New function.
(mips_insert_point, mips_remove_point): Adjust to new interface.
Use mips_supports_z_point_type.
(the_low_target): Install mips_supports_z_point_type.
* linux-ppc-low.c (the_low_target): Install NULL as
supports_z_point_type method.
* linux-s390-low.c (the_low_target): Install NULL as
supports_z_point_type method.
* linux-sparc-low.c (the_low_target): Install NULL as
supports_z_point_type method.
* linux-x86-low.c (x86_supports_z_point_type): New function.
(x86_insert_point): Adjust to new insert_point interface. Use
insert_memory_breakpoint. Adjust to new
i386_low_insert_watchpoint interface.
(x86_remove_point): Adjust to remove_point interface. Use
remove_memory_breakpoint. Adjust to new
i386_low_remove_watchpoint interface.
(the_low_target): Install x86_supports_z_point_type.
* lynx-low.c (lynx_target_ops): Install NULL as
supports_z_point_type callback.
* nto-low.c (nto_supports_z_point_type): New.
(nto_insert_point, nto_remove_point): Adjust to new interface.
(nto_target_ops): Install nto_supports_z_point_type.
* mem-break.c: Adjust intro comment.
(struct raw_breakpoint) <raw_type, size>: New fields.
<inserted>: Update comment.
<shlib_disabled>: Delete field.
(enum bkpt_type) <gdb_breakpoint>: Delete value.
<gdb_breakpoint_Z0, gdb_breakpoint_Z1, gdb_breakpoint_Z2,
gdb_breakpoint_Z3, gdb_breakpoint_Z4>: New values.
(raw_bkpt_type_to_target_hw_bp_type): New function.
(find_enabled_raw_code_breakpoint_at): New function.
(find_raw_breakpoint_at): New type and size parameters. Use them.
(insert_memory_breakpoint): New function, based off
set_raw_breakpoint_at.
(remove_memory_breakpoint): New function.
(set_raw_breakpoint_at): Reimplement.
(set_breakpoint): New, based on set_breakpoint_at.
(set_breakpoint_at): Reimplement.
(delete_raw_breakpoint): Go through the_target->remove_point
instead of assuming memory breakpoints.
(find_gdb_breakpoint_at): Delete.
(Z_packet_to_bkpt_type, Z_packet_to_raw_bkpt_type): New functions.
(find_gdb_breakpoint): New function.
(set_gdb_breakpoint_at): Delete.
(z_type_supported): New function.
(set_gdb_breakpoint_1): New function, loosely based off
set_gdb_breakpoint_at.
(check_gdb_bp_preconditions, set_gdb_breakpoint): New functions.
(delete_gdb_breakpoint_at): Delete.
(delete_gdb_breakpoint_1): New function, loosely based off
delete_gdb_breakpoint_at.
(delete_gdb_breakpoint): New function.
(clear_gdb_breakpoint_conditions): Rename to ...
(clear_breakpoint_conditions): ... this. Don't handle a NULL
breakpoint.
(add_condition_to_breakpoint): Make static.
(add_breakpoint_condition): Take a struct breakpoint pointer
instead of an address. Adjust.
(gdb_condition_true_at_breakpoint): Rename to ...
(gdb_condition_true_at_breakpoint_z_type): ... this, and add
z_type parameter.
(gdb_condition_true_at_breakpoint): Reimplement.
(add_breakpoint_commands): Take a struct breakpoint pointer
instead of an address. Adjust.
(gdb_no_commands_at_breakpoint): Rename to ...
(gdb_no_commands_at_breakpoint_z_type): ... this. Add z_type
parameter. Return true if no breakpoint was found. Change debug
output.
(gdb_no_commands_at_breakpoint): Reimplement.
(run_breakpoint_commands): Rename to ...
(run_breakpoint_commands_z_type): ... this. Add z_type parameter,
and change return type to boolean.
(run_breakpoint_commands): New function.
(gdb_breakpoint_here): Also check for Z1 breakpoints.
(uninsert_raw_breakpoint): Don't try to reinsert a disabled
breakpoint. Go through the_target->remove_point instead of
assuming memory breakpoint.
(uninsert_breakpoints_at, uninsert_all_breakpoints): Uninsert
software and hardware breakpoints.
(reinsert_raw_breakpoint): Go through the_target->insert_point
instead of assuming memory breakpoint.
(reinsert_breakpoints_at, reinsert_all_breakpoints): Reinsert
software and hardware breakpoints.
(check_breakpoints, breakpoint_here, breakpoint_inserted_here):
Check both software and hardware breakpoints.
(validate_inserted_breakpoint): Assert the breakpoint is a
software breakpoint. Set the inserted flag to -1 instead of
setting shlib_disabled.
(delete_disabled_breakpoints): Adjust.
(validate_breakpoints): Only validate software breakpoints.
Adjust to inserted flag change.
(check_mem_read, check_mem_write): Skip breakpoint types other
than software breakpoints. Adjust to inserted flag change.
* mem-break.h (enum raw_bkpt_type): New enum.
(raw_breakpoint, struct process_info): Forward declare.
(Z_packet_to_target_hw_bp_type): Delete declaration.
(raw_bkpt_type_to_target_hw_bp_type, Z_packet_to_raw_bkpt_type)
(set_gdb_breakpoint, delete_gdb_breakpoint)
(clear_breakpoint_conditions): New declarations.
(set_gdb_breakpoint_at, clear_gdb_breakpoint_conditions): Delete.
(breakpoint_inserted_here): Update comment.
(add_breakpoint_condition, add_breakpoint_commands): Replace
address parameter with a breakpoint pointer parameter.
(gdb_breakpoint_here): Update comment.
(delete_gdb_breakpoint_at): Delete.
(insert_memory_breakpoint, remove_memory_breakpoint): Declare.
* server.c (process_point_options): Take a struct breakpoint
pointer instead of an address. Adjust.
(process_serial_event) <Z/z packets>: Use set_gdb_breakpoint and
delete_gdb_breakpoint.
* spu-low.c (spu_target_ops): Install NULL as
supports_z_point_type method.
* target.h: Include mem-break.h.
(struct target_ops) <prepare_to_access_memory>: Update comment.
<supports_z_point_type>: New field.
<insert_point, remove_point>: Take an enum raw_bkpt_type argument
instead of a char. Also take a raw breakpoint pointer.
* win32-arm-low.c (the_low_target): Install NULL as
supports_z_point_type.
* win32-i386-low.c (i386_supports_z_point_type): New function.
(i386_insert_point, i386_remove_point): Adjust to new interface.
(the_low_target): Install i386_supports_z_point_type.
* win32-low.c (win32_supports_z_point_type): New function.
(win32_insert_point, win32_remove_point): Adjust to new interface.
(win32_target_ops): Install win32_supports_z_point_type.
* win32-low.h (struct win32_target_ops):
<supports_z_point_type>: New method.
<insert_point, remove_point>: Take an enum raw_bkpt_type argument
instead of a char. Also take a raw breakpoint pointer.
gdb/testsuite/
2014-05-20 Pedro Alves <palves@redhat.com>
* gdb.base/break-idempotent.c: New file.
* gdb.base/break-idempotent.exp: New file.
2014-05-20 17:24:28 +00:00
|
|
|
aarch64_remove_point (enum raw_bkpt_type type, CORE_ADDR addr,
|
|
|
|
int len, struct raw_breakpoint *bp)
|
2013-02-04 18:20:05 +00:00
|
|
|
{
|
|
|
|
int ret;
|
2014-05-20 17:24:27 +00:00
|
|
|
enum target_hw_bp_type targ_type;
|
2015-08-25 10:38:29 +00:00
|
|
|
struct aarch64_debug_reg_state *state
|
|
|
|
= aarch64_get_debug_reg_state (pid_of (current_thread));
|
2014-05-20 17:24:27 +00:00
|
|
|
|
2014-09-11 10:19:56 +00:00
|
|
|
if (show_debug_regs)
|
2013-02-04 18:20:05 +00:00
|
|
|
fprintf (stderr, "remove_point on entry (addr=0x%08lx, len=%d)\n",
|
|
|
|
(unsigned long) addr, len);
|
|
|
|
|
[GDBserver] Make Zx/zx packet handling idempotent.
This patch fixes hardware breakpoint regressions exposed by my fix for
"PR breakpoints/7143 - Watchpoint does not trigger when first set", at
https://sourceware.org/ml/gdb-patches/2014-03/msg00167.html
The testsuite caught them on Linux/x86_64, at least. gdb.sum:
gdb.sum:
FAIL: gdb.base/hbreak2.exp: next over recursive call
FAIL: gdb.base/hbreak2.exp: backtrace from factorial(5.1)
FAIL: gdb.base/hbreak2.exp: continue until exit at recursive next test
gdb.log:
(gdb) next
Program received signal SIGTRAP, Trace/breakpoint trap.
factorial (value=4) at ../../../src/gdb/testsuite/gdb.base/break.c:113
113 if (value > 1) { /* set breakpoint 7 here */
(gdb) FAIL: gdb.base/hbreak2.exp: next over recursive call
Actually, that patch just exposed a latent issue to "breakpoints
always-inserted off" mode, not really caused it. After that patch,
GDB no longer removes breakpoints at each internal event, thus making
some scenarios behave like breakpoint always-inserted on. The bug is
easy to trigger with always-inserted on.
The issue is that since the target-side breakpoint conditions support,
if the stub/server supports evaluating breakpoint conditions on the
target side, then GDB is sending duplicate Zx packets to the target
without removing them before, and GDBserver is not really expecting
that for Z packets other than Z0/z0. E.g., with "set breakpoint
always-inserted on" and "set debug remote 1":
(gdb) b main
Sending packet: $m410943,1#ff...Packet received: 48
Breakpoint 4 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028.
Sending packet: $Z0,410943,1#48...Packet received: OK
^^^^^^^^^^^^
(gdb) b main
Note: breakpoint 4 also set at pc 0x410943.
Sending packet: $m410943,1#ff...Packet received: 48
Breakpoint 5 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028.
Sending packet: $Z0,410943,1#48...Packet received: OK
^^^^^^^^^^^^
(gdb) b main
Note: breakpoints 4 and 5 also set at pc 0x410943.
Sending packet: $m410943,1#ff...Packet received: 48
Breakpoint 6 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028.
Sending packet: $Z0,410943,1#48...Packet received: OK
^^^^^^^^^^^^
(gdb) del
Delete all breakpoints? (y or n) y
Sending packet: $Z0,410943,1#48...Packet received: OK
Sending packet: $Z0,410943,1#48...Packet received: OK
Sending packet: $z0,410943,1#68...Packet received: OK
And for Z1, similarly:
(gdb) hbreak main
Sending packet: $m410943,1#ff...Packet received: 48
Hardware assisted breakpoint 4 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028.
Sending packet: $Z1,410943,1#49...Packet received: OK
^^^^^^^^^^^^
Packet Z1 (hardware-breakpoint) is supported
(gdb) hbreak main
Note: breakpoint 4 also set at pc 0x410943.
Sending packet: $m410943,1#ff...Packet received: 48
Hardware assisted breakpoint 5 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028.
Sending packet: $Z1,410943,1#49...Packet received: OK
^^^^^^^^^^^^
(gdb) hbreak main
Note: breakpoints 4 and 5 also set at pc 0x410943.
Sending packet: $m410943,1#ff...Packet received: 48
Hardware assisted breakpoint 6 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028.
Sending packet: $Z1,410943,1#49...Packet received: OK
^^^^^^^^^^^^
(gdb) del
Delete all breakpoints? (y or n) y
Sending packet: $Z1,410943,1#49...Packet received: OK
^^^^^^^^^^^^
Sending packet: $Z1,410943,1#49...Packet received: OK
^^^^^^^^^^^^
Sending packet: $z1,410943,1#69...Packet received: OK
^^^^^^^^^^^^
So GDB sent a bunch of Z1 packets, and then when finally removing the
breakpoint, only one z1 packet was sent. On the GDBserver side (with
monitor set debug-hw-points 1), in the Z1 case, we see:
$ ./gdbserver :9999 ./gdbserver
Process ./gdbserver created; pid = 8629
Listening on port 9999
Remote debugging from host 127.0.0.1
insert_watchpoint (addr=410943, len=1, type=instruction-execute):
CONTROL (DR7): 00000101 STATUS (DR6): 00000000
DR0: addr=0x410943, ref.count=1 DR1: addr=0x0, ref.count=0
DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0
insert_watchpoint (addr=410943, len=1, type=instruction-execute):
CONTROL (DR7): 00000101 STATUS (DR6): 00000000
DR0: addr=0x410943, ref.count=2 DR1: addr=0x0, ref.count=0
DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0
insert_watchpoint (addr=410943, len=1, type=instruction-execute):
CONTROL (DR7): 00000101 STATUS (DR6): 00000000
DR0: addr=0x410943, ref.count=3 DR1: addr=0x0, ref.count=0
DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0
insert_watchpoint (addr=410943, len=1, type=instruction-execute):
CONTROL (DR7): 00000101 STATUS (DR6): 00000000
DR0: addr=0x410943, ref.count=4 DR1: addr=0x0, ref.count=0
DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0
insert_watchpoint (addr=410943, len=1, type=instruction-execute):
CONTROL (DR7): 00000101 STATUS (DR6): 00000000
DR0: addr=0x410943, ref.count=5 DR1: addr=0x0, ref.count=0
DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0
remove_watchpoint (addr=410943, len=1, type=instruction-execute):
CONTROL (DR7): 00000101 STATUS (DR6): 00000000
DR0: addr=0x410943, ref.count=4 DR1: addr=0x0, ref.count=0
DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0
That's one insert_watchpoint call for each Z1 packet, and then one
remove_watchpoint call for the z1 packet. Notice how ref.count
increased for each insert_watchpoint call, and then in the end, after
GDB told GDBserver to forget about the hardware breakpoint, GDBserver
ends with the the first debug register still with ref.count=4! IOW,
the hardware breakpoint is left armed on the target, while on the GDB
end it's gone. If the program happens to execute 0x410943 afterwards,
then the CPU traps, GDBserver reports the trap to GDB, and GDB not
having a breakpoint set at that address anymore, reports to the user a
spurious SIGTRAP.
This is exactly what is happening in the hbreak2.exp test, though in
that case, it's a shared library event that triggers a
breakpoint_re_set, when breakpoints are still inserted (because
nowadays GDB doesn't remove breakpoints while handling internal
events), and that recreates breakpoint locations, which likewise
forces breakpoint reinsertion and Zx packet resends...
That is a lot of bogus Zx duplication that should possibly be
addressed on the GDB side. GDB resends Zx packets because the way to
change the target-side condition, is to resend the breakpoint to the
server with the new condition. (That's an option in the packet: e.g.,
"Z1,410943,1;X3,220027" for "hbreak main if 0". The packets in the
examples above are shorter because the breakpoints don't have
conditions attached). GDB doesn't remove the breakpoint first before
reinserting it because that'd be bad for non-stop, as it'd open a
window where the inferior could miss the breakpoint. The conditions
actually haven't changed between the resends, but GDB isn't smart
enough to realize that.
(TBC, if the target doesn't support target-side conditions, then GDB
doesn't trigger these resends (init_bp_location calls
mark_breakpoint_location_modified, and that does nothing if condition
evaluation is on the host side. The resends are caused by the
'loc->condition_changed = condition_modified.' line.)
But, even if GDB was made smarter, GDBserver should really still
handle the resends anyway. So target-side conditions also aren't
really to blame. The documentation of the Z/z packets says:
"To avoid potential problems with duplicate packets, the operations
should be implemented in an idempotent way."
As such, we may want to fix GDB, but we should definitely fix
GDBserver. The fix is a prerequisite for target-side conditions on
hardware breakpoints anyway (and while at it, on watchpoints too).
GDBserver indeed already treats duplicate Z0 packets in an idempotent
way. mem-break.c has the concept of high-level and low-level
breakpoints, somewhat similar to GDB's split of breakpoints vs
breakpoint locations, and keeps track of multiple breakpoints
referencing the same address/location, for the case of an internal
GDBserver breakpoint or a tracepoint being set at the same address as
a GDB breakpoint. But, it only allows GDB to ever contribute one
reference to a software breakpoint location. IOW, if gdbserver sees a
Z0 packet for the same address where it already had a GDB breakpoint
set, then GDBserver won't create another high-level GDB breakpoint.
However, mem-break.c only tracks GDB Z0 breakpoints. The same logic
should apply to all kinds of Zx packets. Currently, gdbserver passes
down each duplicate Zx (other than Z0) request directly to the
target->insert_point routine. The x86 watchpoint support itself
refcounts watchpoint / hw breakpoint requests, to handle overlapping
watchpoints, and save debug registers. But that code doesn't (and
really shouldn't) handle the duplicate requests, assuming that for
each insert there will be a corresponding remove.
So the fix is to generalize mem-break.c to track all kinds of Zx
breakpoints, and filter out duplicates. As mentioned, this ends up
adding support for target-side conditions on hardware breakpoints and
watchpoints too (though GDB itself doesn't support the latter yet).
Probably the least obvious change in the patch is that it kind of
turns the breakpoint insert/remove APIs inside out. Before, the
target methods were only called for GDB breakpoints. The internal
breakpoint set/delete methods inserted memory breakpoints directly
bypassing the insert/remove target methods. That's not good when the
target should use a debug API to set software breakpoints, instead of
relying on GDBserver patching memory with breakpoint instructions, as
is the case of NTO.
Now removal/insertion of all kinds of breakpoints/watchpoints, either
internal, or from GDB, always go through the target methods. The
insert_point/remove_point methods no longer get passed a Z packet
type, but an internal/raw breakpoint type. They're also passed a
pointer to the raw breakpoint itself (note that's still opaque outside
mem-break.c), so that insert_memory_breakpoint /
remove_memory_breakpoint have access to the breakpoint's shadow
buffer. I first tried passing down a new structure based on GDB's
"struct bp_target_info" (actually with that name exactly), but then
decided against it as unnecessary complication.
As software/memory breakpoints work by poking at memory, when setting
a GDB Z0 breakpoint (but not internal breakpoints, as those can assume
the conditions are already right), we need to tell the target to
prepare to access memory (which on Linux means stop threads). If that
operation fails, we need to return error to GDB. Seeing an error, if
this is the first breakpoint of that type that GDB tries to insert,
GDB would then assume the breakpoint type is supported, but it may
actually not be. So we need to check whether the type is supported at
all before preparing to access memory. And to solve that, the patch
adds a new target->supports_z_point_type method that is called before
actually trying to insert the breakpoint.
Other than that, hopefully the change is more or less obvious.
New test added that exercises the hbreak2.exp regression in a more
direct way, without relying on a breakpoint re-set happening before
main is reached.
Tested by building GDBserver for:
aarch64-linux-gnu
arm-linux-gnueabihf
i686-pc-linux-gnu
i686-w64-mingw32
m68k-linux-gnu
mips-linux-gnu
mips-uclinux
nios2-linux-gnu
powerpc-linux-gnu
sh-linux-gnu
tilegx-unknown-linux-gnu
x86_64-redhat-linux
x86_64-w64-mingw32
And also regression tested on x86_64 Fedora 20.
gdb/gdbserver/
2014-05-20 Pedro Alves <palves@redhat.com>
* linux-aarch64-low.c (aarch64_insert_point)
(aarch64_remove_point): No longer check whether the type is
supported here. Adjust to new interface.
(the_low_target): Install aarch64_supports_z_point_type as
supports_z_point_type method.
* linux-arm-low.c (raw_bkpt_type_to_arm_hwbp_type): New function.
(arm_linux_hw_point_initialize): Take an enum raw_bkpt_type
instead of a Z packet char. Adjust.
(arm_supports_z_point_type): New function.
(arm_insert_point, arm_remove_point): Adjust to new interface.
(the_low_target): Install arm_supports_z_point_type.
* linux-crisv32-low.c (cris_supports_z_point_type): New function.
(cris_insert_point, cris_remove_point): Adjust to new interface.
Don't check whether the type is supported here.
(the_low_target): Install cris_supports_z_point_type.
* linux-low.c (linux_supports_z_point_type): New function.
(linux_insert_point, linux_remove_point): Adjust to new interface.
* linux-low.h (struct linux_target_ops) <insert_point,
remove_point>: Take an enum raw_bkpt_type instead of a char. Add
raw_breakpoint pointer parameter.
<supports_z_point_type>: New method.
* linux-mips-low.c (mips_supports_z_point_type): New function.
(mips_insert_point, mips_remove_point): Adjust to new interface.
Use mips_supports_z_point_type.
(the_low_target): Install mips_supports_z_point_type.
* linux-ppc-low.c (the_low_target): Install NULL as
supports_z_point_type method.
* linux-s390-low.c (the_low_target): Install NULL as
supports_z_point_type method.
* linux-sparc-low.c (the_low_target): Install NULL as
supports_z_point_type method.
* linux-x86-low.c (x86_supports_z_point_type): New function.
(x86_insert_point): Adjust to new insert_point interface. Use
insert_memory_breakpoint. Adjust to new
i386_low_insert_watchpoint interface.
(x86_remove_point): Adjust to remove_point interface. Use
remove_memory_breakpoint. Adjust to new
i386_low_remove_watchpoint interface.
(the_low_target): Install x86_supports_z_point_type.
* lynx-low.c (lynx_target_ops): Install NULL as
supports_z_point_type callback.
* nto-low.c (nto_supports_z_point_type): New.
(nto_insert_point, nto_remove_point): Adjust to new interface.
(nto_target_ops): Install nto_supports_z_point_type.
* mem-break.c: Adjust intro comment.
(struct raw_breakpoint) <raw_type, size>: New fields.
<inserted>: Update comment.
<shlib_disabled>: Delete field.
(enum bkpt_type) <gdb_breakpoint>: Delete value.
<gdb_breakpoint_Z0, gdb_breakpoint_Z1, gdb_breakpoint_Z2,
gdb_breakpoint_Z3, gdb_breakpoint_Z4>: New values.
(raw_bkpt_type_to_target_hw_bp_type): New function.
(find_enabled_raw_code_breakpoint_at): New function.
(find_raw_breakpoint_at): New type and size parameters. Use them.
(insert_memory_breakpoint): New function, based off
set_raw_breakpoint_at.
(remove_memory_breakpoint): New function.
(set_raw_breakpoint_at): Reimplement.
(set_breakpoint): New, based on set_breakpoint_at.
(set_breakpoint_at): Reimplement.
(delete_raw_breakpoint): Go through the_target->remove_point
instead of assuming memory breakpoints.
(find_gdb_breakpoint_at): Delete.
(Z_packet_to_bkpt_type, Z_packet_to_raw_bkpt_type): New functions.
(find_gdb_breakpoint): New function.
(set_gdb_breakpoint_at): Delete.
(z_type_supported): New function.
(set_gdb_breakpoint_1): New function, loosely based off
set_gdb_breakpoint_at.
(check_gdb_bp_preconditions, set_gdb_breakpoint): New functions.
(delete_gdb_breakpoint_at): Delete.
(delete_gdb_breakpoint_1): New function, loosely based off
delete_gdb_breakpoint_at.
(delete_gdb_breakpoint): New function.
(clear_gdb_breakpoint_conditions): Rename to ...
(clear_breakpoint_conditions): ... this. Don't handle a NULL
breakpoint.
(add_condition_to_breakpoint): Make static.
(add_breakpoint_condition): Take a struct breakpoint pointer
instead of an address. Adjust.
(gdb_condition_true_at_breakpoint): Rename to ...
(gdb_condition_true_at_breakpoint_z_type): ... this, and add
z_type parameter.
(gdb_condition_true_at_breakpoint): Reimplement.
(add_breakpoint_commands): Take a struct breakpoint pointer
instead of an address. Adjust.
(gdb_no_commands_at_breakpoint): Rename to ...
(gdb_no_commands_at_breakpoint_z_type): ... this. Add z_type
parameter. Return true if no breakpoint was found. Change debug
output.
(gdb_no_commands_at_breakpoint): Reimplement.
(run_breakpoint_commands): Rename to ...
(run_breakpoint_commands_z_type): ... this. Add z_type parameter,
and change return type to boolean.
(run_breakpoint_commands): New function.
(gdb_breakpoint_here): Also check for Z1 breakpoints.
(uninsert_raw_breakpoint): Don't try to reinsert a disabled
breakpoint. Go through the_target->remove_point instead of
assuming memory breakpoint.
(uninsert_breakpoints_at, uninsert_all_breakpoints): Uninsert
software and hardware breakpoints.
(reinsert_raw_breakpoint): Go through the_target->insert_point
instead of assuming memory breakpoint.
(reinsert_breakpoints_at, reinsert_all_breakpoints): Reinsert
software and hardware breakpoints.
(check_breakpoints, breakpoint_here, breakpoint_inserted_here):
Check both software and hardware breakpoints.
(validate_inserted_breakpoint): Assert the breakpoint is a
software breakpoint. Set the inserted flag to -1 instead of
setting shlib_disabled.
(delete_disabled_breakpoints): Adjust.
(validate_breakpoints): Only validate software breakpoints.
Adjust to inserted flag change.
(check_mem_read, check_mem_write): Skip breakpoint types other
than software breakpoints. Adjust to inserted flag change.
* mem-break.h (enum raw_bkpt_type): New enum.
(raw_breakpoint, struct process_info): Forward declare.
(Z_packet_to_target_hw_bp_type): Delete declaration.
(raw_bkpt_type_to_target_hw_bp_type, Z_packet_to_raw_bkpt_type)
(set_gdb_breakpoint, delete_gdb_breakpoint)
(clear_breakpoint_conditions): New declarations.
(set_gdb_breakpoint_at, clear_gdb_breakpoint_conditions): Delete.
(breakpoint_inserted_here): Update comment.
(add_breakpoint_condition, add_breakpoint_commands): Replace
address parameter with a breakpoint pointer parameter.
(gdb_breakpoint_here): Update comment.
(delete_gdb_breakpoint_at): Delete.
(insert_memory_breakpoint, remove_memory_breakpoint): Declare.
* server.c (process_point_options): Take a struct breakpoint
pointer instead of an address. Adjust.
(process_serial_event) <Z/z packets>: Use set_gdb_breakpoint and
delete_gdb_breakpoint.
* spu-low.c (spu_target_ops): Install NULL as
supports_z_point_type method.
* target.h: Include mem-break.h.
(struct target_ops) <prepare_to_access_memory>: Update comment.
<supports_z_point_type>: New field.
<insert_point, remove_point>: Take an enum raw_bkpt_type argument
instead of a char. Also take a raw breakpoint pointer.
* win32-arm-low.c (the_low_target): Install NULL as
supports_z_point_type.
* win32-i386-low.c (i386_supports_z_point_type): New function.
(i386_insert_point, i386_remove_point): Adjust to new interface.
(the_low_target): Install i386_supports_z_point_type.
* win32-low.c (win32_supports_z_point_type): New function.
(win32_insert_point, win32_remove_point): Adjust to new interface.
(win32_target_ops): Install win32_supports_z_point_type.
* win32-low.h (struct win32_target_ops):
<supports_z_point_type>: New method.
<insert_point, remove_point>: Take an enum raw_bkpt_type argument
instead of a char. Also take a raw breakpoint pointer.
gdb/testsuite/
2014-05-20 Pedro Alves <palves@redhat.com>
* gdb.base/break-idempotent.c: New file.
* gdb.base/break-idempotent.exp: New file.
2014-05-20 17:24:28 +00:00
|
|
|
/* Determine the type from the raw breakpoint type. */
|
|
|
|
targ_type = raw_bkpt_type_to_target_hw_bp_type (type);
|
2013-02-04 18:20:05 +00:00
|
|
|
|
|
|
|
/* Set up state pointers. */
|
|
|
|
if (targ_type != hw_execute)
|
|
|
|
ret =
|
2015-07-17 13:32:40 +00:00
|
|
|
aarch64_handle_watchpoint (targ_type, addr, len, 0 /* is_insert */,
|
|
|
|
state);
|
2013-02-04 18:20:05 +00:00
|
|
|
else
|
|
|
|
ret =
|
2015-07-17 13:32:40 +00:00
|
|
|
aarch64_handle_breakpoint (targ_type, addr, len, 0 /* is_insert */,
|
|
|
|
state);
|
2013-02-04 18:20:05 +00:00
|
|
|
|
2015-03-06 14:14:27 +00:00
|
|
|
if (show_debug_regs)
|
2015-08-25 10:38:29 +00:00
|
|
|
aarch64_show_debug_reg_state (state, "remove_point", addr, len,
|
|
|
|
targ_type);
|
2013-02-04 18:20:05 +00:00
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2015-07-02 11:11:47 +00:00
|
|
|
/* Implementation of linux_target_ops method "stopped_data_address". */
|
2013-02-04 18:20:05 +00:00
|
|
|
|
|
|
|
static CORE_ADDR
|
|
|
|
aarch64_stopped_data_address (void)
|
|
|
|
{
|
|
|
|
siginfo_t siginfo;
|
|
|
|
int pid, i;
|
|
|
|
struct aarch64_debug_reg_state *state;
|
|
|
|
|
2014-09-10 09:37:11 +00:00
|
|
|
pid = lwpid_of (current_thread);
|
2013-02-04 18:20:05 +00:00
|
|
|
|
|
|
|
/* Get the siginfo. */
|
|
|
|
if (ptrace (PTRACE_GETSIGINFO, pid, NULL, &siginfo) != 0)
|
|
|
|
return (CORE_ADDR) 0;
|
|
|
|
|
|
|
|
/* Need to be a hardware breakpoint/watchpoint trap. */
|
|
|
|
if (siginfo.si_signo != SIGTRAP
|
|
|
|
|| (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
|
|
|
|
return (CORE_ADDR) 0;
|
|
|
|
|
|
|
|
/* Check if the address matches any watched address. */
|
2015-08-25 10:38:29 +00:00
|
|
|
state = aarch64_get_debug_reg_state (pid_of (current_thread));
|
2013-02-04 18:20:05 +00:00
|
|
|
for (i = aarch64_num_wp_regs - 1; i >= 0; --i)
|
|
|
|
{
|
|
|
|
const unsigned int len = aarch64_watchpoint_length (state->dr_ctrl_wp[i]);
|
|
|
|
const CORE_ADDR addr_trap = (CORE_ADDR) siginfo.si_addr;
|
|
|
|
const CORE_ADDR addr_watch = state->dr_addr_wp[i];
|
|
|
|
if (state->dr_ref_count_wp[i]
|
|
|
|
&& DR_CONTROL_ENABLED (state->dr_ctrl_wp[i])
|
|
|
|
&& addr_trap >= addr_watch
|
|
|
|
&& addr_trap < addr_watch + len)
|
|
|
|
return addr_trap;
|
|
|
|
}
|
|
|
|
|
|
|
|
return (CORE_ADDR) 0;
|
|
|
|
}
|
|
|
|
|
2015-07-02 11:11:47 +00:00
|
|
|
/* Implementation of linux_target_ops method "stopped_by_watchpoint". */
|
2013-02-04 18:20:05 +00:00
|
|
|
|
|
|
|
static int
|
|
|
|
aarch64_stopped_by_watchpoint (void)
|
|
|
|
{
|
|
|
|
if (aarch64_stopped_data_address () != 0)
|
|
|
|
return 1;
|
|
|
|
else
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Fetch the thread-local storage pointer for libthread_db. */
|
|
|
|
|
|
|
|
ps_err_e
|
2013-02-07 10:47:40 +00:00
|
|
|
ps_get_thread_area (const struct ps_prochandle *ph,
|
2013-02-04 18:20:05 +00:00
|
|
|
lwpid_t lwpid, int idx, void **base)
|
|
|
|
{
|
2013-02-07 10:47:40 +00:00
|
|
|
struct iovec iovec;
|
|
|
|
uint64_t reg;
|
|
|
|
|
|
|
|
iovec.iov_base = ®
|
|
|
|
iovec.iov_len = sizeof (reg);
|
|
|
|
|
|
|
|
if (ptrace (PTRACE_GETREGSET, lwpid, NT_ARM_TLS, &iovec) != 0)
|
2013-02-04 18:20:05 +00:00
|
|
|
return PS_ERR;
|
|
|
|
|
|
|
|
/* IDX is the bias from the thread pointer to the beginning of the
|
|
|
|
thread descriptor. It has to be subtracted due to implementation
|
|
|
|
quirks in libthread_db. */
|
2013-02-07 10:47:40 +00:00
|
|
|
*base = (void *) (reg - idx);
|
2013-02-04 18:20:05 +00:00
|
|
|
|
|
|
|
return PS_OK;
|
|
|
|
}
|
|
|
|
|
2015-07-02 11:11:47 +00:00
|
|
|
/* Implementation of linux_target_ops method "linux_new_process". */
|
2013-02-04 18:20:05 +00:00
|
|
|
|
|
|
|
static struct arch_process_info *
|
|
|
|
aarch64_linux_new_process (void)
|
|
|
|
{
|
|
|
|
struct arch_process_info *info = xcalloc (1, sizeof (*info));
|
|
|
|
|
|
|
|
aarch64_init_debug_reg_state (&info->debug_reg_state);
|
|
|
|
|
|
|
|
return info;
|
|
|
|
}
|
|
|
|
|
2015-07-02 11:11:47 +00:00
|
|
|
/* Implementation of linux_target_ops method "linux_new_fork". */
|
|
|
|
|
Arch-specific remote follow fork
This patch implements the architecture-specific pieces of follow-fork
for remote and extended-remote Linux targets, which in the current
implementation copyies the parent's debug register state into the new
child's data structures. This is required for x86, arm, aarch64, and
mips.
This follows the native implementation as closely as possible by
implementing a new linux_target_ops function 'new_fork', which is
analogous to 'linux_nat_new_fork' in linux-nat.c. In gdbserver, the debug
registers are stored in the process list, instead of an
architecture-specific list, so the function arguments are process_info
pointers instead of an lwp_info and a pid as in the native implementation.
In the MIPS implementation the debug register mirror is stored differently
from x86, ARM, and aarch64, so instead of doing a simple structure assignment
I had to clone the list of watchpoint structures.
Tested using gdb.threads/watchpoint-fork.exp on x86, and ran manual tests
on a MIPS board and an ARM board. Aarch64 hasn't been tested.
gdb/gdbserver/ChangeLog:
* linux-aarch64-low.c (aarch64_linux_new_fork): New function.
(the_low_target) <new_fork>: Initialize new member.
* linux-arm-low.c (arm_new_fork): New function.
(the_low_target) <new_fork>: Initialize new member.
* linux-low.c (handle_extended_wait): Call new target function
new_fork.
* linux-low.h (struct linux_target_ops) <new_fork>: New member.
* linux-mips-low.c (mips_add_watchpoint): New function
extracted from mips_insert_point.
(the_low_target) <new_fork>: Initialize new member.
(mips_linux_new_fork): New function.
(mips_insert_point): Call mips_add_watchpoint.
* linux-x86-low.c (x86_linux_new_fork): New function.
(the_low_target) <new_fork>: Initialize new member.
2015-05-12 16:52:44 +00:00
|
|
|
static void
|
|
|
|
aarch64_linux_new_fork (struct process_info *parent,
|
|
|
|
struct process_info *child)
|
|
|
|
{
|
|
|
|
/* These are allocated by linux_add_process. */
|
2015-05-14 20:11:41 +00:00
|
|
|
gdb_assert (parent->priv != NULL
|
|
|
|
&& parent->priv->arch_private != NULL);
|
|
|
|
gdb_assert (child->priv != NULL
|
|
|
|
&& child->priv->arch_private != NULL);
|
Arch-specific remote follow fork
This patch implements the architecture-specific pieces of follow-fork
for remote and extended-remote Linux targets, which in the current
implementation copyies the parent's debug register state into the new
child's data structures. This is required for x86, arm, aarch64, and
mips.
This follows the native implementation as closely as possible by
implementing a new linux_target_ops function 'new_fork', which is
analogous to 'linux_nat_new_fork' in linux-nat.c. In gdbserver, the debug
registers are stored in the process list, instead of an
architecture-specific list, so the function arguments are process_info
pointers instead of an lwp_info and a pid as in the native implementation.
In the MIPS implementation the debug register mirror is stored differently
from x86, ARM, and aarch64, so instead of doing a simple structure assignment
I had to clone the list of watchpoint structures.
Tested using gdb.threads/watchpoint-fork.exp on x86, and ran manual tests
on a MIPS board and an ARM board. Aarch64 hasn't been tested.
gdb/gdbserver/ChangeLog:
* linux-aarch64-low.c (aarch64_linux_new_fork): New function.
(the_low_target) <new_fork>: Initialize new member.
* linux-arm-low.c (arm_new_fork): New function.
(the_low_target) <new_fork>: Initialize new member.
* linux-low.c (handle_extended_wait): Call new target function
new_fork.
* linux-low.h (struct linux_target_ops) <new_fork>: New member.
* linux-mips-low.c (mips_add_watchpoint): New function
extracted from mips_insert_point.
(the_low_target) <new_fork>: Initialize new member.
(mips_linux_new_fork): New function.
(mips_insert_point): Call mips_add_watchpoint.
* linux-x86-low.c (x86_linux_new_fork): New function.
(the_low_target) <new_fork>: Initialize new member.
2015-05-12 16:52:44 +00:00
|
|
|
|
|
|
|
/* Linux kernel before 2.6.33 commit
|
|
|
|
72f674d203cd230426437cdcf7dd6f681dad8b0d
|
|
|
|
will inherit hardware debug registers from parent
|
|
|
|
on fork/vfork/clone. Newer Linux kernels create such tasks with
|
|
|
|
zeroed debug registers.
|
|
|
|
|
|
|
|
GDB core assumes the child inherits the watchpoints/hw
|
|
|
|
breakpoints of the parent, and will remove them all from the
|
|
|
|
forked off process. Copy the debug registers mirrors into the
|
|
|
|
new process so that all breakpoints and watchpoints can be
|
|
|
|
removed together. The debug registers mirror will become zeroed
|
|
|
|
in the end before detaching the forked off process, thus making
|
|
|
|
this compatible with older Linux kernels too. */
|
|
|
|
|
2015-05-14 20:11:41 +00:00
|
|
|
*child->priv->arch_private = *parent->priv->arch_private;
|
Arch-specific remote follow fork
This patch implements the architecture-specific pieces of follow-fork
for remote and extended-remote Linux targets, which in the current
implementation copyies the parent's debug register state into the new
child's data structures. This is required for x86, arm, aarch64, and
mips.
This follows the native implementation as closely as possible by
implementing a new linux_target_ops function 'new_fork', which is
analogous to 'linux_nat_new_fork' in linux-nat.c. In gdbserver, the debug
registers are stored in the process list, instead of an
architecture-specific list, so the function arguments are process_info
pointers instead of an lwp_info and a pid as in the native implementation.
In the MIPS implementation the debug register mirror is stored differently
from x86, ARM, and aarch64, so instead of doing a simple structure assignment
I had to clone the list of watchpoint structures.
Tested using gdb.threads/watchpoint-fork.exp on x86, and ran manual tests
on a MIPS board and an ARM board. Aarch64 hasn't been tested.
gdb/gdbserver/ChangeLog:
* linux-aarch64-low.c (aarch64_linux_new_fork): New function.
(the_low_target) <new_fork>: Initialize new member.
* linux-arm-low.c (arm_new_fork): New function.
(the_low_target) <new_fork>: Initialize new member.
* linux-low.c (handle_extended_wait): Call new target function
new_fork.
* linux-low.h (struct linux_target_ops) <new_fork>: New member.
* linux-mips-low.c (mips_add_watchpoint): New function
extracted from mips_insert_point.
(the_low_target) <new_fork>: Initialize new member.
(mips_linux_new_fork): New function.
(mips_insert_point): Call mips_add_watchpoint.
* linux-x86-low.c (x86_linux_new_fork): New function.
(the_low_target) <new_fork>: Initialize new member.
2015-05-12 16:52:44 +00:00
|
|
|
}
|
|
|
|
|
2015-08-04 13:34:14 +00:00
|
|
|
/* Return the right target description according to the ELF file of
|
|
|
|
current thread. */
|
|
|
|
|
|
|
|
static const struct target_desc *
|
|
|
|
aarch64_linux_read_description (void)
|
|
|
|
{
|
|
|
|
unsigned int machine;
|
|
|
|
int is_elf64;
|
|
|
|
int tid;
|
|
|
|
|
|
|
|
tid = lwpid_of (current_thread);
|
|
|
|
|
|
|
|
is_elf64 = linux_pid_exe_is_elf_64_file (tid, &machine);
|
|
|
|
|
|
|
|
if (is_elf64)
|
|
|
|
return tdesc_aarch64;
|
|
|
|
else
|
|
|
|
return tdesc_arm_with_neon;
|
|
|
|
}
|
|
|
|
|
2015-07-02 11:11:47 +00:00
|
|
|
/* Implementation of linux_target_ops method "arch_setup". */
|
|
|
|
|
2013-02-04 18:20:05 +00:00
|
|
|
static void
|
|
|
|
aarch64_arch_setup (void)
|
|
|
|
{
|
2015-08-04 13:34:14 +00:00
|
|
|
current_process ()->tdesc = aarch64_linux_read_description ();
|
2013-02-04 18:20:05 +00:00
|
|
|
|
2015-07-21 15:33:41 +00:00
|
|
|
aarch64_linux_get_debug_reg_capacity (lwpid_of (current_thread));
|
2013-02-04 18:20:05 +00:00
|
|
|
}
|
|
|
|
|
[GDBserver] Multi-process + multi-arch
This patch makes GDBserver support multi-process + biarch.
Currently, if you're debugging more than one process at once with a
single gdbserver (in extended-remote mode), then all processes must
have the same architecture (e.g., 64-bit vs 32-bit). Otherwise, you
see this:
Added inferior 2
[Switching to inferior 2 [<null>] (<noexec>)]
Reading symbols from /home/pedro/gdb/tests/main32...done.
Temporary breakpoint 2 at 0x4004cf: main. (2 locations)
Starting program: /home/pedro/gdb/tests/main32
warning: Selected architecture i386 is not compatible with reported target architecture i386:x86-64
warning: Architecture rejected target-supplied description
Remote 'g' packet reply is too long: 000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000090cfffff0000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000000000000000000b042f7460000000000020000230000002b0000002b0000002b000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000007f03000000000000ffff0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000801f00003b0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
... etc, etc ...
Even though the process was running a 32-bit program, GDBserver sent
back to GDB a register set in 64-bit layout.
A patch (http://sourceware.org/ml/gdb-patches/2012-11/msg00228.html) a
while ago made GDB track a target_gdbarch per inferior, and as
consequence, fetch a target description per-inferior. This patch is
the GDBserver counterpart, that makes GDBserver keep track of each
process'es XML target description and register layout. So in the
example above, GDBserver will send the correct register set in 32-bit
layout to GDB.
A new "struct target_desc" object (tdesc for short) is added, that
holds the target description and register layout information about
each process. Each `struct process_info' holds a pointer to a target
description. The regcache also gains a pointer to a target
description, mainly for convenience, and parallel with GDB (and
possible future support for programs that flip processor modes).
The low target's arch_setup routines are responsible for setting the
process'es correct tdesc. This isn't that much different to how
things were done before, except that instead of detecting the inferior
process'es architecture and calling the corresponding
init_registers_FOO routine, which would change the regcache layout
globals and recreate the threads' regcaches, the regcache.c globals
are gone, and the init_registers_$BAR routines now each initialize a
separate global struct target_desc object (one for each arch variant
GDBserver supports), and so all the init_registers_$BAR routines that
are built into GDBserver are called early at GDBserver startup time
(similarly to how GDB handles its built-in target descriptions), and
then the arch_setup routine is responsible for making
process_info->tdesc point to one of these target description globals.
The regcache module is all parameterized to get the regcache's layout
from the tdesc object instead of the old register_bytes, etc. globals.
The threads' regcaches are now created lazily. The old scheme where
we created each of them when we added a new thread doesn't work
anymore, because we add the main thread/lwp before we see it stop for
the first time, and it is only when we see the thread stop for the
first time that we have a chance of determining the inferior's
architecture (through the_low_target.arch_setup). Therefore when we
add the main thread we don't know which architecture/tdesc its
regcache should have.
This patch makes the gdb.multi/multi-arch.exp test now pass against
(extended-remote) GDBserver. It currently fails, without this patch.
The IPA also uses the regcache, so it gains a new global struct
target_desc pointer, which points at the description of the process it
is loaded in.
Re. the linux-low.c & friends changes. Since the register map
etc. may differ between processes (64-bit vs 32-bit) etc., the
linux_target_ops num_regs, regmap and regset_bitmap data fields are no
longer sufficient. A new method is added in their place that returns
a pointer to a new struct that includes all info linux-low.c needs to
access registers of the current inferior.
The patch/discussion that originally introduced
linux-low.c:disabled_regsets mentions that the disabled_regsets set
may be different per mode (in a biarch setup), and indeed that is
cleared whenever we start a new (first) inferior, so that global is
moved as well behind the new `struct regs_info'.
On the x86 side:
I simply replaced the i387-fp.c:num_xmm_registers global with a check
for 64-bit or 32-bit process, which is equivalent to how the global
was set. This avoided coming up with some more general mechanism that
would work for all targets that use this module (GNU/Linux, Windows,
etc.).
Tested:
GNU/Linux IA64
GNU/Linux MIPS64
GNU/Linux PowerPC (Fedora 16)
GNU/Linux s390x (Fedora 16)
GNU/Linux sparc64 (Debian)
GNU/Linux x86_64, -m64 and -m32 (Fedora 17)
Cross built, and smoke tested:
i686-w64-mingw32, under Wine.
GNU/Linux TI C6x, by Yao Qi.
Cross built but otherwise not tested:
aarch64-linux-gnu
arm-linux-gnu
m68k-linux
nios2-linux-gnu
sh-linux-gnu
spu
tilegx-unknown-linux-gnu
Completely untested:
GNU/Linux Blackfin
GNU/Linux CRIS
GNU/Linux CRISv32
GNU/Linux TI Xtensa
GNU/Linux M32R
LynxOS
QNX NTO
gdb/gdbserver/
2013-06-07 Pedro Alves <palves@redhat.com>
* Makefile.in (OBS): Add tdesc.o.
(IPA_OBJS): Add tdesc-ipa.o.
(tdesc-ipa.o): New rule.
* ax.c (gdb_eval_agent_expr): Adjust register_size call to new
interface.
* linux-low.c (new_inferior): Delete.
(disabled_regsets, num_regsets): Delete.
(linux_add_process): Adjust to set the new per-process
new_inferior flag.
(linux_detach_one_lwp): Adjust to call regcache_invalidate_thread.
(linux_wait_for_lwp): Adjust. Only call arch_setup if the event
was a stop. When calling arch_setup, switch the current inferior
to the thread that got an event.
(linux_resume_one_lwp): Adjust to call regcache_invalidate_thread.
(regsets_fetch_inferior_registers)
(regsets_store_inferior_registers): New regsets_info parameter.
Adjust to use it.
(linux_register_in_regsets): New regs_info parameter. Adjust to
use it.
(register_addr, fetch_register, store_register): New usrregs_info
parameter. Adjust to use it.
(usr_fetch_inferior_registers, usr_store_inferior_registers): New
parameter regs_info. Adjust to use it.
(linux_fetch_registers): Get the current inferior's regs_info, and
adjust to use it.
(linux_store_registers): Ditto.
[HAVE_LINUX_REGSETS] (initialize_regsets_info): New.
(initialize_low): Don't initialize the target_regsets here. Call
initialize_low_arch.
* linux-low.h (target_regsets): Delete declaration.
(struct regsets_info): New.
(struct usrregs_info): New.
(struct regs_info): New.
(struct process_info_private) <new_inferior>: New field.
(struct linux_target_ops): Delete the num_regs, regmap, and
regset_bitmap fields. New field regs_info.
[HAVE_LINUX_REGSETS] (initialize_regsets_info): Declare.
* i387-fp.c (num_xmm_registers): Delete.
(i387_cache_to_fsave, i387_fsave_to_cache): Adjust find_regno
calls to new interface.
(i387_cache_to_fxsave, i387_cache_to_xsave, i387_fxsave_to_cache)
(i387_xsave_to_cache): Adjust find_regno calls to new interface.
Infer the number of xmm registers from the regcache's target
description.
* i387-fp.h (num_xmm_registers): Delete.
* inferiors.c (add_thread): Don't install the thread's regcache
here.
* proc-service.c (gregset_info): Fetch the current inferior's
regs_info. Adjust to use it.
* regcache.c: Include tdesc.h.
(register_bytes, reg_defs, num_registers)
(gdbserver_expedite_regs): Delete.
(get_thread_regcache): If the thread doesn't have a regcache yet,
create one, instead of aborting gdbserver.
(regcache_invalidate_one): Rename to ...
(regcache_invalidate_thread): ... this.
(regcache_invalidate_one): New.
(regcache_invalidate): Only invalidate registers of the current
process.
(init_register_cache): Add target_desc parameter, and use it.
(new_register_cache): Ditto. Assert the target description has a
non zero registers_size.
(regcache_cpy): Add assertions. Adjust.
(realloc_register_cache, set_register_cache): Delete.
(registers_to_string, registers_from_string): Adjust.
(find_register_by_name, find_regno, find_register_by_number)
(register_cache_size): Add target_desc parameter, and use it.
(free_register_cache_thread, free_register_cache_thread_one)
(regcache_release, register_cache_size): New.
(register_size): Add target_desc parameter, and use it.
(register_data, supply_register, supply_register_zeroed)
(supply_regblock, supply_register_by_name, collect_register)
(collect_register_as_string, collect_register_by_name): Adjust.
* regcache.h (struct target_desc): Forward declare.
(struct regcache) <tdesc>: New field.
(init_register_cache, new_register_cache): Add target_desc
parameter.
(regcache_invalidate_thread): Declare.
(regcache_invalidate_one): Delete declaration.
(regcache_release): Declare.
(find_register_by_number, register_cache_size, register_size)
(find_regno): Add target_desc parameter.
(gdbserver_expedite_regs, gdbserver_xmltarget): Delete
declarations.
* remote-utils.c: Include tdesc.h.
(outreg, prepare_resume_reply): Adjust.
* server.c: Include tdesc.h.
(gdbserver_xmltarget): Delete declaration.
(get_features_xml, process_serial_event): Adjust.
* server.h [IN_PROCESS_AGENT] (struct target_desc): Forward
declare.
(struct process_info) <tdesc>: New field.
(ipa_tdesc): Declare.
* tdesc.c: New file.
* tdesc.h: New file.
* tracepoint.c: Include tdesc.h.
[IN_PROCESS_AGENT] (ipa_tdesc): Define.
(get_context_regcache): Adjust to pass ipa_tdesc down.
(do_action_at_tracepoint): Adjust to get the register cache size
from the context regcache's description.
(traceframe_walk_blocks): Adjust to get the register cache size
from the current trace frame's description.
(traceframe_get_pc): Adjust to get current trace frame's
description and pass it down.
(gdb_collect): Adjust to get the register cache size from the
IPA's description.
* linux-amd64-ipa.c (tdesc_amd64_linux): Declare.
(gdbserver_xmltarget): Delete.
(initialize_low_tracepoint): Set the ipa's target description.
* linux-i386-ipa.c (tdesc_i386_linux): Declare.
(initialize_low_tracepoint): Set the ipa's target description.
* linux-x86-low.c: Include tdesc.h.
[__x86_64__] (is_64bit_tdesc): New.
(ps_get_thread_area, x86_get_thread_area): Use it.
(i386_cannot_store_register): Rename to ...
(x86_cannot_store_register): ... this. Use is_64bit_tdesc.
(i386_cannot_fetch_register): Rename to ...
(x86_cannot_fetch_register): ... this. Use is_64bit_tdesc.
(x86_fill_gregset, x86_store_gregset): Adjust register_size calls
to new interface.
(target_regsets): Rename to ...
(x86_regsets): ... this.
(x86_get_pc, x86_set_pc): Adjust register_size calls to new
interface.
(x86_siginfo_fixup): Use is_64bit_tdesc.
[__x86_64__] (tdesc_amd64_linux, tdesc_amd64_avx_linux)
(tdesc_x32_avx_linux, tdesc_x32_linux)
(tdesc_i386_linux, tdesc_i386_mmx_linux, tdesc_i386_avx_linux):
Declare.
(x86_linux_update_xmltarget): Delete.
(I386_LINUX_XSAVE_XCR0_OFFSET): Define.
(have_ptrace_getfpxregs, have_ptrace_getregset): New.
(AMD64_LINUX_USER64_CS): New.
(x86_linux_read_description): New, based on
x86_linux_update_xmltarget.
(same_process_callback): New.
(x86_arch_setup_process_callback): New.
(x86_linux_update_xmltarget): New.
(x86_regsets_info): New.
(amd64_linux_regs_info): New.
(i386_linux_usrregs_info): New.
(i386_linux_regs_info): New.
(x86_linux_regs_info): New.
(x86_arch_setup): Reimplement.
(x86_install_fast_tracepoint_jump_pad): Use is_64bit_tdesc.
(x86_emit_ops): Ditto.
(the_low_target): Adjust. Install x86_linux_regs_info,
x86_cannot_fetch_register, and x86_cannot_store_register.
(initialize_low_arch): New.
* linux-ia64-low.c (tdesc_ia64): Declare.
(ia64_fetch_register): Adjust.
(ia64_usrregs_info, regs_info): New globals.
(ia64_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-sparc-low.c (tdesc_sparc64): Declare.
(sparc_fill_gregset_to_stack, sparc_store_gregset_from_stack):
Adjust.
(sparc_arch_setup): New function.
(sparc_regsets_info, sparc_usrregs_info, regs_info): New globals.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-ppc-low.c (tdesc_powerpc_32l, tdesc_powerpc_altivec32l)
(tdesc_powerpc_cell32l, tdesc_powerpc_vsx32l)
(tdesc_powerpc_isa205_32l, tdesc_powerpc_isa205_altivec32l)
(tdesc_powerpc_isa205_vsx32l, tdesc_powerpc_e500l)
(tdesc_powerpc_64l, tdesc_powerpc_altivec64l)
(tdesc_powerpc_cell64l, tdesc_powerpc_vsx64l)
(tdesc_powerpc_isa205_64l, tdesc_powerpc_isa205_altivec64l)
(tdesc_powerpc_isa205_vsx64l): Declare.
(ppc_cannot_store_register, ppc_collect_ptrace_register)
(ppc_supply_ptrace_register, parse_spufs_run, ppc_get_pc)
(ppc_set_pc, ppc_get_hwcap): Adjust.
(ppc_usrregs_info): Forward declare.
(!__powerpc64__) ppc_regmap_adjusted: New global.
(ppc_arch_setup): Adjust to the current process'es target
description.
(ppc_fill_vsxregset, ppc_store_vsxregset, ppc_fill_vrregset)
(ppc_store_vrregset, ppc_fill_evrregset, ppc_store_evrregse)
(ppc_store_evrregset): Adjust.
(target_regsets): Rename to ...
(ppc_regsets): ... this, and make static.
(ppc_usrregs_info, ppc_regsets_info, regs_info): New globals.
(ppc_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-s390-low.c (tdesc_s390_linux32, tdesc_s390_linux32v1)
(tdesc_s390_linux32v2, tdesc_s390_linux64, tdesc_s390_linux64v1)
(tdesc_s390_linux64v2, tdesc_s390x_linux64, tdesc_s390x_linux64v1)
(tdesc_s390x_linux64v2): Declare.
(s390_collect_ptrace_register, s390_supply_ptrace_register)
(s390_fill_gregset, s390_store_last_break): Adjust.
(target_regsets): Rename to ...
(s390_regsets): ... this, and make static.
(s390_get_pc, s390_set_pc): Adjust.
(s390_get_hwcap): New target_desc parameter, and use it.
[__s390x__] (have_hwcap_s390_high_gprs): New global.
(s390_arch_setup): Adjust to set the current process'es target
description. Don't adjust the regmap.
(s390_usrregs_info, s390_regsets_info, regs_info): New globals.
[__s390x__] (s390_usrregs_info_3264, s390_regsets_info_3264)
(regs_info_3264): New globals.
(s390_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-mips-low.c (tdesc_mips_linux, tdesc_mips_dsp_linux)
(tdesc_mips64_linux, tdesc_mips64_dsp_linux): Declare.
[__mips64] (init_registers_mips_linux)
(init_registers_mips_dsp_linux): Delete defines.
[__mips64] (tdesc_mips_linux, tdesc_mips_dsp_linux): New defines.
(have_dsp): New global.
(mips_read_description): New, based on mips_arch_setup.
(mips_arch_setup): Reimplement.
(get_usrregs_info): New function.
(mips_cannot_fetch_register, mips_cannot_store_register)
(mips_get_pc, mips_set_pc, mips_fill_gregset, mips_store_gregset)
(mips_fill_fpregset, mips_store_fpregset): Adjust.
(target_regsets): Rename to ...
(mips_regsets): ... this, and make static.
(mips_regsets_info, mips_dsp_usrregs_info, mips_usrregs_info)
(dsp_regs_info, regs_info): New globals.
(mips_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-arm-low.c (tdesc_arm, tdesc_arm_with_iwmmxt)
(tdesc_arm_with_vfpv2, tdesc_arm_with_vfpv3, tdesc_arm_with_neon):
Declare.
(arm_fill_vfpregset, arm_store_vfpregset): Adjust.
(arm_read_description): New, with bits factored from
arm_arch_setup.
(arm_arch_setup): Reimplement.
(target_regsets): Rename to ...
(arm_regsets): ... this, and make static.
(arm_regsets_info, arm_usrregs_info, regs_info): New globals.
(arm_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-m68k-low.c (tdesc_m68k): Declare.
(target_regsets): Rename to ...
(m68k_regsets): ... this, and make static.
(m68k_regsets_info, m68k_usrregs_info, regs_info): New globals.
(m68k_regs_info): New function.
(m68k_arch_setup): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-sh-low.c (tdesc_sharch): Declare.
(target_regsets): Rename to ...
(sh_regsets): ... this, and make static.
(sh_regsets_info, sh_usrregs_info, regs_info): New globals.
(sh_regs_info, sh_arch_setup): New functions.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-bfin-low.c (tdesc_bfin): Declare.
(bfin_arch_setup): New function.
(bfin_usrregs_info, regs_info): New globals.
(bfin_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-cris-low.c (tdesc_cris): Declare.
(cris_arch_setup): New function.
(cris_usrregs_info, regs_info): New globals.
(cris_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-cris-low.c (tdesc_crisv32): Declare.
(cris_arch_setup): New function.
(cris_regsets_info, cris_usrregs_info, regs_info): New globals.
(cris_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-m32r-low.c (tdesc_m32r): Declare.
(m32r_arch_setup): New function.
(m32r_usrregs_info, regs_info): New globals.
(m32r_regs_info): Adjust.
(initialize_low_arch): New function.
* linux-tic6x-low.c (tdesc_tic6x_c64xp_linux)
(tdesc_tic6x_c64x_linux, tdesc_tic6x_c62x_linux): Declare.
(tic6x_usrregs_info): Forward declare.
(tic6x_read_description): New function, based on ...
(tic6x_arch_setup): ... this. Reimplement.
(target_regsets): Rename to ...
(tic6x_regsets): ... this, and make static.
(tic6x_regsets_info, tic6x_usrregs_info, regs_info): New globals.
(tic6x_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-xtensa-low.c (tdesc_xtensa): Declare.
(xtensa_fill_gregset, xtensa_store_gregset): Adjust.
(target_regsets): Rename to ...
(xtensa_regsets): ... this, and make static.
(xtensa_regsets_info, xtensa_usrregs_info, regs_info): New
globals.
(xtensa_arch_setup, xtensa_regs_info): New functions.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-nios2-low.c (tdesc_nios2_linux): Declare.
(nios2_arch_setup): Set the current process'es tdesc.
(target_regsets): Rename to ...
(nios2_regsets): ... this.
(nios2_regsets_info, nios2_usrregs_info, regs_info): New globals.
(nios2_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-aarch64-low.c (tdesc_aarch64): Declare.
(aarch64_arch_setup): Set the current process'es tdesc.
(target_regsets): Rename to ...
(aarch64_regsets): ... this.
(aarch64_regsets_info, aarch64_usrregs_info, regs_info): New globals.
(aarch64_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-tile-low.c (tdesc_tilegx, tdesc_tilegx32): Declare
globals.
(target_regsets): Rename to ...
(tile_regsets): ... this.
(tile_regsets_info, tile_usrregs_info, regs_info): New globals.
(tile_regs_info): New function.
(tile_arch_setup): Set the current process'es tdesc.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* spu-low.c (tdesc_spu): Declare.
(spu_create_inferior, spu_attach): Set the new process'es tdesc.
* win32-arm-low.c (tdesc_arm): Declare.
(arm_arch_setup): New function.
(the_low_target): Install arm_arch_setup instead of
init_registers_arm.
* win32-i386-low.c (tdesc_i386, tdesc_amd64): Declare.
(init_windows_x86): Rename to ...
(i386_arch_setup): ... this. Set `win32_tdesc'.
(the_low_target): Adjust.
* win32-low.c (win32_tdesc): New global.
(child_add_thread): Don't create the thread cache here.
(do_initial_child_stuff): Set the new process'es tdesc.
* win32-low.h (struct target_desc): Forward declare.
(win32_tdesc): Declare.
* lynx-i386-low.c (tdesc_i386): Declare global.
(lynx_i386_arch_setup): Set `lynx_tdesc'.
* lynx-low.c (lynx_tdesc): New global.
(lynx_add_process): Set the new process'es tdesc.
* lynx-low.h (struct target_desc): Forward declare.
(lynx_tdesc): Declare global.
* lynx-ppc-low.c (tdesc_powerpc_32): Declare global.
(lynx_ppc_arch_setup): Set `lynx_tdesc'.
* nto-low.c (nto_tdesc): New global.
(do_attach): Set the new process'es tdesc.
* nto-low.h (struct target_desc): Forward declare.
(nto_tdesc): Declare.
* nto-x86-low.c (tdesc_i386): Declare.
(nto_x86_arch_setup): Set `nto_tdesc'.
gdb/
2013-06-07 Pedro Alves <palves@redhat.com>
* regformats/regdat.sh: Output #include tdesc.h. Make globals
static. Output a global target description pointer.
(init_registers_${name}): Adjust to initialize a
target description structure.
2013-06-07 10:46:59 +00:00
|
|
|
static struct regset_info aarch64_regsets[] =
|
2013-02-04 18:20:05 +00:00
|
|
|
{
|
|
|
|
{ PTRACE_GETREGSET, PTRACE_SETREGSET, NT_PRSTATUS,
|
|
|
|
sizeof (struct user_pt_regs), GENERAL_REGS,
|
|
|
|
aarch64_fill_gregset, aarch64_store_gregset },
|
|
|
|
{ PTRACE_GETREGSET, PTRACE_SETREGSET, NT_FPREGSET,
|
|
|
|
sizeof (struct user_fpsimd_state), FP_REGS,
|
|
|
|
aarch64_fill_fpregset, aarch64_store_fpregset
|
|
|
|
},
|
|
|
|
{ 0, 0, 0, -1, -1, NULL, NULL }
|
|
|
|
};
|
|
|
|
|
[GDBserver] Multi-process + multi-arch
This patch makes GDBserver support multi-process + biarch.
Currently, if you're debugging more than one process at once with a
single gdbserver (in extended-remote mode), then all processes must
have the same architecture (e.g., 64-bit vs 32-bit). Otherwise, you
see this:
Added inferior 2
[Switching to inferior 2 [<null>] (<noexec>)]
Reading symbols from /home/pedro/gdb/tests/main32...done.
Temporary breakpoint 2 at 0x4004cf: main. (2 locations)
Starting program: /home/pedro/gdb/tests/main32
warning: Selected architecture i386 is not compatible with reported target architecture i386:x86-64
warning: Architecture rejected target-supplied description
Remote 'g' packet reply is too long: 000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000090cfffff0000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000000000000000000b042f7460000000000020000230000002b0000002b0000002b000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000007f03000000000000ffff0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000801f00003b0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
... etc, etc ...
Even though the process was running a 32-bit program, GDBserver sent
back to GDB a register set in 64-bit layout.
A patch (http://sourceware.org/ml/gdb-patches/2012-11/msg00228.html) a
while ago made GDB track a target_gdbarch per inferior, and as
consequence, fetch a target description per-inferior. This patch is
the GDBserver counterpart, that makes GDBserver keep track of each
process'es XML target description and register layout. So in the
example above, GDBserver will send the correct register set in 32-bit
layout to GDB.
A new "struct target_desc" object (tdesc for short) is added, that
holds the target description and register layout information about
each process. Each `struct process_info' holds a pointer to a target
description. The regcache also gains a pointer to a target
description, mainly for convenience, and parallel with GDB (and
possible future support for programs that flip processor modes).
The low target's arch_setup routines are responsible for setting the
process'es correct tdesc. This isn't that much different to how
things were done before, except that instead of detecting the inferior
process'es architecture and calling the corresponding
init_registers_FOO routine, which would change the regcache layout
globals and recreate the threads' regcaches, the regcache.c globals
are gone, and the init_registers_$BAR routines now each initialize a
separate global struct target_desc object (one for each arch variant
GDBserver supports), and so all the init_registers_$BAR routines that
are built into GDBserver are called early at GDBserver startup time
(similarly to how GDB handles its built-in target descriptions), and
then the arch_setup routine is responsible for making
process_info->tdesc point to one of these target description globals.
The regcache module is all parameterized to get the regcache's layout
from the tdesc object instead of the old register_bytes, etc. globals.
The threads' regcaches are now created lazily. The old scheme where
we created each of them when we added a new thread doesn't work
anymore, because we add the main thread/lwp before we see it stop for
the first time, and it is only when we see the thread stop for the
first time that we have a chance of determining the inferior's
architecture (through the_low_target.arch_setup). Therefore when we
add the main thread we don't know which architecture/tdesc its
regcache should have.
This patch makes the gdb.multi/multi-arch.exp test now pass against
(extended-remote) GDBserver. It currently fails, without this patch.
The IPA also uses the regcache, so it gains a new global struct
target_desc pointer, which points at the description of the process it
is loaded in.
Re. the linux-low.c & friends changes. Since the register map
etc. may differ between processes (64-bit vs 32-bit) etc., the
linux_target_ops num_regs, regmap and regset_bitmap data fields are no
longer sufficient. A new method is added in their place that returns
a pointer to a new struct that includes all info linux-low.c needs to
access registers of the current inferior.
The patch/discussion that originally introduced
linux-low.c:disabled_regsets mentions that the disabled_regsets set
may be different per mode (in a biarch setup), and indeed that is
cleared whenever we start a new (first) inferior, so that global is
moved as well behind the new `struct regs_info'.
On the x86 side:
I simply replaced the i387-fp.c:num_xmm_registers global with a check
for 64-bit or 32-bit process, which is equivalent to how the global
was set. This avoided coming up with some more general mechanism that
would work for all targets that use this module (GNU/Linux, Windows,
etc.).
Tested:
GNU/Linux IA64
GNU/Linux MIPS64
GNU/Linux PowerPC (Fedora 16)
GNU/Linux s390x (Fedora 16)
GNU/Linux sparc64 (Debian)
GNU/Linux x86_64, -m64 and -m32 (Fedora 17)
Cross built, and smoke tested:
i686-w64-mingw32, under Wine.
GNU/Linux TI C6x, by Yao Qi.
Cross built but otherwise not tested:
aarch64-linux-gnu
arm-linux-gnu
m68k-linux
nios2-linux-gnu
sh-linux-gnu
spu
tilegx-unknown-linux-gnu
Completely untested:
GNU/Linux Blackfin
GNU/Linux CRIS
GNU/Linux CRISv32
GNU/Linux TI Xtensa
GNU/Linux M32R
LynxOS
QNX NTO
gdb/gdbserver/
2013-06-07 Pedro Alves <palves@redhat.com>
* Makefile.in (OBS): Add tdesc.o.
(IPA_OBJS): Add tdesc-ipa.o.
(tdesc-ipa.o): New rule.
* ax.c (gdb_eval_agent_expr): Adjust register_size call to new
interface.
* linux-low.c (new_inferior): Delete.
(disabled_regsets, num_regsets): Delete.
(linux_add_process): Adjust to set the new per-process
new_inferior flag.
(linux_detach_one_lwp): Adjust to call regcache_invalidate_thread.
(linux_wait_for_lwp): Adjust. Only call arch_setup if the event
was a stop. When calling arch_setup, switch the current inferior
to the thread that got an event.
(linux_resume_one_lwp): Adjust to call regcache_invalidate_thread.
(regsets_fetch_inferior_registers)
(regsets_store_inferior_registers): New regsets_info parameter.
Adjust to use it.
(linux_register_in_regsets): New regs_info parameter. Adjust to
use it.
(register_addr, fetch_register, store_register): New usrregs_info
parameter. Adjust to use it.
(usr_fetch_inferior_registers, usr_store_inferior_registers): New
parameter regs_info. Adjust to use it.
(linux_fetch_registers): Get the current inferior's regs_info, and
adjust to use it.
(linux_store_registers): Ditto.
[HAVE_LINUX_REGSETS] (initialize_regsets_info): New.
(initialize_low): Don't initialize the target_regsets here. Call
initialize_low_arch.
* linux-low.h (target_regsets): Delete declaration.
(struct regsets_info): New.
(struct usrregs_info): New.
(struct regs_info): New.
(struct process_info_private) <new_inferior>: New field.
(struct linux_target_ops): Delete the num_regs, regmap, and
regset_bitmap fields. New field regs_info.
[HAVE_LINUX_REGSETS] (initialize_regsets_info): Declare.
* i387-fp.c (num_xmm_registers): Delete.
(i387_cache_to_fsave, i387_fsave_to_cache): Adjust find_regno
calls to new interface.
(i387_cache_to_fxsave, i387_cache_to_xsave, i387_fxsave_to_cache)
(i387_xsave_to_cache): Adjust find_regno calls to new interface.
Infer the number of xmm registers from the regcache's target
description.
* i387-fp.h (num_xmm_registers): Delete.
* inferiors.c (add_thread): Don't install the thread's regcache
here.
* proc-service.c (gregset_info): Fetch the current inferior's
regs_info. Adjust to use it.
* regcache.c: Include tdesc.h.
(register_bytes, reg_defs, num_registers)
(gdbserver_expedite_regs): Delete.
(get_thread_regcache): If the thread doesn't have a regcache yet,
create one, instead of aborting gdbserver.
(regcache_invalidate_one): Rename to ...
(regcache_invalidate_thread): ... this.
(regcache_invalidate_one): New.
(regcache_invalidate): Only invalidate registers of the current
process.
(init_register_cache): Add target_desc parameter, and use it.
(new_register_cache): Ditto. Assert the target description has a
non zero registers_size.
(regcache_cpy): Add assertions. Adjust.
(realloc_register_cache, set_register_cache): Delete.
(registers_to_string, registers_from_string): Adjust.
(find_register_by_name, find_regno, find_register_by_number)
(register_cache_size): Add target_desc parameter, and use it.
(free_register_cache_thread, free_register_cache_thread_one)
(regcache_release, register_cache_size): New.
(register_size): Add target_desc parameter, and use it.
(register_data, supply_register, supply_register_zeroed)
(supply_regblock, supply_register_by_name, collect_register)
(collect_register_as_string, collect_register_by_name): Adjust.
* regcache.h (struct target_desc): Forward declare.
(struct regcache) <tdesc>: New field.
(init_register_cache, new_register_cache): Add target_desc
parameter.
(regcache_invalidate_thread): Declare.
(regcache_invalidate_one): Delete declaration.
(regcache_release): Declare.
(find_register_by_number, register_cache_size, register_size)
(find_regno): Add target_desc parameter.
(gdbserver_expedite_regs, gdbserver_xmltarget): Delete
declarations.
* remote-utils.c: Include tdesc.h.
(outreg, prepare_resume_reply): Adjust.
* server.c: Include tdesc.h.
(gdbserver_xmltarget): Delete declaration.
(get_features_xml, process_serial_event): Adjust.
* server.h [IN_PROCESS_AGENT] (struct target_desc): Forward
declare.
(struct process_info) <tdesc>: New field.
(ipa_tdesc): Declare.
* tdesc.c: New file.
* tdesc.h: New file.
* tracepoint.c: Include tdesc.h.
[IN_PROCESS_AGENT] (ipa_tdesc): Define.
(get_context_regcache): Adjust to pass ipa_tdesc down.
(do_action_at_tracepoint): Adjust to get the register cache size
from the context regcache's description.
(traceframe_walk_blocks): Adjust to get the register cache size
from the current trace frame's description.
(traceframe_get_pc): Adjust to get current trace frame's
description and pass it down.
(gdb_collect): Adjust to get the register cache size from the
IPA's description.
* linux-amd64-ipa.c (tdesc_amd64_linux): Declare.
(gdbserver_xmltarget): Delete.
(initialize_low_tracepoint): Set the ipa's target description.
* linux-i386-ipa.c (tdesc_i386_linux): Declare.
(initialize_low_tracepoint): Set the ipa's target description.
* linux-x86-low.c: Include tdesc.h.
[__x86_64__] (is_64bit_tdesc): New.
(ps_get_thread_area, x86_get_thread_area): Use it.
(i386_cannot_store_register): Rename to ...
(x86_cannot_store_register): ... this. Use is_64bit_tdesc.
(i386_cannot_fetch_register): Rename to ...
(x86_cannot_fetch_register): ... this. Use is_64bit_tdesc.
(x86_fill_gregset, x86_store_gregset): Adjust register_size calls
to new interface.
(target_regsets): Rename to ...
(x86_regsets): ... this.
(x86_get_pc, x86_set_pc): Adjust register_size calls to new
interface.
(x86_siginfo_fixup): Use is_64bit_tdesc.
[__x86_64__] (tdesc_amd64_linux, tdesc_amd64_avx_linux)
(tdesc_x32_avx_linux, tdesc_x32_linux)
(tdesc_i386_linux, tdesc_i386_mmx_linux, tdesc_i386_avx_linux):
Declare.
(x86_linux_update_xmltarget): Delete.
(I386_LINUX_XSAVE_XCR0_OFFSET): Define.
(have_ptrace_getfpxregs, have_ptrace_getregset): New.
(AMD64_LINUX_USER64_CS): New.
(x86_linux_read_description): New, based on
x86_linux_update_xmltarget.
(same_process_callback): New.
(x86_arch_setup_process_callback): New.
(x86_linux_update_xmltarget): New.
(x86_regsets_info): New.
(amd64_linux_regs_info): New.
(i386_linux_usrregs_info): New.
(i386_linux_regs_info): New.
(x86_linux_regs_info): New.
(x86_arch_setup): Reimplement.
(x86_install_fast_tracepoint_jump_pad): Use is_64bit_tdesc.
(x86_emit_ops): Ditto.
(the_low_target): Adjust. Install x86_linux_regs_info,
x86_cannot_fetch_register, and x86_cannot_store_register.
(initialize_low_arch): New.
* linux-ia64-low.c (tdesc_ia64): Declare.
(ia64_fetch_register): Adjust.
(ia64_usrregs_info, regs_info): New globals.
(ia64_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-sparc-low.c (tdesc_sparc64): Declare.
(sparc_fill_gregset_to_stack, sparc_store_gregset_from_stack):
Adjust.
(sparc_arch_setup): New function.
(sparc_regsets_info, sparc_usrregs_info, regs_info): New globals.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-ppc-low.c (tdesc_powerpc_32l, tdesc_powerpc_altivec32l)
(tdesc_powerpc_cell32l, tdesc_powerpc_vsx32l)
(tdesc_powerpc_isa205_32l, tdesc_powerpc_isa205_altivec32l)
(tdesc_powerpc_isa205_vsx32l, tdesc_powerpc_e500l)
(tdesc_powerpc_64l, tdesc_powerpc_altivec64l)
(tdesc_powerpc_cell64l, tdesc_powerpc_vsx64l)
(tdesc_powerpc_isa205_64l, tdesc_powerpc_isa205_altivec64l)
(tdesc_powerpc_isa205_vsx64l): Declare.
(ppc_cannot_store_register, ppc_collect_ptrace_register)
(ppc_supply_ptrace_register, parse_spufs_run, ppc_get_pc)
(ppc_set_pc, ppc_get_hwcap): Adjust.
(ppc_usrregs_info): Forward declare.
(!__powerpc64__) ppc_regmap_adjusted: New global.
(ppc_arch_setup): Adjust to the current process'es target
description.
(ppc_fill_vsxregset, ppc_store_vsxregset, ppc_fill_vrregset)
(ppc_store_vrregset, ppc_fill_evrregset, ppc_store_evrregse)
(ppc_store_evrregset): Adjust.
(target_regsets): Rename to ...
(ppc_regsets): ... this, and make static.
(ppc_usrregs_info, ppc_regsets_info, regs_info): New globals.
(ppc_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-s390-low.c (tdesc_s390_linux32, tdesc_s390_linux32v1)
(tdesc_s390_linux32v2, tdesc_s390_linux64, tdesc_s390_linux64v1)
(tdesc_s390_linux64v2, tdesc_s390x_linux64, tdesc_s390x_linux64v1)
(tdesc_s390x_linux64v2): Declare.
(s390_collect_ptrace_register, s390_supply_ptrace_register)
(s390_fill_gregset, s390_store_last_break): Adjust.
(target_regsets): Rename to ...
(s390_regsets): ... this, and make static.
(s390_get_pc, s390_set_pc): Adjust.
(s390_get_hwcap): New target_desc parameter, and use it.
[__s390x__] (have_hwcap_s390_high_gprs): New global.
(s390_arch_setup): Adjust to set the current process'es target
description. Don't adjust the regmap.
(s390_usrregs_info, s390_regsets_info, regs_info): New globals.
[__s390x__] (s390_usrregs_info_3264, s390_regsets_info_3264)
(regs_info_3264): New globals.
(s390_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-mips-low.c (tdesc_mips_linux, tdesc_mips_dsp_linux)
(tdesc_mips64_linux, tdesc_mips64_dsp_linux): Declare.
[__mips64] (init_registers_mips_linux)
(init_registers_mips_dsp_linux): Delete defines.
[__mips64] (tdesc_mips_linux, tdesc_mips_dsp_linux): New defines.
(have_dsp): New global.
(mips_read_description): New, based on mips_arch_setup.
(mips_arch_setup): Reimplement.
(get_usrregs_info): New function.
(mips_cannot_fetch_register, mips_cannot_store_register)
(mips_get_pc, mips_set_pc, mips_fill_gregset, mips_store_gregset)
(mips_fill_fpregset, mips_store_fpregset): Adjust.
(target_regsets): Rename to ...
(mips_regsets): ... this, and make static.
(mips_regsets_info, mips_dsp_usrregs_info, mips_usrregs_info)
(dsp_regs_info, regs_info): New globals.
(mips_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-arm-low.c (tdesc_arm, tdesc_arm_with_iwmmxt)
(tdesc_arm_with_vfpv2, tdesc_arm_with_vfpv3, tdesc_arm_with_neon):
Declare.
(arm_fill_vfpregset, arm_store_vfpregset): Adjust.
(arm_read_description): New, with bits factored from
arm_arch_setup.
(arm_arch_setup): Reimplement.
(target_regsets): Rename to ...
(arm_regsets): ... this, and make static.
(arm_regsets_info, arm_usrregs_info, regs_info): New globals.
(arm_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-m68k-low.c (tdesc_m68k): Declare.
(target_regsets): Rename to ...
(m68k_regsets): ... this, and make static.
(m68k_regsets_info, m68k_usrregs_info, regs_info): New globals.
(m68k_regs_info): New function.
(m68k_arch_setup): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-sh-low.c (tdesc_sharch): Declare.
(target_regsets): Rename to ...
(sh_regsets): ... this, and make static.
(sh_regsets_info, sh_usrregs_info, regs_info): New globals.
(sh_regs_info, sh_arch_setup): New functions.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-bfin-low.c (tdesc_bfin): Declare.
(bfin_arch_setup): New function.
(bfin_usrregs_info, regs_info): New globals.
(bfin_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-cris-low.c (tdesc_cris): Declare.
(cris_arch_setup): New function.
(cris_usrregs_info, regs_info): New globals.
(cris_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-cris-low.c (tdesc_crisv32): Declare.
(cris_arch_setup): New function.
(cris_regsets_info, cris_usrregs_info, regs_info): New globals.
(cris_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-m32r-low.c (tdesc_m32r): Declare.
(m32r_arch_setup): New function.
(m32r_usrregs_info, regs_info): New globals.
(m32r_regs_info): Adjust.
(initialize_low_arch): New function.
* linux-tic6x-low.c (tdesc_tic6x_c64xp_linux)
(tdesc_tic6x_c64x_linux, tdesc_tic6x_c62x_linux): Declare.
(tic6x_usrregs_info): Forward declare.
(tic6x_read_description): New function, based on ...
(tic6x_arch_setup): ... this. Reimplement.
(target_regsets): Rename to ...
(tic6x_regsets): ... this, and make static.
(tic6x_regsets_info, tic6x_usrregs_info, regs_info): New globals.
(tic6x_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-xtensa-low.c (tdesc_xtensa): Declare.
(xtensa_fill_gregset, xtensa_store_gregset): Adjust.
(target_regsets): Rename to ...
(xtensa_regsets): ... this, and make static.
(xtensa_regsets_info, xtensa_usrregs_info, regs_info): New
globals.
(xtensa_arch_setup, xtensa_regs_info): New functions.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-nios2-low.c (tdesc_nios2_linux): Declare.
(nios2_arch_setup): Set the current process'es tdesc.
(target_regsets): Rename to ...
(nios2_regsets): ... this.
(nios2_regsets_info, nios2_usrregs_info, regs_info): New globals.
(nios2_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-aarch64-low.c (tdesc_aarch64): Declare.
(aarch64_arch_setup): Set the current process'es tdesc.
(target_regsets): Rename to ...
(aarch64_regsets): ... this.
(aarch64_regsets_info, aarch64_usrregs_info, regs_info): New globals.
(aarch64_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-tile-low.c (tdesc_tilegx, tdesc_tilegx32): Declare
globals.
(target_regsets): Rename to ...
(tile_regsets): ... this.
(tile_regsets_info, tile_usrregs_info, regs_info): New globals.
(tile_regs_info): New function.
(tile_arch_setup): Set the current process'es tdesc.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* spu-low.c (tdesc_spu): Declare.
(spu_create_inferior, spu_attach): Set the new process'es tdesc.
* win32-arm-low.c (tdesc_arm): Declare.
(arm_arch_setup): New function.
(the_low_target): Install arm_arch_setup instead of
init_registers_arm.
* win32-i386-low.c (tdesc_i386, tdesc_amd64): Declare.
(init_windows_x86): Rename to ...
(i386_arch_setup): ... this. Set `win32_tdesc'.
(the_low_target): Adjust.
* win32-low.c (win32_tdesc): New global.
(child_add_thread): Don't create the thread cache here.
(do_initial_child_stuff): Set the new process'es tdesc.
* win32-low.h (struct target_desc): Forward declare.
(win32_tdesc): Declare.
* lynx-i386-low.c (tdesc_i386): Declare global.
(lynx_i386_arch_setup): Set `lynx_tdesc'.
* lynx-low.c (lynx_tdesc): New global.
(lynx_add_process): Set the new process'es tdesc.
* lynx-low.h (struct target_desc): Forward declare.
(lynx_tdesc): Declare global.
* lynx-ppc-low.c (tdesc_powerpc_32): Declare global.
(lynx_ppc_arch_setup): Set `lynx_tdesc'.
* nto-low.c (nto_tdesc): New global.
(do_attach): Set the new process'es tdesc.
* nto-low.h (struct target_desc): Forward declare.
(nto_tdesc): Declare.
* nto-x86-low.c (tdesc_i386): Declare.
(nto_x86_arch_setup): Set `nto_tdesc'.
gdb/
2013-06-07 Pedro Alves <palves@redhat.com>
* regformats/regdat.sh: Output #include tdesc.h. Make globals
static. Output a global target description pointer.
(init_registers_${name}): Adjust to initialize a
target description structure.
2013-06-07 10:46:59 +00:00
|
|
|
static struct regsets_info aarch64_regsets_info =
|
|
|
|
{
|
|
|
|
aarch64_regsets, /* regsets */
|
|
|
|
0, /* num_regsets */
|
|
|
|
NULL, /* disabled_regsets */
|
|
|
|
};
|
|
|
|
|
2015-08-04 13:34:14 +00:00
|
|
|
static struct regs_info regs_info_aarch64 =
|
[GDBserver] Multi-process + multi-arch
This patch makes GDBserver support multi-process + biarch.
Currently, if you're debugging more than one process at once with a
single gdbserver (in extended-remote mode), then all processes must
have the same architecture (e.g., 64-bit vs 32-bit). Otherwise, you
see this:
Added inferior 2
[Switching to inferior 2 [<null>] (<noexec>)]
Reading symbols from /home/pedro/gdb/tests/main32...done.
Temporary breakpoint 2 at 0x4004cf: main. (2 locations)
Starting program: /home/pedro/gdb/tests/main32
warning: Selected architecture i386 is not compatible with reported target architecture i386:x86-64
warning: Architecture rejected target-supplied description
Remote 'g' packet reply is too long: 000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000090cfffff0000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000000000000000000b042f7460000000000020000230000002b0000002b0000002b000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000007f03000000000000ffff0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000801f00003b0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
... etc, etc ...
Even though the process was running a 32-bit program, GDBserver sent
back to GDB a register set in 64-bit layout.
A patch (http://sourceware.org/ml/gdb-patches/2012-11/msg00228.html) a
while ago made GDB track a target_gdbarch per inferior, and as
consequence, fetch a target description per-inferior. This patch is
the GDBserver counterpart, that makes GDBserver keep track of each
process'es XML target description and register layout. So in the
example above, GDBserver will send the correct register set in 32-bit
layout to GDB.
A new "struct target_desc" object (tdesc for short) is added, that
holds the target description and register layout information about
each process. Each `struct process_info' holds a pointer to a target
description. The regcache also gains a pointer to a target
description, mainly for convenience, and parallel with GDB (and
possible future support for programs that flip processor modes).
The low target's arch_setup routines are responsible for setting the
process'es correct tdesc. This isn't that much different to how
things were done before, except that instead of detecting the inferior
process'es architecture and calling the corresponding
init_registers_FOO routine, which would change the regcache layout
globals and recreate the threads' regcaches, the regcache.c globals
are gone, and the init_registers_$BAR routines now each initialize a
separate global struct target_desc object (one for each arch variant
GDBserver supports), and so all the init_registers_$BAR routines that
are built into GDBserver are called early at GDBserver startup time
(similarly to how GDB handles its built-in target descriptions), and
then the arch_setup routine is responsible for making
process_info->tdesc point to one of these target description globals.
The regcache module is all parameterized to get the regcache's layout
from the tdesc object instead of the old register_bytes, etc. globals.
The threads' regcaches are now created lazily. The old scheme where
we created each of them when we added a new thread doesn't work
anymore, because we add the main thread/lwp before we see it stop for
the first time, and it is only when we see the thread stop for the
first time that we have a chance of determining the inferior's
architecture (through the_low_target.arch_setup). Therefore when we
add the main thread we don't know which architecture/tdesc its
regcache should have.
This patch makes the gdb.multi/multi-arch.exp test now pass against
(extended-remote) GDBserver. It currently fails, without this patch.
The IPA also uses the regcache, so it gains a new global struct
target_desc pointer, which points at the description of the process it
is loaded in.
Re. the linux-low.c & friends changes. Since the register map
etc. may differ between processes (64-bit vs 32-bit) etc., the
linux_target_ops num_regs, regmap and regset_bitmap data fields are no
longer sufficient. A new method is added in their place that returns
a pointer to a new struct that includes all info linux-low.c needs to
access registers of the current inferior.
The patch/discussion that originally introduced
linux-low.c:disabled_regsets mentions that the disabled_regsets set
may be different per mode (in a biarch setup), and indeed that is
cleared whenever we start a new (first) inferior, so that global is
moved as well behind the new `struct regs_info'.
On the x86 side:
I simply replaced the i387-fp.c:num_xmm_registers global with a check
for 64-bit or 32-bit process, which is equivalent to how the global
was set. This avoided coming up with some more general mechanism that
would work for all targets that use this module (GNU/Linux, Windows,
etc.).
Tested:
GNU/Linux IA64
GNU/Linux MIPS64
GNU/Linux PowerPC (Fedora 16)
GNU/Linux s390x (Fedora 16)
GNU/Linux sparc64 (Debian)
GNU/Linux x86_64, -m64 and -m32 (Fedora 17)
Cross built, and smoke tested:
i686-w64-mingw32, under Wine.
GNU/Linux TI C6x, by Yao Qi.
Cross built but otherwise not tested:
aarch64-linux-gnu
arm-linux-gnu
m68k-linux
nios2-linux-gnu
sh-linux-gnu
spu
tilegx-unknown-linux-gnu
Completely untested:
GNU/Linux Blackfin
GNU/Linux CRIS
GNU/Linux CRISv32
GNU/Linux TI Xtensa
GNU/Linux M32R
LynxOS
QNX NTO
gdb/gdbserver/
2013-06-07 Pedro Alves <palves@redhat.com>
* Makefile.in (OBS): Add tdesc.o.
(IPA_OBJS): Add tdesc-ipa.o.
(tdesc-ipa.o): New rule.
* ax.c (gdb_eval_agent_expr): Adjust register_size call to new
interface.
* linux-low.c (new_inferior): Delete.
(disabled_regsets, num_regsets): Delete.
(linux_add_process): Adjust to set the new per-process
new_inferior flag.
(linux_detach_one_lwp): Adjust to call regcache_invalidate_thread.
(linux_wait_for_lwp): Adjust. Only call arch_setup if the event
was a stop. When calling arch_setup, switch the current inferior
to the thread that got an event.
(linux_resume_one_lwp): Adjust to call regcache_invalidate_thread.
(regsets_fetch_inferior_registers)
(regsets_store_inferior_registers): New regsets_info parameter.
Adjust to use it.
(linux_register_in_regsets): New regs_info parameter. Adjust to
use it.
(register_addr, fetch_register, store_register): New usrregs_info
parameter. Adjust to use it.
(usr_fetch_inferior_registers, usr_store_inferior_registers): New
parameter regs_info. Adjust to use it.
(linux_fetch_registers): Get the current inferior's regs_info, and
adjust to use it.
(linux_store_registers): Ditto.
[HAVE_LINUX_REGSETS] (initialize_regsets_info): New.
(initialize_low): Don't initialize the target_regsets here. Call
initialize_low_arch.
* linux-low.h (target_regsets): Delete declaration.
(struct regsets_info): New.
(struct usrregs_info): New.
(struct regs_info): New.
(struct process_info_private) <new_inferior>: New field.
(struct linux_target_ops): Delete the num_regs, regmap, and
regset_bitmap fields. New field regs_info.
[HAVE_LINUX_REGSETS] (initialize_regsets_info): Declare.
* i387-fp.c (num_xmm_registers): Delete.
(i387_cache_to_fsave, i387_fsave_to_cache): Adjust find_regno
calls to new interface.
(i387_cache_to_fxsave, i387_cache_to_xsave, i387_fxsave_to_cache)
(i387_xsave_to_cache): Adjust find_regno calls to new interface.
Infer the number of xmm registers from the regcache's target
description.
* i387-fp.h (num_xmm_registers): Delete.
* inferiors.c (add_thread): Don't install the thread's regcache
here.
* proc-service.c (gregset_info): Fetch the current inferior's
regs_info. Adjust to use it.
* regcache.c: Include tdesc.h.
(register_bytes, reg_defs, num_registers)
(gdbserver_expedite_regs): Delete.
(get_thread_regcache): If the thread doesn't have a regcache yet,
create one, instead of aborting gdbserver.
(regcache_invalidate_one): Rename to ...
(regcache_invalidate_thread): ... this.
(regcache_invalidate_one): New.
(regcache_invalidate): Only invalidate registers of the current
process.
(init_register_cache): Add target_desc parameter, and use it.
(new_register_cache): Ditto. Assert the target description has a
non zero registers_size.
(regcache_cpy): Add assertions. Adjust.
(realloc_register_cache, set_register_cache): Delete.
(registers_to_string, registers_from_string): Adjust.
(find_register_by_name, find_regno, find_register_by_number)
(register_cache_size): Add target_desc parameter, and use it.
(free_register_cache_thread, free_register_cache_thread_one)
(regcache_release, register_cache_size): New.
(register_size): Add target_desc parameter, and use it.
(register_data, supply_register, supply_register_zeroed)
(supply_regblock, supply_register_by_name, collect_register)
(collect_register_as_string, collect_register_by_name): Adjust.
* regcache.h (struct target_desc): Forward declare.
(struct regcache) <tdesc>: New field.
(init_register_cache, new_register_cache): Add target_desc
parameter.
(regcache_invalidate_thread): Declare.
(regcache_invalidate_one): Delete declaration.
(regcache_release): Declare.
(find_register_by_number, register_cache_size, register_size)
(find_regno): Add target_desc parameter.
(gdbserver_expedite_regs, gdbserver_xmltarget): Delete
declarations.
* remote-utils.c: Include tdesc.h.
(outreg, prepare_resume_reply): Adjust.
* server.c: Include tdesc.h.
(gdbserver_xmltarget): Delete declaration.
(get_features_xml, process_serial_event): Adjust.
* server.h [IN_PROCESS_AGENT] (struct target_desc): Forward
declare.
(struct process_info) <tdesc>: New field.
(ipa_tdesc): Declare.
* tdesc.c: New file.
* tdesc.h: New file.
* tracepoint.c: Include tdesc.h.
[IN_PROCESS_AGENT] (ipa_tdesc): Define.
(get_context_regcache): Adjust to pass ipa_tdesc down.
(do_action_at_tracepoint): Adjust to get the register cache size
from the context regcache's description.
(traceframe_walk_blocks): Adjust to get the register cache size
from the current trace frame's description.
(traceframe_get_pc): Adjust to get current trace frame's
description and pass it down.
(gdb_collect): Adjust to get the register cache size from the
IPA's description.
* linux-amd64-ipa.c (tdesc_amd64_linux): Declare.
(gdbserver_xmltarget): Delete.
(initialize_low_tracepoint): Set the ipa's target description.
* linux-i386-ipa.c (tdesc_i386_linux): Declare.
(initialize_low_tracepoint): Set the ipa's target description.
* linux-x86-low.c: Include tdesc.h.
[__x86_64__] (is_64bit_tdesc): New.
(ps_get_thread_area, x86_get_thread_area): Use it.
(i386_cannot_store_register): Rename to ...
(x86_cannot_store_register): ... this. Use is_64bit_tdesc.
(i386_cannot_fetch_register): Rename to ...
(x86_cannot_fetch_register): ... this. Use is_64bit_tdesc.
(x86_fill_gregset, x86_store_gregset): Adjust register_size calls
to new interface.
(target_regsets): Rename to ...
(x86_regsets): ... this.
(x86_get_pc, x86_set_pc): Adjust register_size calls to new
interface.
(x86_siginfo_fixup): Use is_64bit_tdesc.
[__x86_64__] (tdesc_amd64_linux, tdesc_amd64_avx_linux)
(tdesc_x32_avx_linux, tdesc_x32_linux)
(tdesc_i386_linux, tdesc_i386_mmx_linux, tdesc_i386_avx_linux):
Declare.
(x86_linux_update_xmltarget): Delete.
(I386_LINUX_XSAVE_XCR0_OFFSET): Define.
(have_ptrace_getfpxregs, have_ptrace_getregset): New.
(AMD64_LINUX_USER64_CS): New.
(x86_linux_read_description): New, based on
x86_linux_update_xmltarget.
(same_process_callback): New.
(x86_arch_setup_process_callback): New.
(x86_linux_update_xmltarget): New.
(x86_regsets_info): New.
(amd64_linux_regs_info): New.
(i386_linux_usrregs_info): New.
(i386_linux_regs_info): New.
(x86_linux_regs_info): New.
(x86_arch_setup): Reimplement.
(x86_install_fast_tracepoint_jump_pad): Use is_64bit_tdesc.
(x86_emit_ops): Ditto.
(the_low_target): Adjust. Install x86_linux_regs_info,
x86_cannot_fetch_register, and x86_cannot_store_register.
(initialize_low_arch): New.
* linux-ia64-low.c (tdesc_ia64): Declare.
(ia64_fetch_register): Adjust.
(ia64_usrregs_info, regs_info): New globals.
(ia64_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-sparc-low.c (tdesc_sparc64): Declare.
(sparc_fill_gregset_to_stack, sparc_store_gregset_from_stack):
Adjust.
(sparc_arch_setup): New function.
(sparc_regsets_info, sparc_usrregs_info, regs_info): New globals.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-ppc-low.c (tdesc_powerpc_32l, tdesc_powerpc_altivec32l)
(tdesc_powerpc_cell32l, tdesc_powerpc_vsx32l)
(tdesc_powerpc_isa205_32l, tdesc_powerpc_isa205_altivec32l)
(tdesc_powerpc_isa205_vsx32l, tdesc_powerpc_e500l)
(tdesc_powerpc_64l, tdesc_powerpc_altivec64l)
(tdesc_powerpc_cell64l, tdesc_powerpc_vsx64l)
(tdesc_powerpc_isa205_64l, tdesc_powerpc_isa205_altivec64l)
(tdesc_powerpc_isa205_vsx64l): Declare.
(ppc_cannot_store_register, ppc_collect_ptrace_register)
(ppc_supply_ptrace_register, parse_spufs_run, ppc_get_pc)
(ppc_set_pc, ppc_get_hwcap): Adjust.
(ppc_usrregs_info): Forward declare.
(!__powerpc64__) ppc_regmap_adjusted: New global.
(ppc_arch_setup): Adjust to the current process'es target
description.
(ppc_fill_vsxregset, ppc_store_vsxregset, ppc_fill_vrregset)
(ppc_store_vrregset, ppc_fill_evrregset, ppc_store_evrregse)
(ppc_store_evrregset): Adjust.
(target_regsets): Rename to ...
(ppc_regsets): ... this, and make static.
(ppc_usrregs_info, ppc_regsets_info, regs_info): New globals.
(ppc_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-s390-low.c (tdesc_s390_linux32, tdesc_s390_linux32v1)
(tdesc_s390_linux32v2, tdesc_s390_linux64, tdesc_s390_linux64v1)
(tdesc_s390_linux64v2, tdesc_s390x_linux64, tdesc_s390x_linux64v1)
(tdesc_s390x_linux64v2): Declare.
(s390_collect_ptrace_register, s390_supply_ptrace_register)
(s390_fill_gregset, s390_store_last_break): Adjust.
(target_regsets): Rename to ...
(s390_regsets): ... this, and make static.
(s390_get_pc, s390_set_pc): Adjust.
(s390_get_hwcap): New target_desc parameter, and use it.
[__s390x__] (have_hwcap_s390_high_gprs): New global.
(s390_arch_setup): Adjust to set the current process'es target
description. Don't adjust the regmap.
(s390_usrregs_info, s390_regsets_info, regs_info): New globals.
[__s390x__] (s390_usrregs_info_3264, s390_regsets_info_3264)
(regs_info_3264): New globals.
(s390_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-mips-low.c (tdesc_mips_linux, tdesc_mips_dsp_linux)
(tdesc_mips64_linux, tdesc_mips64_dsp_linux): Declare.
[__mips64] (init_registers_mips_linux)
(init_registers_mips_dsp_linux): Delete defines.
[__mips64] (tdesc_mips_linux, tdesc_mips_dsp_linux): New defines.
(have_dsp): New global.
(mips_read_description): New, based on mips_arch_setup.
(mips_arch_setup): Reimplement.
(get_usrregs_info): New function.
(mips_cannot_fetch_register, mips_cannot_store_register)
(mips_get_pc, mips_set_pc, mips_fill_gregset, mips_store_gregset)
(mips_fill_fpregset, mips_store_fpregset): Adjust.
(target_regsets): Rename to ...
(mips_regsets): ... this, and make static.
(mips_regsets_info, mips_dsp_usrregs_info, mips_usrregs_info)
(dsp_regs_info, regs_info): New globals.
(mips_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-arm-low.c (tdesc_arm, tdesc_arm_with_iwmmxt)
(tdesc_arm_with_vfpv2, tdesc_arm_with_vfpv3, tdesc_arm_with_neon):
Declare.
(arm_fill_vfpregset, arm_store_vfpregset): Adjust.
(arm_read_description): New, with bits factored from
arm_arch_setup.
(arm_arch_setup): Reimplement.
(target_regsets): Rename to ...
(arm_regsets): ... this, and make static.
(arm_regsets_info, arm_usrregs_info, regs_info): New globals.
(arm_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-m68k-low.c (tdesc_m68k): Declare.
(target_regsets): Rename to ...
(m68k_regsets): ... this, and make static.
(m68k_regsets_info, m68k_usrregs_info, regs_info): New globals.
(m68k_regs_info): New function.
(m68k_arch_setup): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-sh-low.c (tdesc_sharch): Declare.
(target_regsets): Rename to ...
(sh_regsets): ... this, and make static.
(sh_regsets_info, sh_usrregs_info, regs_info): New globals.
(sh_regs_info, sh_arch_setup): New functions.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-bfin-low.c (tdesc_bfin): Declare.
(bfin_arch_setup): New function.
(bfin_usrregs_info, regs_info): New globals.
(bfin_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-cris-low.c (tdesc_cris): Declare.
(cris_arch_setup): New function.
(cris_usrregs_info, regs_info): New globals.
(cris_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-cris-low.c (tdesc_crisv32): Declare.
(cris_arch_setup): New function.
(cris_regsets_info, cris_usrregs_info, regs_info): New globals.
(cris_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-m32r-low.c (tdesc_m32r): Declare.
(m32r_arch_setup): New function.
(m32r_usrregs_info, regs_info): New globals.
(m32r_regs_info): Adjust.
(initialize_low_arch): New function.
* linux-tic6x-low.c (tdesc_tic6x_c64xp_linux)
(tdesc_tic6x_c64x_linux, tdesc_tic6x_c62x_linux): Declare.
(tic6x_usrregs_info): Forward declare.
(tic6x_read_description): New function, based on ...
(tic6x_arch_setup): ... this. Reimplement.
(target_regsets): Rename to ...
(tic6x_regsets): ... this, and make static.
(tic6x_regsets_info, tic6x_usrregs_info, regs_info): New globals.
(tic6x_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-xtensa-low.c (tdesc_xtensa): Declare.
(xtensa_fill_gregset, xtensa_store_gregset): Adjust.
(target_regsets): Rename to ...
(xtensa_regsets): ... this, and make static.
(xtensa_regsets_info, xtensa_usrregs_info, regs_info): New
globals.
(xtensa_arch_setup, xtensa_regs_info): New functions.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-nios2-low.c (tdesc_nios2_linux): Declare.
(nios2_arch_setup): Set the current process'es tdesc.
(target_regsets): Rename to ...
(nios2_regsets): ... this.
(nios2_regsets_info, nios2_usrregs_info, regs_info): New globals.
(nios2_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-aarch64-low.c (tdesc_aarch64): Declare.
(aarch64_arch_setup): Set the current process'es tdesc.
(target_regsets): Rename to ...
(aarch64_regsets): ... this.
(aarch64_regsets_info, aarch64_usrregs_info, regs_info): New globals.
(aarch64_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-tile-low.c (tdesc_tilegx, tdesc_tilegx32): Declare
globals.
(target_regsets): Rename to ...
(tile_regsets): ... this.
(tile_regsets_info, tile_usrregs_info, regs_info): New globals.
(tile_regs_info): New function.
(tile_arch_setup): Set the current process'es tdesc.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* spu-low.c (tdesc_spu): Declare.
(spu_create_inferior, spu_attach): Set the new process'es tdesc.
* win32-arm-low.c (tdesc_arm): Declare.
(arm_arch_setup): New function.
(the_low_target): Install arm_arch_setup instead of
init_registers_arm.
* win32-i386-low.c (tdesc_i386, tdesc_amd64): Declare.
(init_windows_x86): Rename to ...
(i386_arch_setup): ... this. Set `win32_tdesc'.
(the_low_target): Adjust.
* win32-low.c (win32_tdesc): New global.
(child_add_thread): Don't create the thread cache here.
(do_initial_child_stuff): Set the new process'es tdesc.
* win32-low.h (struct target_desc): Forward declare.
(win32_tdesc): Declare.
* lynx-i386-low.c (tdesc_i386): Declare global.
(lynx_i386_arch_setup): Set `lynx_tdesc'.
* lynx-low.c (lynx_tdesc): New global.
(lynx_add_process): Set the new process'es tdesc.
* lynx-low.h (struct target_desc): Forward declare.
(lynx_tdesc): Declare global.
* lynx-ppc-low.c (tdesc_powerpc_32): Declare global.
(lynx_ppc_arch_setup): Set `lynx_tdesc'.
* nto-low.c (nto_tdesc): New global.
(do_attach): Set the new process'es tdesc.
* nto-low.h (struct target_desc): Forward declare.
(nto_tdesc): Declare.
* nto-x86-low.c (tdesc_i386): Declare.
(nto_x86_arch_setup): Set `nto_tdesc'.
gdb/
2013-06-07 Pedro Alves <palves@redhat.com>
* regformats/regdat.sh: Output #include tdesc.h. Make globals
static. Output a global target description pointer.
(init_registers_${name}): Adjust to initialize a
target description structure.
2013-06-07 10:46:59 +00:00
|
|
|
{
|
|
|
|
NULL, /* regset_bitmap */
|
2015-07-09 11:47:06 +00:00
|
|
|
NULL, /* usrregs */
|
[GDBserver] Multi-process + multi-arch
This patch makes GDBserver support multi-process + biarch.
Currently, if you're debugging more than one process at once with a
single gdbserver (in extended-remote mode), then all processes must
have the same architecture (e.g., 64-bit vs 32-bit). Otherwise, you
see this:
Added inferior 2
[Switching to inferior 2 [<null>] (<noexec>)]
Reading symbols from /home/pedro/gdb/tests/main32...done.
Temporary breakpoint 2 at 0x4004cf: main. (2 locations)
Starting program: /home/pedro/gdb/tests/main32
warning: Selected architecture i386 is not compatible with reported target architecture i386:x86-64
warning: Architecture rejected target-supplied description
Remote 'g' packet reply is too long: 000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000090cfffff0000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000000000000000000b042f7460000000000020000230000002b0000002b0000002b000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000007f03000000000000ffff0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000801f00003b0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
... etc, etc ...
Even though the process was running a 32-bit program, GDBserver sent
back to GDB a register set in 64-bit layout.
A patch (http://sourceware.org/ml/gdb-patches/2012-11/msg00228.html) a
while ago made GDB track a target_gdbarch per inferior, and as
consequence, fetch a target description per-inferior. This patch is
the GDBserver counterpart, that makes GDBserver keep track of each
process'es XML target description and register layout. So in the
example above, GDBserver will send the correct register set in 32-bit
layout to GDB.
A new "struct target_desc" object (tdesc for short) is added, that
holds the target description and register layout information about
each process. Each `struct process_info' holds a pointer to a target
description. The regcache also gains a pointer to a target
description, mainly for convenience, and parallel with GDB (and
possible future support for programs that flip processor modes).
The low target's arch_setup routines are responsible for setting the
process'es correct tdesc. This isn't that much different to how
things were done before, except that instead of detecting the inferior
process'es architecture and calling the corresponding
init_registers_FOO routine, which would change the regcache layout
globals and recreate the threads' regcaches, the regcache.c globals
are gone, and the init_registers_$BAR routines now each initialize a
separate global struct target_desc object (one for each arch variant
GDBserver supports), and so all the init_registers_$BAR routines that
are built into GDBserver are called early at GDBserver startup time
(similarly to how GDB handles its built-in target descriptions), and
then the arch_setup routine is responsible for making
process_info->tdesc point to one of these target description globals.
The regcache module is all parameterized to get the regcache's layout
from the tdesc object instead of the old register_bytes, etc. globals.
The threads' regcaches are now created lazily. The old scheme where
we created each of them when we added a new thread doesn't work
anymore, because we add the main thread/lwp before we see it stop for
the first time, and it is only when we see the thread stop for the
first time that we have a chance of determining the inferior's
architecture (through the_low_target.arch_setup). Therefore when we
add the main thread we don't know which architecture/tdesc its
regcache should have.
This patch makes the gdb.multi/multi-arch.exp test now pass against
(extended-remote) GDBserver. It currently fails, without this patch.
The IPA also uses the regcache, so it gains a new global struct
target_desc pointer, which points at the description of the process it
is loaded in.
Re. the linux-low.c & friends changes. Since the register map
etc. may differ between processes (64-bit vs 32-bit) etc., the
linux_target_ops num_regs, regmap and regset_bitmap data fields are no
longer sufficient. A new method is added in their place that returns
a pointer to a new struct that includes all info linux-low.c needs to
access registers of the current inferior.
The patch/discussion that originally introduced
linux-low.c:disabled_regsets mentions that the disabled_regsets set
may be different per mode (in a biarch setup), and indeed that is
cleared whenever we start a new (first) inferior, so that global is
moved as well behind the new `struct regs_info'.
On the x86 side:
I simply replaced the i387-fp.c:num_xmm_registers global with a check
for 64-bit or 32-bit process, which is equivalent to how the global
was set. This avoided coming up with some more general mechanism that
would work for all targets that use this module (GNU/Linux, Windows,
etc.).
Tested:
GNU/Linux IA64
GNU/Linux MIPS64
GNU/Linux PowerPC (Fedora 16)
GNU/Linux s390x (Fedora 16)
GNU/Linux sparc64 (Debian)
GNU/Linux x86_64, -m64 and -m32 (Fedora 17)
Cross built, and smoke tested:
i686-w64-mingw32, under Wine.
GNU/Linux TI C6x, by Yao Qi.
Cross built but otherwise not tested:
aarch64-linux-gnu
arm-linux-gnu
m68k-linux
nios2-linux-gnu
sh-linux-gnu
spu
tilegx-unknown-linux-gnu
Completely untested:
GNU/Linux Blackfin
GNU/Linux CRIS
GNU/Linux CRISv32
GNU/Linux TI Xtensa
GNU/Linux M32R
LynxOS
QNX NTO
gdb/gdbserver/
2013-06-07 Pedro Alves <palves@redhat.com>
* Makefile.in (OBS): Add tdesc.o.
(IPA_OBJS): Add tdesc-ipa.o.
(tdesc-ipa.o): New rule.
* ax.c (gdb_eval_agent_expr): Adjust register_size call to new
interface.
* linux-low.c (new_inferior): Delete.
(disabled_regsets, num_regsets): Delete.
(linux_add_process): Adjust to set the new per-process
new_inferior flag.
(linux_detach_one_lwp): Adjust to call regcache_invalidate_thread.
(linux_wait_for_lwp): Adjust. Only call arch_setup if the event
was a stop. When calling arch_setup, switch the current inferior
to the thread that got an event.
(linux_resume_one_lwp): Adjust to call regcache_invalidate_thread.
(regsets_fetch_inferior_registers)
(regsets_store_inferior_registers): New regsets_info parameter.
Adjust to use it.
(linux_register_in_regsets): New regs_info parameter. Adjust to
use it.
(register_addr, fetch_register, store_register): New usrregs_info
parameter. Adjust to use it.
(usr_fetch_inferior_registers, usr_store_inferior_registers): New
parameter regs_info. Adjust to use it.
(linux_fetch_registers): Get the current inferior's regs_info, and
adjust to use it.
(linux_store_registers): Ditto.
[HAVE_LINUX_REGSETS] (initialize_regsets_info): New.
(initialize_low): Don't initialize the target_regsets here. Call
initialize_low_arch.
* linux-low.h (target_regsets): Delete declaration.
(struct regsets_info): New.
(struct usrregs_info): New.
(struct regs_info): New.
(struct process_info_private) <new_inferior>: New field.
(struct linux_target_ops): Delete the num_regs, regmap, and
regset_bitmap fields. New field regs_info.
[HAVE_LINUX_REGSETS] (initialize_regsets_info): Declare.
* i387-fp.c (num_xmm_registers): Delete.
(i387_cache_to_fsave, i387_fsave_to_cache): Adjust find_regno
calls to new interface.
(i387_cache_to_fxsave, i387_cache_to_xsave, i387_fxsave_to_cache)
(i387_xsave_to_cache): Adjust find_regno calls to new interface.
Infer the number of xmm registers from the regcache's target
description.
* i387-fp.h (num_xmm_registers): Delete.
* inferiors.c (add_thread): Don't install the thread's regcache
here.
* proc-service.c (gregset_info): Fetch the current inferior's
regs_info. Adjust to use it.
* regcache.c: Include tdesc.h.
(register_bytes, reg_defs, num_registers)
(gdbserver_expedite_regs): Delete.
(get_thread_regcache): If the thread doesn't have a regcache yet,
create one, instead of aborting gdbserver.
(regcache_invalidate_one): Rename to ...
(regcache_invalidate_thread): ... this.
(regcache_invalidate_one): New.
(regcache_invalidate): Only invalidate registers of the current
process.
(init_register_cache): Add target_desc parameter, and use it.
(new_register_cache): Ditto. Assert the target description has a
non zero registers_size.
(regcache_cpy): Add assertions. Adjust.
(realloc_register_cache, set_register_cache): Delete.
(registers_to_string, registers_from_string): Adjust.
(find_register_by_name, find_regno, find_register_by_number)
(register_cache_size): Add target_desc parameter, and use it.
(free_register_cache_thread, free_register_cache_thread_one)
(regcache_release, register_cache_size): New.
(register_size): Add target_desc parameter, and use it.
(register_data, supply_register, supply_register_zeroed)
(supply_regblock, supply_register_by_name, collect_register)
(collect_register_as_string, collect_register_by_name): Adjust.
* regcache.h (struct target_desc): Forward declare.
(struct regcache) <tdesc>: New field.
(init_register_cache, new_register_cache): Add target_desc
parameter.
(regcache_invalidate_thread): Declare.
(regcache_invalidate_one): Delete declaration.
(regcache_release): Declare.
(find_register_by_number, register_cache_size, register_size)
(find_regno): Add target_desc parameter.
(gdbserver_expedite_regs, gdbserver_xmltarget): Delete
declarations.
* remote-utils.c: Include tdesc.h.
(outreg, prepare_resume_reply): Adjust.
* server.c: Include tdesc.h.
(gdbserver_xmltarget): Delete declaration.
(get_features_xml, process_serial_event): Adjust.
* server.h [IN_PROCESS_AGENT] (struct target_desc): Forward
declare.
(struct process_info) <tdesc>: New field.
(ipa_tdesc): Declare.
* tdesc.c: New file.
* tdesc.h: New file.
* tracepoint.c: Include tdesc.h.
[IN_PROCESS_AGENT] (ipa_tdesc): Define.
(get_context_regcache): Adjust to pass ipa_tdesc down.
(do_action_at_tracepoint): Adjust to get the register cache size
from the context regcache's description.
(traceframe_walk_blocks): Adjust to get the register cache size
from the current trace frame's description.
(traceframe_get_pc): Adjust to get current trace frame's
description and pass it down.
(gdb_collect): Adjust to get the register cache size from the
IPA's description.
* linux-amd64-ipa.c (tdesc_amd64_linux): Declare.
(gdbserver_xmltarget): Delete.
(initialize_low_tracepoint): Set the ipa's target description.
* linux-i386-ipa.c (tdesc_i386_linux): Declare.
(initialize_low_tracepoint): Set the ipa's target description.
* linux-x86-low.c: Include tdesc.h.
[__x86_64__] (is_64bit_tdesc): New.
(ps_get_thread_area, x86_get_thread_area): Use it.
(i386_cannot_store_register): Rename to ...
(x86_cannot_store_register): ... this. Use is_64bit_tdesc.
(i386_cannot_fetch_register): Rename to ...
(x86_cannot_fetch_register): ... this. Use is_64bit_tdesc.
(x86_fill_gregset, x86_store_gregset): Adjust register_size calls
to new interface.
(target_regsets): Rename to ...
(x86_regsets): ... this.
(x86_get_pc, x86_set_pc): Adjust register_size calls to new
interface.
(x86_siginfo_fixup): Use is_64bit_tdesc.
[__x86_64__] (tdesc_amd64_linux, tdesc_amd64_avx_linux)
(tdesc_x32_avx_linux, tdesc_x32_linux)
(tdesc_i386_linux, tdesc_i386_mmx_linux, tdesc_i386_avx_linux):
Declare.
(x86_linux_update_xmltarget): Delete.
(I386_LINUX_XSAVE_XCR0_OFFSET): Define.
(have_ptrace_getfpxregs, have_ptrace_getregset): New.
(AMD64_LINUX_USER64_CS): New.
(x86_linux_read_description): New, based on
x86_linux_update_xmltarget.
(same_process_callback): New.
(x86_arch_setup_process_callback): New.
(x86_linux_update_xmltarget): New.
(x86_regsets_info): New.
(amd64_linux_regs_info): New.
(i386_linux_usrregs_info): New.
(i386_linux_regs_info): New.
(x86_linux_regs_info): New.
(x86_arch_setup): Reimplement.
(x86_install_fast_tracepoint_jump_pad): Use is_64bit_tdesc.
(x86_emit_ops): Ditto.
(the_low_target): Adjust. Install x86_linux_regs_info,
x86_cannot_fetch_register, and x86_cannot_store_register.
(initialize_low_arch): New.
* linux-ia64-low.c (tdesc_ia64): Declare.
(ia64_fetch_register): Adjust.
(ia64_usrregs_info, regs_info): New globals.
(ia64_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-sparc-low.c (tdesc_sparc64): Declare.
(sparc_fill_gregset_to_stack, sparc_store_gregset_from_stack):
Adjust.
(sparc_arch_setup): New function.
(sparc_regsets_info, sparc_usrregs_info, regs_info): New globals.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-ppc-low.c (tdesc_powerpc_32l, tdesc_powerpc_altivec32l)
(tdesc_powerpc_cell32l, tdesc_powerpc_vsx32l)
(tdesc_powerpc_isa205_32l, tdesc_powerpc_isa205_altivec32l)
(tdesc_powerpc_isa205_vsx32l, tdesc_powerpc_e500l)
(tdesc_powerpc_64l, tdesc_powerpc_altivec64l)
(tdesc_powerpc_cell64l, tdesc_powerpc_vsx64l)
(tdesc_powerpc_isa205_64l, tdesc_powerpc_isa205_altivec64l)
(tdesc_powerpc_isa205_vsx64l): Declare.
(ppc_cannot_store_register, ppc_collect_ptrace_register)
(ppc_supply_ptrace_register, parse_spufs_run, ppc_get_pc)
(ppc_set_pc, ppc_get_hwcap): Adjust.
(ppc_usrregs_info): Forward declare.
(!__powerpc64__) ppc_regmap_adjusted: New global.
(ppc_arch_setup): Adjust to the current process'es target
description.
(ppc_fill_vsxregset, ppc_store_vsxregset, ppc_fill_vrregset)
(ppc_store_vrregset, ppc_fill_evrregset, ppc_store_evrregse)
(ppc_store_evrregset): Adjust.
(target_regsets): Rename to ...
(ppc_regsets): ... this, and make static.
(ppc_usrregs_info, ppc_regsets_info, regs_info): New globals.
(ppc_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-s390-low.c (tdesc_s390_linux32, tdesc_s390_linux32v1)
(tdesc_s390_linux32v2, tdesc_s390_linux64, tdesc_s390_linux64v1)
(tdesc_s390_linux64v2, tdesc_s390x_linux64, tdesc_s390x_linux64v1)
(tdesc_s390x_linux64v2): Declare.
(s390_collect_ptrace_register, s390_supply_ptrace_register)
(s390_fill_gregset, s390_store_last_break): Adjust.
(target_regsets): Rename to ...
(s390_regsets): ... this, and make static.
(s390_get_pc, s390_set_pc): Adjust.
(s390_get_hwcap): New target_desc parameter, and use it.
[__s390x__] (have_hwcap_s390_high_gprs): New global.
(s390_arch_setup): Adjust to set the current process'es target
description. Don't adjust the regmap.
(s390_usrregs_info, s390_regsets_info, regs_info): New globals.
[__s390x__] (s390_usrregs_info_3264, s390_regsets_info_3264)
(regs_info_3264): New globals.
(s390_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-mips-low.c (tdesc_mips_linux, tdesc_mips_dsp_linux)
(tdesc_mips64_linux, tdesc_mips64_dsp_linux): Declare.
[__mips64] (init_registers_mips_linux)
(init_registers_mips_dsp_linux): Delete defines.
[__mips64] (tdesc_mips_linux, tdesc_mips_dsp_linux): New defines.
(have_dsp): New global.
(mips_read_description): New, based on mips_arch_setup.
(mips_arch_setup): Reimplement.
(get_usrregs_info): New function.
(mips_cannot_fetch_register, mips_cannot_store_register)
(mips_get_pc, mips_set_pc, mips_fill_gregset, mips_store_gregset)
(mips_fill_fpregset, mips_store_fpregset): Adjust.
(target_regsets): Rename to ...
(mips_regsets): ... this, and make static.
(mips_regsets_info, mips_dsp_usrregs_info, mips_usrregs_info)
(dsp_regs_info, regs_info): New globals.
(mips_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-arm-low.c (tdesc_arm, tdesc_arm_with_iwmmxt)
(tdesc_arm_with_vfpv2, tdesc_arm_with_vfpv3, tdesc_arm_with_neon):
Declare.
(arm_fill_vfpregset, arm_store_vfpregset): Adjust.
(arm_read_description): New, with bits factored from
arm_arch_setup.
(arm_arch_setup): Reimplement.
(target_regsets): Rename to ...
(arm_regsets): ... this, and make static.
(arm_regsets_info, arm_usrregs_info, regs_info): New globals.
(arm_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-m68k-low.c (tdesc_m68k): Declare.
(target_regsets): Rename to ...
(m68k_regsets): ... this, and make static.
(m68k_regsets_info, m68k_usrregs_info, regs_info): New globals.
(m68k_regs_info): New function.
(m68k_arch_setup): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-sh-low.c (tdesc_sharch): Declare.
(target_regsets): Rename to ...
(sh_regsets): ... this, and make static.
(sh_regsets_info, sh_usrregs_info, regs_info): New globals.
(sh_regs_info, sh_arch_setup): New functions.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-bfin-low.c (tdesc_bfin): Declare.
(bfin_arch_setup): New function.
(bfin_usrregs_info, regs_info): New globals.
(bfin_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-cris-low.c (tdesc_cris): Declare.
(cris_arch_setup): New function.
(cris_usrregs_info, regs_info): New globals.
(cris_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-cris-low.c (tdesc_crisv32): Declare.
(cris_arch_setup): New function.
(cris_regsets_info, cris_usrregs_info, regs_info): New globals.
(cris_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-m32r-low.c (tdesc_m32r): Declare.
(m32r_arch_setup): New function.
(m32r_usrregs_info, regs_info): New globals.
(m32r_regs_info): Adjust.
(initialize_low_arch): New function.
* linux-tic6x-low.c (tdesc_tic6x_c64xp_linux)
(tdesc_tic6x_c64x_linux, tdesc_tic6x_c62x_linux): Declare.
(tic6x_usrregs_info): Forward declare.
(tic6x_read_description): New function, based on ...
(tic6x_arch_setup): ... this. Reimplement.
(target_regsets): Rename to ...
(tic6x_regsets): ... this, and make static.
(tic6x_regsets_info, tic6x_usrregs_info, regs_info): New globals.
(tic6x_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-xtensa-low.c (tdesc_xtensa): Declare.
(xtensa_fill_gregset, xtensa_store_gregset): Adjust.
(target_regsets): Rename to ...
(xtensa_regsets): ... this, and make static.
(xtensa_regsets_info, xtensa_usrregs_info, regs_info): New
globals.
(xtensa_arch_setup, xtensa_regs_info): New functions.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-nios2-low.c (tdesc_nios2_linux): Declare.
(nios2_arch_setup): Set the current process'es tdesc.
(target_regsets): Rename to ...
(nios2_regsets): ... this.
(nios2_regsets_info, nios2_usrregs_info, regs_info): New globals.
(nios2_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-aarch64-low.c (tdesc_aarch64): Declare.
(aarch64_arch_setup): Set the current process'es tdesc.
(target_regsets): Rename to ...
(aarch64_regsets): ... this.
(aarch64_regsets_info, aarch64_usrregs_info, regs_info): New globals.
(aarch64_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-tile-low.c (tdesc_tilegx, tdesc_tilegx32): Declare
globals.
(target_regsets): Rename to ...
(tile_regsets): ... this.
(tile_regsets_info, tile_usrregs_info, regs_info): New globals.
(tile_regs_info): New function.
(tile_arch_setup): Set the current process'es tdesc.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* spu-low.c (tdesc_spu): Declare.
(spu_create_inferior, spu_attach): Set the new process'es tdesc.
* win32-arm-low.c (tdesc_arm): Declare.
(arm_arch_setup): New function.
(the_low_target): Install arm_arch_setup instead of
init_registers_arm.
* win32-i386-low.c (tdesc_i386, tdesc_amd64): Declare.
(init_windows_x86): Rename to ...
(i386_arch_setup): ... this. Set `win32_tdesc'.
(the_low_target): Adjust.
* win32-low.c (win32_tdesc): New global.
(child_add_thread): Don't create the thread cache here.
(do_initial_child_stuff): Set the new process'es tdesc.
* win32-low.h (struct target_desc): Forward declare.
(win32_tdesc): Declare.
* lynx-i386-low.c (tdesc_i386): Declare global.
(lynx_i386_arch_setup): Set `lynx_tdesc'.
* lynx-low.c (lynx_tdesc): New global.
(lynx_add_process): Set the new process'es tdesc.
* lynx-low.h (struct target_desc): Forward declare.
(lynx_tdesc): Declare global.
* lynx-ppc-low.c (tdesc_powerpc_32): Declare global.
(lynx_ppc_arch_setup): Set `lynx_tdesc'.
* nto-low.c (nto_tdesc): New global.
(do_attach): Set the new process'es tdesc.
* nto-low.h (struct target_desc): Forward declare.
(nto_tdesc): Declare.
* nto-x86-low.c (tdesc_i386): Declare.
(nto_x86_arch_setup): Set `nto_tdesc'.
gdb/
2013-06-07 Pedro Alves <palves@redhat.com>
* regformats/regdat.sh: Output #include tdesc.h. Make globals
static. Output a global target description pointer.
(init_registers_${name}): Adjust to initialize a
target description structure.
2013-06-07 10:46:59 +00:00
|
|
|
&aarch64_regsets_info,
|
|
|
|
};
|
|
|
|
|
2015-07-02 11:11:47 +00:00
|
|
|
/* Implementation of linux_target_ops method "regs_info". */
|
|
|
|
|
[GDBserver] Multi-process + multi-arch
This patch makes GDBserver support multi-process + biarch.
Currently, if you're debugging more than one process at once with a
single gdbserver (in extended-remote mode), then all processes must
have the same architecture (e.g., 64-bit vs 32-bit). Otherwise, you
see this:
Added inferior 2
[Switching to inferior 2 [<null>] (<noexec>)]
Reading symbols from /home/pedro/gdb/tests/main32...done.
Temporary breakpoint 2 at 0x4004cf: main. (2 locations)
Starting program: /home/pedro/gdb/tests/main32
warning: Selected architecture i386 is not compatible with reported target architecture i386:x86-64
warning: Architecture rejected target-supplied description
Remote 'g' packet reply is too long: 000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000090cfffff0000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000000000000000000b042f7460000000000020000230000002b0000002b0000002b000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000007f03000000000000ffff0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000801f00003b0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
... etc, etc ...
Even though the process was running a 32-bit program, GDBserver sent
back to GDB a register set in 64-bit layout.
A patch (http://sourceware.org/ml/gdb-patches/2012-11/msg00228.html) a
while ago made GDB track a target_gdbarch per inferior, and as
consequence, fetch a target description per-inferior. This patch is
the GDBserver counterpart, that makes GDBserver keep track of each
process'es XML target description and register layout. So in the
example above, GDBserver will send the correct register set in 32-bit
layout to GDB.
A new "struct target_desc" object (tdesc for short) is added, that
holds the target description and register layout information about
each process. Each `struct process_info' holds a pointer to a target
description. The regcache also gains a pointer to a target
description, mainly for convenience, and parallel with GDB (and
possible future support for programs that flip processor modes).
The low target's arch_setup routines are responsible for setting the
process'es correct tdesc. This isn't that much different to how
things were done before, except that instead of detecting the inferior
process'es architecture and calling the corresponding
init_registers_FOO routine, which would change the regcache layout
globals and recreate the threads' regcaches, the regcache.c globals
are gone, and the init_registers_$BAR routines now each initialize a
separate global struct target_desc object (one for each arch variant
GDBserver supports), and so all the init_registers_$BAR routines that
are built into GDBserver are called early at GDBserver startup time
(similarly to how GDB handles its built-in target descriptions), and
then the arch_setup routine is responsible for making
process_info->tdesc point to one of these target description globals.
The regcache module is all parameterized to get the regcache's layout
from the tdesc object instead of the old register_bytes, etc. globals.
The threads' regcaches are now created lazily. The old scheme where
we created each of them when we added a new thread doesn't work
anymore, because we add the main thread/lwp before we see it stop for
the first time, and it is only when we see the thread stop for the
first time that we have a chance of determining the inferior's
architecture (through the_low_target.arch_setup). Therefore when we
add the main thread we don't know which architecture/tdesc its
regcache should have.
This patch makes the gdb.multi/multi-arch.exp test now pass against
(extended-remote) GDBserver. It currently fails, without this patch.
The IPA also uses the regcache, so it gains a new global struct
target_desc pointer, which points at the description of the process it
is loaded in.
Re. the linux-low.c & friends changes. Since the register map
etc. may differ between processes (64-bit vs 32-bit) etc., the
linux_target_ops num_regs, regmap and regset_bitmap data fields are no
longer sufficient. A new method is added in their place that returns
a pointer to a new struct that includes all info linux-low.c needs to
access registers of the current inferior.
The patch/discussion that originally introduced
linux-low.c:disabled_regsets mentions that the disabled_regsets set
may be different per mode (in a biarch setup), and indeed that is
cleared whenever we start a new (first) inferior, so that global is
moved as well behind the new `struct regs_info'.
On the x86 side:
I simply replaced the i387-fp.c:num_xmm_registers global with a check
for 64-bit or 32-bit process, which is equivalent to how the global
was set. This avoided coming up with some more general mechanism that
would work for all targets that use this module (GNU/Linux, Windows,
etc.).
Tested:
GNU/Linux IA64
GNU/Linux MIPS64
GNU/Linux PowerPC (Fedora 16)
GNU/Linux s390x (Fedora 16)
GNU/Linux sparc64 (Debian)
GNU/Linux x86_64, -m64 and -m32 (Fedora 17)
Cross built, and smoke tested:
i686-w64-mingw32, under Wine.
GNU/Linux TI C6x, by Yao Qi.
Cross built but otherwise not tested:
aarch64-linux-gnu
arm-linux-gnu
m68k-linux
nios2-linux-gnu
sh-linux-gnu
spu
tilegx-unknown-linux-gnu
Completely untested:
GNU/Linux Blackfin
GNU/Linux CRIS
GNU/Linux CRISv32
GNU/Linux TI Xtensa
GNU/Linux M32R
LynxOS
QNX NTO
gdb/gdbserver/
2013-06-07 Pedro Alves <palves@redhat.com>
* Makefile.in (OBS): Add tdesc.o.
(IPA_OBJS): Add tdesc-ipa.o.
(tdesc-ipa.o): New rule.
* ax.c (gdb_eval_agent_expr): Adjust register_size call to new
interface.
* linux-low.c (new_inferior): Delete.
(disabled_regsets, num_regsets): Delete.
(linux_add_process): Adjust to set the new per-process
new_inferior flag.
(linux_detach_one_lwp): Adjust to call regcache_invalidate_thread.
(linux_wait_for_lwp): Adjust. Only call arch_setup if the event
was a stop. When calling arch_setup, switch the current inferior
to the thread that got an event.
(linux_resume_one_lwp): Adjust to call regcache_invalidate_thread.
(regsets_fetch_inferior_registers)
(regsets_store_inferior_registers): New regsets_info parameter.
Adjust to use it.
(linux_register_in_regsets): New regs_info parameter. Adjust to
use it.
(register_addr, fetch_register, store_register): New usrregs_info
parameter. Adjust to use it.
(usr_fetch_inferior_registers, usr_store_inferior_registers): New
parameter regs_info. Adjust to use it.
(linux_fetch_registers): Get the current inferior's regs_info, and
adjust to use it.
(linux_store_registers): Ditto.
[HAVE_LINUX_REGSETS] (initialize_regsets_info): New.
(initialize_low): Don't initialize the target_regsets here. Call
initialize_low_arch.
* linux-low.h (target_regsets): Delete declaration.
(struct regsets_info): New.
(struct usrregs_info): New.
(struct regs_info): New.
(struct process_info_private) <new_inferior>: New field.
(struct linux_target_ops): Delete the num_regs, regmap, and
regset_bitmap fields. New field regs_info.
[HAVE_LINUX_REGSETS] (initialize_regsets_info): Declare.
* i387-fp.c (num_xmm_registers): Delete.
(i387_cache_to_fsave, i387_fsave_to_cache): Adjust find_regno
calls to new interface.
(i387_cache_to_fxsave, i387_cache_to_xsave, i387_fxsave_to_cache)
(i387_xsave_to_cache): Adjust find_regno calls to new interface.
Infer the number of xmm registers from the regcache's target
description.
* i387-fp.h (num_xmm_registers): Delete.
* inferiors.c (add_thread): Don't install the thread's regcache
here.
* proc-service.c (gregset_info): Fetch the current inferior's
regs_info. Adjust to use it.
* regcache.c: Include tdesc.h.
(register_bytes, reg_defs, num_registers)
(gdbserver_expedite_regs): Delete.
(get_thread_regcache): If the thread doesn't have a regcache yet,
create one, instead of aborting gdbserver.
(regcache_invalidate_one): Rename to ...
(regcache_invalidate_thread): ... this.
(regcache_invalidate_one): New.
(regcache_invalidate): Only invalidate registers of the current
process.
(init_register_cache): Add target_desc parameter, and use it.
(new_register_cache): Ditto. Assert the target description has a
non zero registers_size.
(regcache_cpy): Add assertions. Adjust.
(realloc_register_cache, set_register_cache): Delete.
(registers_to_string, registers_from_string): Adjust.
(find_register_by_name, find_regno, find_register_by_number)
(register_cache_size): Add target_desc parameter, and use it.
(free_register_cache_thread, free_register_cache_thread_one)
(regcache_release, register_cache_size): New.
(register_size): Add target_desc parameter, and use it.
(register_data, supply_register, supply_register_zeroed)
(supply_regblock, supply_register_by_name, collect_register)
(collect_register_as_string, collect_register_by_name): Adjust.
* regcache.h (struct target_desc): Forward declare.
(struct regcache) <tdesc>: New field.
(init_register_cache, new_register_cache): Add target_desc
parameter.
(regcache_invalidate_thread): Declare.
(regcache_invalidate_one): Delete declaration.
(regcache_release): Declare.
(find_register_by_number, register_cache_size, register_size)
(find_regno): Add target_desc parameter.
(gdbserver_expedite_regs, gdbserver_xmltarget): Delete
declarations.
* remote-utils.c: Include tdesc.h.
(outreg, prepare_resume_reply): Adjust.
* server.c: Include tdesc.h.
(gdbserver_xmltarget): Delete declaration.
(get_features_xml, process_serial_event): Adjust.
* server.h [IN_PROCESS_AGENT] (struct target_desc): Forward
declare.
(struct process_info) <tdesc>: New field.
(ipa_tdesc): Declare.
* tdesc.c: New file.
* tdesc.h: New file.
* tracepoint.c: Include tdesc.h.
[IN_PROCESS_AGENT] (ipa_tdesc): Define.
(get_context_regcache): Adjust to pass ipa_tdesc down.
(do_action_at_tracepoint): Adjust to get the register cache size
from the context regcache's description.
(traceframe_walk_blocks): Adjust to get the register cache size
from the current trace frame's description.
(traceframe_get_pc): Adjust to get current trace frame's
description and pass it down.
(gdb_collect): Adjust to get the register cache size from the
IPA's description.
* linux-amd64-ipa.c (tdesc_amd64_linux): Declare.
(gdbserver_xmltarget): Delete.
(initialize_low_tracepoint): Set the ipa's target description.
* linux-i386-ipa.c (tdesc_i386_linux): Declare.
(initialize_low_tracepoint): Set the ipa's target description.
* linux-x86-low.c: Include tdesc.h.
[__x86_64__] (is_64bit_tdesc): New.
(ps_get_thread_area, x86_get_thread_area): Use it.
(i386_cannot_store_register): Rename to ...
(x86_cannot_store_register): ... this. Use is_64bit_tdesc.
(i386_cannot_fetch_register): Rename to ...
(x86_cannot_fetch_register): ... this. Use is_64bit_tdesc.
(x86_fill_gregset, x86_store_gregset): Adjust register_size calls
to new interface.
(target_regsets): Rename to ...
(x86_regsets): ... this.
(x86_get_pc, x86_set_pc): Adjust register_size calls to new
interface.
(x86_siginfo_fixup): Use is_64bit_tdesc.
[__x86_64__] (tdesc_amd64_linux, tdesc_amd64_avx_linux)
(tdesc_x32_avx_linux, tdesc_x32_linux)
(tdesc_i386_linux, tdesc_i386_mmx_linux, tdesc_i386_avx_linux):
Declare.
(x86_linux_update_xmltarget): Delete.
(I386_LINUX_XSAVE_XCR0_OFFSET): Define.
(have_ptrace_getfpxregs, have_ptrace_getregset): New.
(AMD64_LINUX_USER64_CS): New.
(x86_linux_read_description): New, based on
x86_linux_update_xmltarget.
(same_process_callback): New.
(x86_arch_setup_process_callback): New.
(x86_linux_update_xmltarget): New.
(x86_regsets_info): New.
(amd64_linux_regs_info): New.
(i386_linux_usrregs_info): New.
(i386_linux_regs_info): New.
(x86_linux_regs_info): New.
(x86_arch_setup): Reimplement.
(x86_install_fast_tracepoint_jump_pad): Use is_64bit_tdesc.
(x86_emit_ops): Ditto.
(the_low_target): Adjust. Install x86_linux_regs_info,
x86_cannot_fetch_register, and x86_cannot_store_register.
(initialize_low_arch): New.
* linux-ia64-low.c (tdesc_ia64): Declare.
(ia64_fetch_register): Adjust.
(ia64_usrregs_info, regs_info): New globals.
(ia64_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-sparc-low.c (tdesc_sparc64): Declare.
(sparc_fill_gregset_to_stack, sparc_store_gregset_from_stack):
Adjust.
(sparc_arch_setup): New function.
(sparc_regsets_info, sparc_usrregs_info, regs_info): New globals.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-ppc-low.c (tdesc_powerpc_32l, tdesc_powerpc_altivec32l)
(tdesc_powerpc_cell32l, tdesc_powerpc_vsx32l)
(tdesc_powerpc_isa205_32l, tdesc_powerpc_isa205_altivec32l)
(tdesc_powerpc_isa205_vsx32l, tdesc_powerpc_e500l)
(tdesc_powerpc_64l, tdesc_powerpc_altivec64l)
(tdesc_powerpc_cell64l, tdesc_powerpc_vsx64l)
(tdesc_powerpc_isa205_64l, tdesc_powerpc_isa205_altivec64l)
(tdesc_powerpc_isa205_vsx64l): Declare.
(ppc_cannot_store_register, ppc_collect_ptrace_register)
(ppc_supply_ptrace_register, parse_spufs_run, ppc_get_pc)
(ppc_set_pc, ppc_get_hwcap): Adjust.
(ppc_usrregs_info): Forward declare.
(!__powerpc64__) ppc_regmap_adjusted: New global.
(ppc_arch_setup): Adjust to the current process'es target
description.
(ppc_fill_vsxregset, ppc_store_vsxregset, ppc_fill_vrregset)
(ppc_store_vrregset, ppc_fill_evrregset, ppc_store_evrregse)
(ppc_store_evrregset): Adjust.
(target_regsets): Rename to ...
(ppc_regsets): ... this, and make static.
(ppc_usrregs_info, ppc_regsets_info, regs_info): New globals.
(ppc_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-s390-low.c (tdesc_s390_linux32, tdesc_s390_linux32v1)
(tdesc_s390_linux32v2, tdesc_s390_linux64, tdesc_s390_linux64v1)
(tdesc_s390_linux64v2, tdesc_s390x_linux64, tdesc_s390x_linux64v1)
(tdesc_s390x_linux64v2): Declare.
(s390_collect_ptrace_register, s390_supply_ptrace_register)
(s390_fill_gregset, s390_store_last_break): Adjust.
(target_regsets): Rename to ...
(s390_regsets): ... this, and make static.
(s390_get_pc, s390_set_pc): Adjust.
(s390_get_hwcap): New target_desc parameter, and use it.
[__s390x__] (have_hwcap_s390_high_gprs): New global.
(s390_arch_setup): Adjust to set the current process'es target
description. Don't adjust the regmap.
(s390_usrregs_info, s390_regsets_info, regs_info): New globals.
[__s390x__] (s390_usrregs_info_3264, s390_regsets_info_3264)
(regs_info_3264): New globals.
(s390_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-mips-low.c (tdesc_mips_linux, tdesc_mips_dsp_linux)
(tdesc_mips64_linux, tdesc_mips64_dsp_linux): Declare.
[__mips64] (init_registers_mips_linux)
(init_registers_mips_dsp_linux): Delete defines.
[__mips64] (tdesc_mips_linux, tdesc_mips_dsp_linux): New defines.
(have_dsp): New global.
(mips_read_description): New, based on mips_arch_setup.
(mips_arch_setup): Reimplement.
(get_usrregs_info): New function.
(mips_cannot_fetch_register, mips_cannot_store_register)
(mips_get_pc, mips_set_pc, mips_fill_gregset, mips_store_gregset)
(mips_fill_fpregset, mips_store_fpregset): Adjust.
(target_regsets): Rename to ...
(mips_regsets): ... this, and make static.
(mips_regsets_info, mips_dsp_usrregs_info, mips_usrregs_info)
(dsp_regs_info, regs_info): New globals.
(mips_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-arm-low.c (tdesc_arm, tdesc_arm_with_iwmmxt)
(tdesc_arm_with_vfpv2, tdesc_arm_with_vfpv3, tdesc_arm_with_neon):
Declare.
(arm_fill_vfpregset, arm_store_vfpregset): Adjust.
(arm_read_description): New, with bits factored from
arm_arch_setup.
(arm_arch_setup): Reimplement.
(target_regsets): Rename to ...
(arm_regsets): ... this, and make static.
(arm_regsets_info, arm_usrregs_info, regs_info): New globals.
(arm_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-m68k-low.c (tdesc_m68k): Declare.
(target_regsets): Rename to ...
(m68k_regsets): ... this, and make static.
(m68k_regsets_info, m68k_usrregs_info, regs_info): New globals.
(m68k_regs_info): New function.
(m68k_arch_setup): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-sh-low.c (tdesc_sharch): Declare.
(target_regsets): Rename to ...
(sh_regsets): ... this, and make static.
(sh_regsets_info, sh_usrregs_info, regs_info): New globals.
(sh_regs_info, sh_arch_setup): New functions.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-bfin-low.c (tdesc_bfin): Declare.
(bfin_arch_setup): New function.
(bfin_usrregs_info, regs_info): New globals.
(bfin_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-cris-low.c (tdesc_cris): Declare.
(cris_arch_setup): New function.
(cris_usrregs_info, regs_info): New globals.
(cris_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-cris-low.c (tdesc_crisv32): Declare.
(cris_arch_setup): New function.
(cris_regsets_info, cris_usrregs_info, regs_info): New globals.
(cris_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-m32r-low.c (tdesc_m32r): Declare.
(m32r_arch_setup): New function.
(m32r_usrregs_info, regs_info): New globals.
(m32r_regs_info): Adjust.
(initialize_low_arch): New function.
* linux-tic6x-low.c (tdesc_tic6x_c64xp_linux)
(tdesc_tic6x_c64x_linux, tdesc_tic6x_c62x_linux): Declare.
(tic6x_usrregs_info): Forward declare.
(tic6x_read_description): New function, based on ...
(tic6x_arch_setup): ... this. Reimplement.
(target_regsets): Rename to ...
(tic6x_regsets): ... this, and make static.
(tic6x_regsets_info, tic6x_usrregs_info, regs_info): New globals.
(tic6x_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-xtensa-low.c (tdesc_xtensa): Declare.
(xtensa_fill_gregset, xtensa_store_gregset): Adjust.
(target_regsets): Rename to ...
(xtensa_regsets): ... this, and make static.
(xtensa_regsets_info, xtensa_usrregs_info, regs_info): New
globals.
(xtensa_arch_setup, xtensa_regs_info): New functions.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-nios2-low.c (tdesc_nios2_linux): Declare.
(nios2_arch_setup): Set the current process'es tdesc.
(target_regsets): Rename to ...
(nios2_regsets): ... this.
(nios2_regsets_info, nios2_usrregs_info, regs_info): New globals.
(nios2_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-aarch64-low.c (tdesc_aarch64): Declare.
(aarch64_arch_setup): Set the current process'es tdesc.
(target_regsets): Rename to ...
(aarch64_regsets): ... this.
(aarch64_regsets_info, aarch64_usrregs_info, regs_info): New globals.
(aarch64_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-tile-low.c (tdesc_tilegx, tdesc_tilegx32): Declare
globals.
(target_regsets): Rename to ...
(tile_regsets): ... this.
(tile_regsets_info, tile_usrregs_info, regs_info): New globals.
(tile_regs_info): New function.
(tile_arch_setup): Set the current process'es tdesc.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* spu-low.c (tdesc_spu): Declare.
(spu_create_inferior, spu_attach): Set the new process'es tdesc.
* win32-arm-low.c (tdesc_arm): Declare.
(arm_arch_setup): New function.
(the_low_target): Install arm_arch_setup instead of
init_registers_arm.
* win32-i386-low.c (tdesc_i386, tdesc_amd64): Declare.
(init_windows_x86): Rename to ...
(i386_arch_setup): ... this. Set `win32_tdesc'.
(the_low_target): Adjust.
* win32-low.c (win32_tdesc): New global.
(child_add_thread): Don't create the thread cache here.
(do_initial_child_stuff): Set the new process'es tdesc.
* win32-low.h (struct target_desc): Forward declare.
(win32_tdesc): Declare.
* lynx-i386-low.c (tdesc_i386): Declare global.
(lynx_i386_arch_setup): Set `lynx_tdesc'.
* lynx-low.c (lynx_tdesc): New global.
(lynx_add_process): Set the new process'es tdesc.
* lynx-low.h (struct target_desc): Forward declare.
(lynx_tdesc): Declare global.
* lynx-ppc-low.c (tdesc_powerpc_32): Declare global.
(lynx_ppc_arch_setup): Set `lynx_tdesc'.
* nto-low.c (nto_tdesc): New global.
(do_attach): Set the new process'es tdesc.
* nto-low.h (struct target_desc): Forward declare.
(nto_tdesc): Declare.
* nto-x86-low.c (tdesc_i386): Declare.
(nto_x86_arch_setup): Set `nto_tdesc'.
gdb/
2013-06-07 Pedro Alves <palves@redhat.com>
* regformats/regdat.sh: Output #include tdesc.h. Make globals
static. Output a global target description pointer.
(init_registers_${name}): Adjust to initialize a
target description structure.
2013-06-07 10:46:59 +00:00
|
|
|
static const struct regs_info *
|
|
|
|
aarch64_regs_info (void)
|
|
|
|
{
|
2015-08-04 13:34:14 +00:00
|
|
|
if (is_64bit_tdesc ())
|
|
|
|
return ®s_info_aarch64;
|
|
|
|
else
|
|
|
|
return ®s_info_aarch32;
|
[GDBserver] Multi-process + multi-arch
This patch makes GDBserver support multi-process + biarch.
Currently, if you're debugging more than one process at once with a
single gdbserver (in extended-remote mode), then all processes must
have the same architecture (e.g., 64-bit vs 32-bit). Otherwise, you
see this:
Added inferior 2
[Switching to inferior 2 [<null>] (<noexec>)]
Reading symbols from /home/pedro/gdb/tests/main32...done.
Temporary breakpoint 2 at 0x4004cf: main. (2 locations)
Starting program: /home/pedro/gdb/tests/main32
warning: Selected architecture i386 is not compatible with reported target architecture i386:x86-64
warning: Architecture rejected target-supplied description
Remote 'g' packet reply is too long: 000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000090cfffff0000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000000000000000000b042f7460000000000020000230000002b0000002b0000002b000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000007f03000000000000ffff0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000801f00003b0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
... etc, etc ...
Even though the process was running a 32-bit program, GDBserver sent
back to GDB a register set in 64-bit layout.
A patch (http://sourceware.org/ml/gdb-patches/2012-11/msg00228.html) a
while ago made GDB track a target_gdbarch per inferior, and as
consequence, fetch a target description per-inferior. This patch is
the GDBserver counterpart, that makes GDBserver keep track of each
process'es XML target description and register layout. So in the
example above, GDBserver will send the correct register set in 32-bit
layout to GDB.
A new "struct target_desc" object (tdesc for short) is added, that
holds the target description and register layout information about
each process. Each `struct process_info' holds a pointer to a target
description. The regcache also gains a pointer to a target
description, mainly for convenience, and parallel with GDB (and
possible future support for programs that flip processor modes).
The low target's arch_setup routines are responsible for setting the
process'es correct tdesc. This isn't that much different to how
things were done before, except that instead of detecting the inferior
process'es architecture and calling the corresponding
init_registers_FOO routine, which would change the regcache layout
globals and recreate the threads' regcaches, the regcache.c globals
are gone, and the init_registers_$BAR routines now each initialize a
separate global struct target_desc object (one for each arch variant
GDBserver supports), and so all the init_registers_$BAR routines that
are built into GDBserver are called early at GDBserver startup time
(similarly to how GDB handles its built-in target descriptions), and
then the arch_setup routine is responsible for making
process_info->tdesc point to one of these target description globals.
The regcache module is all parameterized to get the regcache's layout
from the tdesc object instead of the old register_bytes, etc. globals.
The threads' regcaches are now created lazily. The old scheme where
we created each of them when we added a new thread doesn't work
anymore, because we add the main thread/lwp before we see it stop for
the first time, and it is only when we see the thread stop for the
first time that we have a chance of determining the inferior's
architecture (through the_low_target.arch_setup). Therefore when we
add the main thread we don't know which architecture/tdesc its
regcache should have.
This patch makes the gdb.multi/multi-arch.exp test now pass against
(extended-remote) GDBserver. It currently fails, without this patch.
The IPA also uses the regcache, so it gains a new global struct
target_desc pointer, which points at the description of the process it
is loaded in.
Re. the linux-low.c & friends changes. Since the register map
etc. may differ between processes (64-bit vs 32-bit) etc., the
linux_target_ops num_regs, regmap and regset_bitmap data fields are no
longer sufficient. A new method is added in their place that returns
a pointer to a new struct that includes all info linux-low.c needs to
access registers of the current inferior.
The patch/discussion that originally introduced
linux-low.c:disabled_regsets mentions that the disabled_regsets set
may be different per mode (in a biarch setup), and indeed that is
cleared whenever we start a new (first) inferior, so that global is
moved as well behind the new `struct regs_info'.
On the x86 side:
I simply replaced the i387-fp.c:num_xmm_registers global with a check
for 64-bit or 32-bit process, which is equivalent to how the global
was set. This avoided coming up with some more general mechanism that
would work for all targets that use this module (GNU/Linux, Windows,
etc.).
Tested:
GNU/Linux IA64
GNU/Linux MIPS64
GNU/Linux PowerPC (Fedora 16)
GNU/Linux s390x (Fedora 16)
GNU/Linux sparc64 (Debian)
GNU/Linux x86_64, -m64 and -m32 (Fedora 17)
Cross built, and smoke tested:
i686-w64-mingw32, under Wine.
GNU/Linux TI C6x, by Yao Qi.
Cross built but otherwise not tested:
aarch64-linux-gnu
arm-linux-gnu
m68k-linux
nios2-linux-gnu
sh-linux-gnu
spu
tilegx-unknown-linux-gnu
Completely untested:
GNU/Linux Blackfin
GNU/Linux CRIS
GNU/Linux CRISv32
GNU/Linux TI Xtensa
GNU/Linux M32R
LynxOS
QNX NTO
gdb/gdbserver/
2013-06-07 Pedro Alves <palves@redhat.com>
* Makefile.in (OBS): Add tdesc.o.
(IPA_OBJS): Add tdesc-ipa.o.
(tdesc-ipa.o): New rule.
* ax.c (gdb_eval_agent_expr): Adjust register_size call to new
interface.
* linux-low.c (new_inferior): Delete.
(disabled_regsets, num_regsets): Delete.
(linux_add_process): Adjust to set the new per-process
new_inferior flag.
(linux_detach_one_lwp): Adjust to call regcache_invalidate_thread.
(linux_wait_for_lwp): Adjust. Only call arch_setup if the event
was a stop. When calling arch_setup, switch the current inferior
to the thread that got an event.
(linux_resume_one_lwp): Adjust to call regcache_invalidate_thread.
(regsets_fetch_inferior_registers)
(regsets_store_inferior_registers): New regsets_info parameter.
Adjust to use it.
(linux_register_in_regsets): New regs_info parameter. Adjust to
use it.
(register_addr, fetch_register, store_register): New usrregs_info
parameter. Adjust to use it.
(usr_fetch_inferior_registers, usr_store_inferior_registers): New
parameter regs_info. Adjust to use it.
(linux_fetch_registers): Get the current inferior's regs_info, and
adjust to use it.
(linux_store_registers): Ditto.
[HAVE_LINUX_REGSETS] (initialize_regsets_info): New.
(initialize_low): Don't initialize the target_regsets here. Call
initialize_low_arch.
* linux-low.h (target_regsets): Delete declaration.
(struct regsets_info): New.
(struct usrregs_info): New.
(struct regs_info): New.
(struct process_info_private) <new_inferior>: New field.
(struct linux_target_ops): Delete the num_regs, regmap, and
regset_bitmap fields. New field regs_info.
[HAVE_LINUX_REGSETS] (initialize_regsets_info): Declare.
* i387-fp.c (num_xmm_registers): Delete.
(i387_cache_to_fsave, i387_fsave_to_cache): Adjust find_regno
calls to new interface.
(i387_cache_to_fxsave, i387_cache_to_xsave, i387_fxsave_to_cache)
(i387_xsave_to_cache): Adjust find_regno calls to new interface.
Infer the number of xmm registers from the regcache's target
description.
* i387-fp.h (num_xmm_registers): Delete.
* inferiors.c (add_thread): Don't install the thread's regcache
here.
* proc-service.c (gregset_info): Fetch the current inferior's
regs_info. Adjust to use it.
* regcache.c: Include tdesc.h.
(register_bytes, reg_defs, num_registers)
(gdbserver_expedite_regs): Delete.
(get_thread_regcache): If the thread doesn't have a regcache yet,
create one, instead of aborting gdbserver.
(regcache_invalidate_one): Rename to ...
(regcache_invalidate_thread): ... this.
(regcache_invalidate_one): New.
(regcache_invalidate): Only invalidate registers of the current
process.
(init_register_cache): Add target_desc parameter, and use it.
(new_register_cache): Ditto. Assert the target description has a
non zero registers_size.
(regcache_cpy): Add assertions. Adjust.
(realloc_register_cache, set_register_cache): Delete.
(registers_to_string, registers_from_string): Adjust.
(find_register_by_name, find_regno, find_register_by_number)
(register_cache_size): Add target_desc parameter, and use it.
(free_register_cache_thread, free_register_cache_thread_one)
(regcache_release, register_cache_size): New.
(register_size): Add target_desc parameter, and use it.
(register_data, supply_register, supply_register_zeroed)
(supply_regblock, supply_register_by_name, collect_register)
(collect_register_as_string, collect_register_by_name): Adjust.
* regcache.h (struct target_desc): Forward declare.
(struct regcache) <tdesc>: New field.
(init_register_cache, new_register_cache): Add target_desc
parameter.
(regcache_invalidate_thread): Declare.
(regcache_invalidate_one): Delete declaration.
(regcache_release): Declare.
(find_register_by_number, register_cache_size, register_size)
(find_regno): Add target_desc parameter.
(gdbserver_expedite_regs, gdbserver_xmltarget): Delete
declarations.
* remote-utils.c: Include tdesc.h.
(outreg, prepare_resume_reply): Adjust.
* server.c: Include tdesc.h.
(gdbserver_xmltarget): Delete declaration.
(get_features_xml, process_serial_event): Adjust.
* server.h [IN_PROCESS_AGENT] (struct target_desc): Forward
declare.
(struct process_info) <tdesc>: New field.
(ipa_tdesc): Declare.
* tdesc.c: New file.
* tdesc.h: New file.
* tracepoint.c: Include tdesc.h.
[IN_PROCESS_AGENT] (ipa_tdesc): Define.
(get_context_regcache): Adjust to pass ipa_tdesc down.
(do_action_at_tracepoint): Adjust to get the register cache size
from the context regcache's description.
(traceframe_walk_blocks): Adjust to get the register cache size
from the current trace frame's description.
(traceframe_get_pc): Adjust to get current trace frame's
description and pass it down.
(gdb_collect): Adjust to get the register cache size from the
IPA's description.
* linux-amd64-ipa.c (tdesc_amd64_linux): Declare.
(gdbserver_xmltarget): Delete.
(initialize_low_tracepoint): Set the ipa's target description.
* linux-i386-ipa.c (tdesc_i386_linux): Declare.
(initialize_low_tracepoint): Set the ipa's target description.
* linux-x86-low.c: Include tdesc.h.
[__x86_64__] (is_64bit_tdesc): New.
(ps_get_thread_area, x86_get_thread_area): Use it.
(i386_cannot_store_register): Rename to ...
(x86_cannot_store_register): ... this. Use is_64bit_tdesc.
(i386_cannot_fetch_register): Rename to ...
(x86_cannot_fetch_register): ... this. Use is_64bit_tdesc.
(x86_fill_gregset, x86_store_gregset): Adjust register_size calls
to new interface.
(target_regsets): Rename to ...
(x86_regsets): ... this.
(x86_get_pc, x86_set_pc): Adjust register_size calls to new
interface.
(x86_siginfo_fixup): Use is_64bit_tdesc.
[__x86_64__] (tdesc_amd64_linux, tdesc_amd64_avx_linux)
(tdesc_x32_avx_linux, tdesc_x32_linux)
(tdesc_i386_linux, tdesc_i386_mmx_linux, tdesc_i386_avx_linux):
Declare.
(x86_linux_update_xmltarget): Delete.
(I386_LINUX_XSAVE_XCR0_OFFSET): Define.
(have_ptrace_getfpxregs, have_ptrace_getregset): New.
(AMD64_LINUX_USER64_CS): New.
(x86_linux_read_description): New, based on
x86_linux_update_xmltarget.
(same_process_callback): New.
(x86_arch_setup_process_callback): New.
(x86_linux_update_xmltarget): New.
(x86_regsets_info): New.
(amd64_linux_regs_info): New.
(i386_linux_usrregs_info): New.
(i386_linux_regs_info): New.
(x86_linux_regs_info): New.
(x86_arch_setup): Reimplement.
(x86_install_fast_tracepoint_jump_pad): Use is_64bit_tdesc.
(x86_emit_ops): Ditto.
(the_low_target): Adjust. Install x86_linux_regs_info,
x86_cannot_fetch_register, and x86_cannot_store_register.
(initialize_low_arch): New.
* linux-ia64-low.c (tdesc_ia64): Declare.
(ia64_fetch_register): Adjust.
(ia64_usrregs_info, regs_info): New globals.
(ia64_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-sparc-low.c (tdesc_sparc64): Declare.
(sparc_fill_gregset_to_stack, sparc_store_gregset_from_stack):
Adjust.
(sparc_arch_setup): New function.
(sparc_regsets_info, sparc_usrregs_info, regs_info): New globals.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-ppc-low.c (tdesc_powerpc_32l, tdesc_powerpc_altivec32l)
(tdesc_powerpc_cell32l, tdesc_powerpc_vsx32l)
(tdesc_powerpc_isa205_32l, tdesc_powerpc_isa205_altivec32l)
(tdesc_powerpc_isa205_vsx32l, tdesc_powerpc_e500l)
(tdesc_powerpc_64l, tdesc_powerpc_altivec64l)
(tdesc_powerpc_cell64l, tdesc_powerpc_vsx64l)
(tdesc_powerpc_isa205_64l, tdesc_powerpc_isa205_altivec64l)
(tdesc_powerpc_isa205_vsx64l): Declare.
(ppc_cannot_store_register, ppc_collect_ptrace_register)
(ppc_supply_ptrace_register, parse_spufs_run, ppc_get_pc)
(ppc_set_pc, ppc_get_hwcap): Adjust.
(ppc_usrregs_info): Forward declare.
(!__powerpc64__) ppc_regmap_adjusted: New global.
(ppc_arch_setup): Adjust to the current process'es target
description.
(ppc_fill_vsxregset, ppc_store_vsxregset, ppc_fill_vrregset)
(ppc_store_vrregset, ppc_fill_evrregset, ppc_store_evrregse)
(ppc_store_evrregset): Adjust.
(target_regsets): Rename to ...
(ppc_regsets): ... this, and make static.
(ppc_usrregs_info, ppc_regsets_info, regs_info): New globals.
(ppc_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-s390-low.c (tdesc_s390_linux32, tdesc_s390_linux32v1)
(tdesc_s390_linux32v2, tdesc_s390_linux64, tdesc_s390_linux64v1)
(tdesc_s390_linux64v2, tdesc_s390x_linux64, tdesc_s390x_linux64v1)
(tdesc_s390x_linux64v2): Declare.
(s390_collect_ptrace_register, s390_supply_ptrace_register)
(s390_fill_gregset, s390_store_last_break): Adjust.
(target_regsets): Rename to ...
(s390_regsets): ... this, and make static.
(s390_get_pc, s390_set_pc): Adjust.
(s390_get_hwcap): New target_desc parameter, and use it.
[__s390x__] (have_hwcap_s390_high_gprs): New global.
(s390_arch_setup): Adjust to set the current process'es target
description. Don't adjust the regmap.
(s390_usrregs_info, s390_regsets_info, regs_info): New globals.
[__s390x__] (s390_usrregs_info_3264, s390_regsets_info_3264)
(regs_info_3264): New globals.
(s390_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-mips-low.c (tdesc_mips_linux, tdesc_mips_dsp_linux)
(tdesc_mips64_linux, tdesc_mips64_dsp_linux): Declare.
[__mips64] (init_registers_mips_linux)
(init_registers_mips_dsp_linux): Delete defines.
[__mips64] (tdesc_mips_linux, tdesc_mips_dsp_linux): New defines.
(have_dsp): New global.
(mips_read_description): New, based on mips_arch_setup.
(mips_arch_setup): Reimplement.
(get_usrregs_info): New function.
(mips_cannot_fetch_register, mips_cannot_store_register)
(mips_get_pc, mips_set_pc, mips_fill_gregset, mips_store_gregset)
(mips_fill_fpregset, mips_store_fpregset): Adjust.
(target_regsets): Rename to ...
(mips_regsets): ... this, and make static.
(mips_regsets_info, mips_dsp_usrregs_info, mips_usrregs_info)
(dsp_regs_info, regs_info): New globals.
(mips_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-arm-low.c (tdesc_arm, tdesc_arm_with_iwmmxt)
(tdesc_arm_with_vfpv2, tdesc_arm_with_vfpv3, tdesc_arm_with_neon):
Declare.
(arm_fill_vfpregset, arm_store_vfpregset): Adjust.
(arm_read_description): New, with bits factored from
arm_arch_setup.
(arm_arch_setup): Reimplement.
(target_regsets): Rename to ...
(arm_regsets): ... this, and make static.
(arm_regsets_info, arm_usrregs_info, regs_info): New globals.
(arm_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-m68k-low.c (tdesc_m68k): Declare.
(target_regsets): Rename to ...
(m68k_regsets): ... this, and make static.
(m68k_regsets_info, m68k_usrregs_info, regs_info): New globals.
(m68k_regs_info): New function.
(m68k_arch_setup): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-sh-low.c (tdesc_sharch): Declare.
(target_regsets): Rename to ...
(sh_regsets): ... this, and make static.
(sh_regsets_info, sh_usrregs_info, regs_info): New globals.
(sh_regs_info, sh_arch_setup): New functions.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-bfin-low.c (tdesc_bfin): Declare.
(bfin_arch_setup): New function.
(bfin_usrregs_info, regs_info): New globals.
(bfin_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-cris-low.c (tdesc_cris): Declare.
(cris_arch_setup): New function.
(cris_usrregs_info, regs_info): New globals.
(cris_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-cris-low.c (tdesc_crisv32): Declare.
(cris_arch_setup): New function.
(cris_regsets_info, cris_usrregs_info, regs_info): New globals.
(cris_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-m32r-low.c (tdesc_m32r): Declare.
(m32r_arch_setup): New function.
(m32r_usrregs_info, regs_info): New globals.
(m32r_regs_info): Adjust.
(initialize_low_arch): New function.
* linux-tic6x-low.c (tdesc_tic6x_c64xp_linux)
(tdesc_tic6x_c64x_linux, tdesc_tic6x_c62x_linux): Declare.
(tic6x_usrregs_info): Forward declare.
(tic6x_read_description): New function, based on ...
(tic6x_arch_setup): ... this. Reimplement.
(target_regsets): Rename to ...
(tic6x_regsets): ... this, and make static.
(tic6x_regsets_info, tic6x_usrregs_info, regs_info): New globals.
(tic6x_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-xtensa-low.c (tdesc_xtensa): Declare.
(xtensa_fill_gregset, xtensa_store_gregset): Adjust.
(target_regsets): Rename to ...
(xtensa_regsets): ... this, and make static.
(xtensa_regsets_info, xtensa_usrregs_info, regs_info): New
globals.
(xtensa_arch_setup, xtensa_regs_info): New functions.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-nios2-low.c (tdesc_nios2_linux): Declare.
(nios2_arch_setup): Set the current process'es tdesc.
(target_regsets): Rename to ...
(nios2_regsets): ... this.
(nios2_regsets_info, nios2_usrregs_info, regs_info): New globals.
(nios2_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-aarch64-low.c (tdesc_aarch64): Declare.
(aarch64_arch_setup): Set the current process'es tdesc.
(target_regsets): Rename to ...
(aarch64_regsets): ... this.
(aarch64_regsets_info, aarch64_usrregs_info, regs_info): New globals.
(aarch64_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-tile-low.c (tdesc_tilegx, tdesc_tilegx32): Declare
globals.
(target_regsets): Rename to ...
(tile_regsets): ... this.
(tile_regsets_info, tile_usrregs_info, regs_info): New globals.
(tile_regs_info): New function.
(tile_arch_setup): Set the current process'es tdesc.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* spu-low.c (tdesc_spu): Declare.
(spu_create_inferior, spu_attach): Set the new process'es tdesc.
* win32-arm-low.c (tdesc_arm): Declare.
(arm_arch_setup): New function.
(the_low_target): Install arm_arch_setup instead of
init_registers_arm.
* win32-i386-low.c (tdesc_i386, tdesc_amd64): Declare.
(init_windows_x86): Rename to ...
(i386_arch_setup): ... this. Set `win32_tdesc'.
(the_low_target): Adjust.
* win32-low.c (win32_tdesc): New global.
(child_add_thread): Don't create the thread cache here.
(do_initial_child_stuff): Set the new process'es tdesc.
* win32-low.h (struct target_desc): Forward declare.
(win32_tdesc): Declare.
* lynx-i386-low.c (tdesc_i386): Declare global.
(lynx_i386_arch_setup): Set `lynx_tdesc'.
* lynx-low.c (lynx_tdesc): New global.
(lynx_add_process): Set the new process'es tdesc.
* lynx-low.h (struct target_desc): Forward declare.
(lynx_tdesc): Declare global.
* lynx-ppc-low.c (tdesc_powerpc_32): Declare global.
(lynx_ppc_arch_setup): Set `lynx_tdesc'.
* nto-low.c (nto_tdesc): New global.
(do_attach): Set the new process'es tdesc.
* nto-low.h (struct target_desc): Forward declare.
(nto_tdesc): Declare.
* nto-x86-low.c (tdesc_i386): Declare.
(nto_x86_arch_setup): Set `nto_tdesc'.
gdb/
2013-06-07 Pedro Alves <palves@redhat.com>
* regformats/regdat.sh: Output #include tdesc.h. Make globals
static. Output a global target description pointer.
(init_registers_${name}): Adjust to initialize a
target description structure.
2013-06-07 10:46:59 +00:00
|
|
|
}
|
|
|
|
|
2015-07-09 15:35:11 +00:00
|
|
|
/* Implementation of linux_target_ops method "supports_tracepoints". */
|
|
|
|
|
|
|
|
static int
|
|
|
|
aarch64_supports_tracepoints (void)
|
|
|
|
{
|
2015-08-04 13:34:14 +00:00
|
|
|
if (current_thread == NULL)
|
|
|
|
return 1;
|
|
|
|
else
|
|
|
|
{
|
|
|
|
/* We don't support tracepoints on aarch32 now. */
|
|
|
|
return is_64bit_tdesc ();
|
|
|
|
}
|
2015-07-09 15:35:11 +00:00
|
|
|
}
|
|
|
|
|
2015-07-15 13:58:32 +00:00
|
|
|
/* Implementation of linux_target_ops method "supports_range_stepping". */
|
|
|
|
|
|
|
|
static int
|
|
|
|
aarch64_supports_range_stepping (void)
|
|
|
|
{
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
2013-02-04 18:20:05 +00:00
|
|
|
struct linux_target_ops the_low_target =
|
|
|
|
{
|
|
|
|
aarch64_arch_setup,
|
[GDBserver] Multi-process + multi-arch
This patch makes GDBserver support multi-process + biarch.
Currently, if you're debugging more than one process at once with a
single gdbserver (in extended-remote mode), then all processes must
have the same architecture (e.g., 64-bit vs 32-bit). Otherwise, you
see this:
Added inferior 2
[Switching to inferior 2 [<null>] (<noexec>)]
Reading symbols from /home/pedro/gdb/tests/main32...done.
Temporary breakpoint 2 at 0x4004cf: main. (2 locations)
Starting program: /home/pedro/gdb/tests/main32
warning: Selected architecture i386 is not compatible with reported target architecture i386:x86-64
warning: Architecture rejected target-supplied description
Remote 'g' packet reply is too long: 000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000090cfffff0000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000000000000000000b042f7460000000000020000230000002b0000002b0000002b000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000007f03000000000000ffff0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000801f00003b0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
... etc, etc ...
Even though the process was running a 32-bit program, GDBserver sent
back to GDB a register set in 64-bit layout.
A patch (http://sourceware.org/ml/gdb-patches/2012-11/msg00228.html) a
while ago made GDB track a target_gdbarch per inferior, and as
consequence, fetch a target description per-inferior. This patch is
the GDBserver counterpart, that makes GDBserver keep track of each
process'es XML target description and register layout. So in the
example above, GDBserver will send the correct register set in 32-bit
layout to GDB.
A new "struct target_desc" object (tdesc for short) is added, that
holds the target description and register layout information about
each process. Each `struct process_info' holds a pointer to a target
description. The regcache also gains a pointer to a target
description, mainly for convenience, and parallel with GDB (and
possible future support for programs that flip processor modes).
The low target's arch_setup routines are responsible for setting the
process'es correct tdesc. This isn't that much different to how
things were done before, except that instead of detecting the inferior
process'es architecture and calling the corresponding
init_registers_FOO routine, which would change the regcache layout
globals and recreate the threads' regcaches, the regcache.c globals
are gone, and the init_registers_$BAR routines now each initialize a
separate global struct target_desc object (one for each arch variant
GDBserver supports), and so all the init_registers_$BAR routines that
are built into GDBserver are called early at GDBserver startup time
(similarly to how GDB handles its built-in target descriptions), and
then the arch_setup routine is responsible for making
process_info->tdesc point to one of these target description globals.
The regcache module is all parameterized to get the regcache's layout
from the tdesc object instead of the old register_bytes, etc. globals.
The threads' regcaches are now created lazily. The old scheme where
we created each of them when we added a new thread doesn't work
anymore, because we add the main thread/lwp before we see it stop for
the first time, and it is only when we see the thread stop for the
first time that we have a chance of determining the inferior's
architecture (through the_low_target.arch_setup). Therefore when we
add the main thread we don't know which architecture/tdesc its
regcache should have.
This patch makes the gdb.multi/multi-arch.exp test now pass against
(extended-remote) GDBserver. It currently fails, without this patch.
The IPA also uses the regcache, so it gains a new global struct
target_desc pointer, which points at the description of the process it
is loaded in.
Re. the linux-low.c & friends changes. Since the register map
etc. may differ between processes (64-bit vs 32-bit) etc., the
linux_target_ops num_regs, regmap and regset_bitmap data fields are no
longer sufficient. A new method is added in their place that returns
a pointer to a new struct that includes all info linux-low.c needs to
access registers of the current inferior.
The patch/discussion that originally introduced
linux-low.c:disabled_regsets mentions that the disabled_regsets set
may be different per mode (in a biarch setup), and indeed that is
cleared whenever we start a new (first) inferior, so that global is
moved as well behind the new `struct regs_info'.
On the x86 side:
I simply replaced the i387-fp.c:num_xmm_registers global with a check
for 64-bit or 32-bit process, which is equivalent to how the global
was set. This avoided coming up with some more general mechanism that
would work for all targets that use this module (GNU/Linux, Windows,
etc.).
Tested:
GNU/Linux IA64
GNU/Linux MIPS64
GNU/Linux PowerPC (Fedora 16)
GNU/Linux s390x (Fedora 16)
GNU/Linux sparc64 (Debian)
GNU/Linux x86_64, -m64 and -m32 (Fedora 17)
Cross built, and smoke tested:
i686-w64-mingw32, under Wine.
GNU/Linux TI C6x, by Yao Qi.
Cross built but otherwise not tested:
aarch64-linux-gnu
arm-linux-gnu
m68k-linux
nios2-linux-gnu
sh-linux-gnu
spu
tilegx-unknown-linux-gnu
Completely untested:
GNU/Linux Blackfin
GNU/Linux CRIS
GNU/Linux CRISv32
GNU/Linux TI Xtensa
GNU/Linux M32R
LynxOS
QNX NTO
gdb/gdbserver/
2013-06-07 Pedro Alves <palves@redhat.com>
* Makefile.in (OBS): Add tdesc.o.
(IPA_OBJS): Add tdesc-ipa.o.
(tdesc-ipa.o): New rule.
* ax.c (gdb_eval_agent_expr): Adjust register_size call to new
interface.
* linux-low.c (new_inferior): Delete.
(disabled_regsets, num_regsets): Delete.
(linux_add_process): Adjust to set the new per-process
new_inferior flag.
(linux_detach_one_lwp): Adjust to call regcache_invalidate_thread.
(linux_wait_for_lwp): Adjust. Only call arch_setup if the event
was a stop. When calling arch_setup, switch the current inferior
to the thread that got an event.
(linux_resume_one_lwp): Adjust to call regcache_invalidate_thread.
(regsets_fetch_inferior_registers)
(regsets_store_inferior_registers): New regsets_info parameter.
Adjust to use it.
(linux_register_in_regsets): New regs_info parameter. Adjust to
use it.
(register_addr, fetch_register, store_register): New usrregs_info
parameter. Adjust to use it.
(usr_fetch_inferior_registers, usr_store_inferior_registers): New
parameter regs_info. Adjust to use it.
(linux_fetch_registers): Get the current inferior's regs_info, and
adjust to use it.
(linux_store_registers): Ditto.
[HAVE_LINUX_REGSETS] (initialize_regsets_info): New.
(initialize_low): Don't initialize the target_regsets here. Call
initialize_low_arch.
* linux-low.h (target_regsets): Delete declaration.
(struct regsets_info): New.
(struct usrregs_info): New.
(struct regs_info): New.
(struct process_info_private) <new_inferior>: New field.
(struct linux_target_ops): Delete the num_regs, regmap, and
regset_bitmap fields. New field regs_info.
[HAVE_LINUX_REGSETS] (initialize_regsets_info): Declare.
* i387-fp.c (num_xmm_registers): Delete.
(i387_cache_to_fsave, i387_fsave_to_cache): Adjust find_regno
calls to new interface.
(i387_cache_to_fxsave, i387_cache_to_xsave, i387_fxsave_to_cache)
(i387_xsave_to_cache): Adjust find_regno calls to new interface.
Infer the number of xmm registers from the regcache's target
description.
* i387-fp.h (num_xmm_registers): Delete.
* inferiors.c (add_thread): Don't install the thread's regcache
here.
* proc-service.c (gregset_info): Fetch the current inferior's
regs_info. Adjust to use it.
* regcache.c: Include tdesc.h.
(register_bytes, reg_defs, num_registers)
(gdbserver_expedite_regs): Delete.
(get_thread_regcache): If the thread doesn't have a regcache yet,
create one, instead of aborting gdbserver.
(regcache_invalidate_one): Rename to ...
(regcache_invalidate_thread): ... this.
(regcache_invalidate_one): New.
(regcache_invalidate): Only invalidate registers of the current
process.
(init_register_cache): Add target_desc parameter, and use it.
(new_register_cache): Ditto. Assert the target description has a
non zero registers_size.
(regcache_cpy): Add assertions. Adjust.
(realloc_register_cache, set_register_cache): Delete.
(registers_to_string, registers_from_string): Adjust.
(find_register_by_name, find_regno, find_register_by_number)
(register_cache_size): Add target_desc parameter, and use it.
(free_register_cache_thread, free_register_cache_thread_one)
(regcache_release, register_cache_size): New.
(register_size): Add target_desc parameter, and use it.
(register_data, supply_register, supply_register_zeroed)
(supply_regblock, supply_register_by_name, collect_register)
(collect_register_as_string, collect_register_by_name): Adjust.
* regcache.h (struct target_desc): Forward declare.
(struct regcache) <tdesc>: New field.
(init_register_cache, new_register_cache): Add target_desc
parameter.
(regcache_invalidate_thread): Declare.
(regcache_invalidate_one): Delete declaration.
(regcache_release): Declare.
(find_register_by_number, register_cache_size, register_size)
(find_regno): Add target_desc parameter.
(gdbserver_expedite_regs, gdbserver_xmltarget): Delete
declarations.
* remote-utils.c: Include tdesc.h.
(outreg, prepare_resume_reply): Adjust.
* server.c: Include tdesc.h.
(gdbserver_xmltarget): Delete declaration.
(get_features_xml, process_serial_event): Adjust.
* server.h [IN_PROCESS_AGENT] (struct target_desc): Forward
declare.
(struct process_info) <tdesc>: New field.
(ipa_tdesc): Declare.
* tdesc.c: New file.
* tdesc.h: New file.
* tracepoint.c: Include tdesc.h.
[IN_PROCESS_AGENT] (ipa_tdesc): Define.
(get_context_regcache): Adjust to pass ipa_tdesc down.
(do_action_at_tracepoint): Adjust to get the register cache size
from the context regcache's description.
(traceframe_walk_blocks): Adjust to get the register cache size
from the current trace frame's description.
(traceframe_get_pc): Adjust to get current trace frame's
description and pass it down.
(gdb_collect): Adjust to get the register cache size from the
IPA's description.
* linux-amd64-ipa.c (tdesc_amd64_linux): Declare.
(gdbserver_xmltarget): Delete.
(initialize_low_tracepoint): Set the ipa's target description.
* linux-i386-ipa.c (tdesc_i386_linux): Declare.
(initialize_low_tracepoint): Set the ipa's target description.
* linux-x86-low.c: Include tdesc.h.
[__x86_64__] (is_64bit_tdesc): New.
(ps_get_thread_area, x86_get_thread_area): Use it.
(i386_cannot_store_register): Rename to ...
(x86_cannot_store_register): ... this. Use is_64bit_tdesc.
(i386_cannot_fetch_register): Rename to ...
(x86_cannot_fetch_register): ... this. Use is_64bit_tdesc.
(x86_fill_gregset, x86_store_gregset): Adjust register_size calls
to new interface.
(target_regsets): Rename to ...
(x86_regsets): ... this.
(x86_get_pc, x86_set_pc): Adjust register_size calls to new
interface.
(x86_siginfo_fixup): Use is_64bit_tdesc.
[__x86_64__] (tdesc_amd64_linux, tdesc_amd64_avx_linux)
(tdesc_x32_avx_linux, tdesc_x32_linux)
(tdesc_i386_linux, tdesc_i386_mmx_linux, tdesc_i386_avx_linux):
Declare.
(x86_linux_update_xmltarget): Delete.
(I386_LINUX_XSAVE_XCR0_OFFSET): Define.
(have_ptrace_getfpxregs, have_ptrace_getregset): New.
(AMD64_LINUX_USER64_CS): New.
(x86_linux_read_description): New, based on
x86_linux_update_xmltarget.
(same_process_callback): New.
(x86_arch_setup_process_callback): New.
(x86_linux_update_xmltarget): New.
(x86_regsets_info): New.
(amd64_linux_regs_info): New.
(i386_linux_usrregs_info): New.
(i386_linux_regs_info): New.
(x86_linux_regs_info): New.
(x86_arch_setup): Reimplement.
(x86_install_fast_tracepoint_jump_pad): Use is_64bit_tdesc.
(x86_emit_ops): Ditto.
(the_low_target): Adjust. Install x86_linux_regs_info,
x86_cannot_fetch_register, and x86_cannot_store_register.
(initialize_low_arch): New.
* linux-ia64-low.c (tdesc_ia64): Declare.
(ia64_fetch_register): Adjust.
(ia64_usrregs_info, regs_info): New globals.
(ia64_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-sparc-low.c (tdesc_sparc64): Declare.
(sparc_fill_gregset_to_stack, sparc_store_gregset_from_stack):
Adjust.
(sparc_arch_setup): New function.
(sparc_regsets_info, sparc_usrregs_info, regs_info): New globals.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-ppc-low.c (tdesc_powerpc_32l, tdesc_powerpc_altivec32l)
(tdesc_powerpc_cell32l, tdesc_powerpc_vsx32l)
(tdesc_powerpc_isa205_32l, tdesc_powerpc_isa205_altivec32l)
(tdesc_powerpc_isa205_vsx32l, tdesc_powerpc_e500l)
(tdesc_powerpc_64l, tdesc_powerpc_altivec64l)
(tdesc_powerpc_cell64l, tdesc_powerpc_vsx64l)
(tdesc_powerpc_isa205_64l, tdesc_powerpc_isa205_altivec64l)
(tdesc_powerpc_isa205_vsx64l): Declare.
(ppc_cannot_store_register, ppc_collect_ptrace_register)
(ppc_supply_ptrace_register, parse_spufs_run, ppc_get_pc)
(ppc_set_pc, ppc_get_hwcap): Adjust.
(ppc_usrregs_info): Forward declare.
(!__powerpc64__) ppc_regmap_adjusted: New global.
(ppc_arch_setup): Adjust to the current process'es target
description.
(ppc_fill_vsxregset, ppc_store_vsxregset, ppc_fill_vrregset)
(ppc_store_vrregset, ppc_fill_evrregset, ppc_store_evrregse)
(ppc_store_evrregset): Adjust.
(target_regsets): Rename to ...
(ppc_regsets): ... this, and make static.
(ppc_usrregs_info, ppc_regsets_info, regs_info): New globals.
(ppc_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-s390-low.c (tdesc_s390_linux32, tdesc_s390_linux32v1)
(tdesc_s390_linux32v2, tdesc_s390_linux64, tdesc_s390_linux64v1)
(tdesc_s390_linux64v2, tdesc_s390x_linux64, tdesc_s390x_linux64v1)
(tdesc_s390x_linux64v2): Declare.
(s390_collect_ptrace_register, s390_supply_ptrace_register)
(s390_fill_gregset, s390_store_last_break): Adjust.
(target_regsets): Rename to ...
(s390_regsets): ... this, and make static.
(s390_get_pc, s390_set_pc): Adjust.
(s390_get_hwcap): New target_desc parameter, and use it.
[__s390x__] (have_hwcap_s390_high_gprs): New global.
(s390_arch_setup): Adjust to set the current process'es target
description. Don't adjust the regmap.
(s390_usrregs_info, s390_regsets_info, regs_info): New globals.
[__s390x__] (s390_usrregs_info_3264, s390_regsets_info_3264)
(regs_info_3264): New globals.
(s390_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-mips-low.c (tdesc_mips_linux, tdesc_mips_dsp_linux)
(tdesc_mips64_linux, tdesc_mips64_dsp_linux): Declare.
[__mips64] (init_registers_mips_linux)
(init_registers_mips_dsp_linux): Delete defines.
[__mips64] (tdesc_mips_linux, tdesc_mips_dsp_linux): New defines.
(have_dsp): New global.
(mips_read_description): New, based on mips_arch_setup.
(mips_arch_setup): Reimplement.
(get_usrregs_info): New function.
(mips_cannot_fetch_register, mips_cannot_store_register)
(mips_get_pc, mips_set_pc, mips_fill_gregset, mips_store_gregset)
(mips_fill_fpregset, mips_store_fpregset): Adjust.
(target_regsets): Rename to ...
(mips_regsets): ... this, and make static.
(mips_regsets_info, mips_dsp_usrregs_info, mips_usrregs_info)
(dsp_regs_info, regs_info): New globals.
(mips_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-arm-low.c (tdesc_arm, tdesc_arm_with_iwmmxt)
(tdesc_arm_with_vfpv2, tdesc_arm_with_vfpv3, tdesc_arm_with_neon):
Declare.
(arm_fill_vfpregset, arm_store_vfpregset): Adjust.
(arm_read_description): New, with bits factored from
arm_arch_setup.
(arm_arch_setup): Reimplement.
(target_regsets): Rename to ...
(arm_regsets): ... this, and make static.
(arm_regsets_info, arm_usrregs_info, regs_info): New globals.
(arm_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-m68k-low.c (tdesc_m68k): Declare.
(target_regsets): Rename to ...
(m68k_regsets): ... this, and make static.
(m68k_regsets_info, m68k_usrregs_info, regs_info): New globals.
(m68k_regs_info): New function.
(m68k_arch_setup): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-sh-low.c (tdesc_sharch): Declare.
(target_regsets): Rename to ...
(sh_regsets): ... this, and make static.
(sh_regsets_info, sh_usrregs_info, regs_info): New globals.
(sh_regs_info, sh_arch_setup): New functions.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-bfin-low.c (tdesc_bfin): Declare.
(bfin_arch_setup): New function.
(bfin_usrregs_info, regs_info): New globals.
(bfin_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-cris-low.c (tdesc_cris): Declare.
(cris_arch_setup): New function.
(cris_usrregs_info, regs_info): New globals.
(cris_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-cris-low.c (tdesc_crisv32): Declare.
(cris_arch_setup): New function.
(cris_regsets_info, cris_usrregs_info, regs_info): New globals.
(cris_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-m32r-low.c (tdesc_m32r): Declare.
(m32r_arch_setup): New function.
(m32r_usrregs_info, regs_info): New globals.
(m32r_regs_info): Adjust.
(initialize_low_arch): New function.
* linux-tic6x-low.c (tdesc_tic6x_c64xp_linux)
(tdesc_tic6x_c64x_linux, tdesc_tic6x_c62x_linux): Declare.
(tic6x_usrregs_info): Forward declare.
(tic6x_read_description): New function, based on ...
(tic6x_arch_setup): ... this. Reimplement.
(target_regsets): Rename to ...
(tic6x_regsets): ... this, and make static.
(tic6x_regsets_info, tic6x_usrregs_info, regs_info): New globals.
(tic6x_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-xtensa-low.c (tdesc_xtensa): Declare.
(xtensa_fill_gregset, xtensa_store_gregset): Adjust.
(target_regsets): Rename to ...
(xtensa_regsets): ... this, and make static.
(xtensa_regsets_info, xtensa_usrregs_info, regs_info): New
globals.
(xtensa_arch_setup, xtensa_regs_info): New functions.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-nios2-low.c (tdesc_nios2_linux): Declare.
(nios2_arch_setup): Set the current process'es tdesc.
(target_regsets): Rename to ...
(nios2_regsets): ... this.
(nios2_regsets_info, nios2_usrregs_info, regs_info): New globals.
(nios2_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-aarch64-low.c (tdesc_aarch64): Declare.
(aarch64_arch_setup): Set the current process'es tdesc.
(target_regsets): Rename to ...
(aarch64_regsets): ... this.
(aarch64_regsets_info, aarch64_usrregs_info, regs_info): New globals.
(aarch64_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-tile-low.c (tdesc_tilegx, tdesc_tilegx32): Declare
globals.
(target_regsets): Rename to ...
(tile_regsets): ... this.
(tile_regsets_info, tile_usrregs_info, regs_info): New globals.
(tile_regs_info): New function.
(tile_arch_setup): Set the current process'es tdesc.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* spu-low.c (tdesc_spu): Declare.
(spu_create_inferior, spu_attach): Set the new process'es tdesc.
* win32-arm-low.c (tdesc_arm): Declare.
(arm_arch_setup): New function.
(the_low_target): Install arm_arch_setup instead of
init_registers_arm.
* win32-i386-low.c (tdesc_i386, tdesc_amd64): Declare.
(init_windows_x86): Rename to ...
(i386_arch_setup): ... this. Set `win32_tdesc'.
(the_low_target): Adjust.
* win32-low.c (win32_tdesc): New global.
(child_add_thread): Don't create the thread cache here.
(do_initial_child_stuff): Set the new process'es tdesc.
* win32-low.h (struct target_desc): Forward declare.
(win32_tdesc): Declare.
* lynx-i386-low.c (tdesc_i386): Declare global.
(lynx_i386_arch_setup): Set `lynx_tdesc'.
* lynx-low.c (lynx_tdesc): New global.
(lynx_add_process): Set the new process'es tdesc.
* lynx-low.h (struct target_desc): Forward declare.
(lynx_tdesc): Declare global.
* lynx-ppc-low.c (tdesc_powerpc_32): Declare global.
(lynx_ppc_arch_setup): Set `lynx_tdesc'.
* nto-low.c (nto_tdesc): New global.
(do_attach): Set the new process'es tdesc.
* nto-low.h (struct target_desc): Forward declare.
(nto_tdesc): Declare.
* nto-x86-low.c (tdesc_i386): Declare.
(nto_x86_arch_setup): Set `nto_tdesc'.
gdb/
2013-06-07 Pedro Alves <palves@redhat.com>
* regformats/regdat.sh: Output #include tdesc.h. Make globals
static. Output a global target description pointer.
(init_registers_${name}): Adjust to initialize a
target description structure.
2013-06-07 10:46:59 +00:00
|
|
|
aarch64_regs_info,
|
2013-02-04 18:20:05 +00:00
|
|
|
aarch64_cannot_fetch_register,
|
|
|
|
aarch64_cannot_store_register,
|
2015-07-02 11:11:47 +00:00
|
|
|
NULL, /* fetch_register */
|
2013-02-04 18:20:05 +00:00
|
|
|
aarch64_get_pc,
|
|
|
|
aarch64_set_pc,
|
|
|
|
(const unsigned char *) &aarch64_breakpoint,
|
|
|
|
aarch64_breakpoint_len,
|
2015-07-02 11:11:47 +00:00
|
|
|
NULL, /* breakpoint_reinsert_addr */
|
|
|
|
0, /* decr_pc_after_break */
|
2013-02-04 18:20:05 +00:00
|
|
|
aarch64_breakpoint_at,
|
[GDBserver] Make Zx/zx packet handling idempotent.
This patch fixes hardware breakpoint regressions exposed by my fix for
"PR breakpoints/7143 - Watchpoint does not trigger when first set", at
https://sourceware.org/ml/gdb-patches/2014-03/msg00167.html
The testsuite caught them on Linux/x86_64, at least. gdb.sum:
gdb.sum:
FAIL: gdb.base/hbreak2.exp: next over recursive call
FAIL: gdb.base/hbreak2.exp: backtrace from factorial(5.1)
FAIL: gdb.base/hbreak2.exp: continue until exit at recursive next test
gdb.log:
(gdb) next
Program received signal SIGTRAP, Trace/breakpoint trap.
factorial (value=4) at ../../../src/gdb/testsuite/gdb.base/break.c:113
113 if (value > 1) { /* set breakpoint 7 here */
(gdb) FAIL: gdb.base/hbreak2.exp: next over recursive call
Actually, that patch just exposed a latent issue to "breakpoints
always-inserted off" mode, not really caused it. After that patch,
GDB no longer removes breakpoints at each internal event, thus making
some scenarios behave like breakpoint always-inserted on. The bug is
easy to trigger with always-inserted on.
The issue is that since the target-side breakpoint conditions support,
if the stub/server supports evaluating breakpoint conditions on the
target side, then GDB is sending duplicate Zx packets to the target
without removing them before, and GDBserver is not really expecting
that for Z packets other than Z0/z0. E.g., with "set breakpoint
always-inserted on" and "set debug remote 1":
(gdb) b main
Sending packet: $m410943,1#ff...Packet received: 48
Breakpoint 4 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028.
Sending packet: $Z0,410943,1#48...Packet received: OK
^^^^^^^^^^^^
(gdb) b main
Note: breakpoint 4 also set at pc 0x410943.
Sending packet: $m410943,1#ff...Packet received: 48
Breakpoint 5 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028.
Sending packet: $Z0,410943,1#48...Packet received: OK
^^^^^^^^^^^^
(gdb) b main
Note: breakpoints 4 and 5 also set at pc 0x410943.
Sending packet: $m410943,1#ff...Packet received: 48
Breakpoint 6 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028.
Sending packet: $Z0,410943,1#48...Packet received: OK
^^^^^^^^^^^^
(gdb) del
Delete all breakpoints? (y or n) y
Sending packet: $Z0,410943,1#48...Packet received: OK
Sending packet: $Z0,410943,1#48...Packet received: OK
Sending packet: $z0,410943,1#68...Packet received: OK
And for Z1, similarly:
(gdb) hbreak main
Sending packet: $m410943,1#ff...Packet received: 48
Hardware assisted breakpoint 4 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028.
Sending packet: $Z1,410943,1#49...Packet received: OK
^^^^^^^^^^^^
Packet Z1 (hardware-breakpoint) is supported
(gdb) hbreak main
Note: breakpoint 4 also set at pc 0x410943.
Sending packet: $m410943,1#ff...Packet received: 48
Hardware assisted breakpoint 5 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028.
Sending packet: $Z1,410943,1#49...Packet received: OK
^^^^^^^^^^^^
(gdb) hbreak main
Note: breakpoints 4 and 5 also set at pc 0x410943.
Sending packet: $m410943,1#ff...Packet received: 48
Hardware assisted breakpoint 6 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028.
Sending packet: $Z1,410943,1#49...Packet received: OK
^^^^^^^^^^^^
(gdb) del
Delete all breakpoints? (y or n) y
Sending packet: $Z1,410943,1#49...Packet received: OK
^^^^^^^^^^^^
Sending packet: $Z1,410943,1#49...Packet received: OK
^^^^^^^^^^^^
Sending packet: $z1,410943,1#69...Packet received: OK
^^^^^^^^^^^^
So GDB sent a bunch of Z1 packets, and then when finally removing the
breakpoint, only one z1 packet was sent. On the GDBserver side (with
monitor set debug-hw-points 1), in the Z1 case, we see:
$ ./gdbserver :9999 ./gdbserver
Process ./gdbserver created; pid = 8629
Listening on port 9999
Remote debugging from host 127.0.0.1
insert_watchpoint (addr=410943, len=1, type=instruction-execute):
CONTROL (DR7): 00000101 STATUS (DR6): 00000000
DR0: addr=0x410943, ref.count=1 DR1: addr=0x0, ref.count=0
DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0
insert_watchpoint (addr=410943, len=1, type=instruction-execute):
CONTROL (DR7): 00000101 STATUS (DR6): 00000000
DR0: addr=0x410943, ref.count=2 DR1: addr=0x0, ref.count=0
DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0
insert_watchpoint (addr=410943, len=1, type=instruction-execute):
CONTROL (DR7): 00000101 STATUS (DR6): 00000000
DR0: addr=0x410943, ref.count=3 DR1: addr=0x0, ref.count=0
DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0
insert_watchpoint (addr=410943, len=1, type=instruction-execute):
CONTROL (DR7): 00000101 STATUS (DR6): 00000000
DR0: addr=0x410943, ref.count=4 DR1: addr=0x0, ref.count=0
DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0
insert_watchpoint (addr=410943, len=1, type=instruction-execute):
CONTROL (DR7): 00000101 STATUS (DR6): 00000000
DR0: addr=0x410943, ref.count=5 DR1: addr=0x0, ref.count=0
DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0
remove_watchpoint (addr=410943, len=1, type=instruction-execute):
CONTROL (DR7): 00000101 STATUS (DR6): 00000000
DR0: addr=0x410943, ref.count=4 DR1: addr=0x0, ref.count=0
DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0
That's one insert_watchpoint call for each Z1 packet, and then one
remove_watchpoint call for the z1 packet. Notice how ref.count
increased for each insert_watchpoint call, and then in the end, after
GDB told GDBserver to forget about the hardware breakpoint, GDBserver
ends with the the first debug register still with ref.count=4! IOW,
the hardware breakpoint is left armed on the target, while on the GDB
end it's gone. If the program happens to execute 0x410943 afterwards,
then the CPU traps, GDBserver reports the trap to GDB, and GDB not
having a breakpoint set at that address anymore, reports to the user a
spurious SIGTRAP.
This is exactly what is happening in the hbreak2.exp test, though in
that case, it's a shared library event that triggers a
breakpoint_re_set, when breakpoints are still inserted (because
nowadays GDB doesn't remove breakpoints while handling internal
events), and that recreates breakpoint locations, which likewise
forces breakpoint reinsertion and Zx packet resends...
That is a lot of bogus Zx duplication that should possibly be
addressed on the GDB side. GDB resends Zx packets because the way to
change the target-side condition, is to resend the breakpoint to the
server with the new condition. (That's an option in the packet: e.g.,
"Z1,410943,1;X3,220027" for "hbreak main if 0". The packets in the
examples above are shorter because the breakpoints don't have
conditions attached). GDB doesn't remove the breakpoint first before
reinserting it because that'd be bad for non-stop, as it'd open a
window where the inferior could miss the breakpoint. The conditions
actually haven't changed between the resends, but GDB isn't smart
enough to realize that.
(TBC, if the target doesn't support target-side conditions, then GDB
doesn't trigger these resends (init_bp_location calls
mark_breakpoint_location_modified, and that does nothing if condition
evaluation is on the host side. The resends are caused by the
'loc->condition_changed = condition_modified.' line.)
But, even if GDB was made smarter, GDBserver should really still
handle the resends anyway. So target-side conditions also aren't
really to blame. The documentation of the Z/z packets says:
"To avoid potential problems with duplicate packets, the operations
should be implemented in an idempotent way."
As such, we may want to fix GDB, but we should definitely fix
GDBserver. The fix is a prerequisite for target-side conditions on
hardware breakpoints anyway (and while at it, on watchpoints too).
GDBserver indeed already treats duplicate Z0 packets in an idempotent
way. mem-break.c has the concept of high-level and low-level
breakpoints, somewhat similar to GDB's split of breakpoints vs
breakpoint locations, and keeps track of multiple breakpoints
referencing the same address/location, for the case of an internal
GDBserver breakpoint or a tracepoint being set at the same address as
a GDB breakpoint. But, it only allows GDB to ever contribute one
reference to a software breakpoint location. IOW, if gdbserver sees a
Z0 packet for the same address where it already had a GDB breakpoint
set, then GDBserver won't create another high-level GDB breakpoint.
However, mem-break.c only tracks GDB Z0 breakpoints. The same logic
should apply to all kinds of Zx packets. Currently, gdbserver passes
down each duplicate Zx (other than Z0) request directly to the
target->insert_point routine. The x86 watchpoint support itself
refcounts watchpoint / hw breakpoint requests, to handle overlapping
watchpoints, and save debug registers. But that code doesn't (and
really shouldn't) handle the duplicate requests, assuming that for
each insert there will be a corresponding remove.
So the fix is to generalize mem-break.c to track all kinds of Zx
breakpoints, and filter out duplicates. As mentioned, this ends up
adding support for target-side conditions on hardware breakpoints and
watchpoints too (though GDB itself doesn't support the latter yet).
Probably the least obvious change in the patch is that it kind of
turns the breakpoint insert/remove APIs inside out. Before, the
target methods were only called for GDB breakpoints. The internal
breakpoint set/delete methods inserted memory breakpoints directly
bypassing the insert/remove target methods. That's not good when the
target should use a debug API to set software breakpoints, instead of
relying on GDBserver patching memory with breakpoint instructions, as
is the case of NTO.
Now removal/insertion of all kinds of breakpoints/watchpoints, either
internal, or from GDB, always go through the target methods. The
insert_point/remove_point methods no longer get passed a Z packet
type, but an internal/raw breakpoint type. They're also passed a
pointer to the raw breakpoint itself (note that's still opaque outside
mem-break.c), so that insert_memory_breakpoint /
remove_memory_breakpoint have access to the breakpoint's shadow
buffer. I first tried passing down a new structure based on GDB's
"struct bp_target_info" (actually with that name exactly), but then
decided against it as unnecessary complication.
As software/memory breakpoints work by poking at memory, when setting
a GDB Z0 breakpoint (but not internal breakpoints, as those can assume
the conditions are already right), we need to tell the target to
prepare to access memory (which on Linux means stop threads). If that
operation fails, we need to return error to GDB. Seeing an error, if
this is the first breakpoint of that type that GDB tries to insert,
GDB would then assume the breakpoint type is supported, but it may
actually not be. So we need to check whether the type is supported at
all before preparing to access memory. And to solve that, the patch
adds a new target->supports_z_point_type method that is called before
actually trying to insert the breakpoint.
Other than that, hopefully the change is more or less obvious.
New test added that exercises the hbreak2.exp regression in a more
direct way, without relying on a breakpoint re-set happening before
main is reached.
Tested by building GDBserver for:
aarch64-linux-gnu
arm-linux-gnueabihf
i686-pc-linux-gnu
i686-w64-mingw32
m68k-linux-gnu
mips-linux-gnu
mips-uclinux
nios2-linux-gnu
powerpc-linux-gnu
sh-linux-gnu
tilegx-unknown-linux-gnu
x86_64-redhat-linux
x86_64-w64-mingw32
And also regression tested on x86_64 Fedora 20.
gdb/gdbserver/
2014-05-20 Pedro Alves <palves@redhat.com>
* linux-aarch64-low.c (aarch64_insert_point)
(aarch64_remove_point): No longer check whether the type is
supported here. Adjust to new interface.
(the_low_target): Install aarch64_supports_z_point_type as
supports_z_point_type method.
* linux-arm-low.c (raw_bkpt_type_to_arm_hwbp_type): New function.
(arm_linux_hw_point_initialize): Take an enum raw_bkpt_type
instead of a Z packet char. Adjust.
(arm_supports_z_point_type): New function.
(arm_insert_point, arm_remove_point): Adjust to new interface.
(the_low_target): Install arm_supports_z_point_type.
* linux-crisv32-low.c (cris_supports_z_point_type): New function.
(cris_insert_point, cris_remove_point): Adjust to new interface.
Don't check whether the type is supported here.
(the_low_target): Install cris_supports_z_point_type.
* linux-low.c (linux_supports_z_point_type): New function.
(linux_insert_point, linux_remove_point): Adjust to new interface.
* linux-low.h (struct linux_target_ops) <insert_point,
remove_point>: Take an enum raw_bkpt_type instead of a char. Add
raw_breakpoint pointer parameter.
<supports_z_point_type>: New method.
* linux-mips-low.c (mips_supports_z_point_type): New function.
(mips_insert_point, mips_remove_point): Adjust to new interface.
Use mips_supports_z_point_type.
(the_low_target): Install mips_supports_z_point_type.
* linux-ppc-low.c (the_low_target): Install NULL as
supports_z_point_type method.
* linux-s390-low.c (the_low_target): Install NULL as
supports_z_point_type method.
* linux-sparc-low.c (the_low_target): Install NULL as
supports_z_point_type method.
* linux-x86-low.c (x86_supports_z_point_type): New function.
(x86_insert_point): Adjust to new insert_point interface. Use
insert_memory_breakpoint. Adjust to new
i386_low_insert_watchpoint interface.
(x86_remove_point): Adjust to remove_point interface. Use
remove_memory_breakpoint. Adjust to new
i386_low_remove_watchpoint interface.
(the_low_target): Install x86_supports_z_point_type.
* lynx-low.c (lynx_target_ops): Install NULL as
supports_z_point_type callback.
* nto-low.c (nto_supports_z_point_type): New.
(nto_insert_point, nto_remove_point): Adjust to new interface.
(nto_target_ops): Install nto_supports_z_point_type.
* mem-break.c: Adjust intro comment.
(struct raw_breakpoint) <raw_type, size>: New fields.
<inserted>: Update comment.
<shlib_disabled>: Delete field.
(enum bkpt_type) <gdb_breakpoint>: Delete value.
<gdb_breakpoint_Z0, gdb_breakpoint_Z1, gdb_breakpoint_Z2,
gdb_breakpoint_Z3, gdb_breakpoint_Z4>: New values.
(raw_bkpt_type_to_target_hw_bp_type): New function.
(find_enabled_raw_code_breakpoint_at): New function.
(find_raw_breakpoint_at): New type and size parameters. Use them.
(insert_memory_breakpoint): New function, based off
set_raw_breakpoint_at.
(remove_memory_breakpoint): New function.
(set_raw_breakpoint_at): Reimplement.
(set_breakpoint): New, based on set_breakpoint_at.
(set_breakpoint_at): Reimplement.
(delete_raw_breakpoint): Go through the_target->remove_point
instead of assuming memory breakpoints.
(find_gdb_breakpoint_at): Delete.
(Z_packet_to_bkpt_type, Z_packet_to_raw_bkpt_type): New functions.
(find_gdb_breakpoint): New function.
(set_gdb_breakpoint_at): Delete.
(z_type_supported): New function.
(set_gdb_breakpoint_1): New function, loosely based off
set_gdb_breakpoint_at.
(check_gdb_bp_preconditions, set_gdb_breakpoint): New functions.
(delete_gdb_breakpoint_at): Delete.
(delete_gdb_breakpoint_1): New function, loosely based off
delete_gdb_breakpoint_at.
(delete_gdb_breakpoint): New function.
(clear_gdb_breakpoint_conditions): Rename to ...
(clear_breakpoint_conditions): ... this. Don't handle a NULL
breakpoint.
(add_condition_to_breakpoint): Make static.
(add_breakpoint_condition): Take a struct breakpoint pointer
instead of an address. Adjust.
(gdb_condition_true_at_breakpoint): Rename to ...
(gdb_condition_true_at_breakpoint_z_type): ... this, and add
z_type parameter.
(gdb_condition_true_at_breakpoint): Reimplement.
(add_breakpoint_commands): Take a struct breakpoint pointer
instead of an address. Adjust.
(gdb_no_commands_at_breakpoint): Rename to ...
(gdb_no_commands_at_breakpoint_z_type): ... this. Add z_type
parameter. Return true if no breakpoint was found. Change debug
output.
(gdb_no_commands_at_breakpoint): Reimplement.
(run_breakpoint_commands): Rename to ...
(run_breakpoint_commands_z_type): ... this. Add z_type parameter,
and change return type to boolean.
(run_breakpoint_commands): New function.
(gdb_breakpoint_here): Also check for Z1 breakpoints.
(uninsert_raw_breakpoint): Don't try to reinsert a disabled
breakpoint. Go through the_target->remove_point instead of
assuming memory breakpoint.
(uninsert_breakpoints_at, uninsert_all_breakpoints): Uninsert
software and hardware breakpoints.
(reinsert_raw_breakpoint): Go through the_target->insert_point
instead of assuming memory breakpoint.
(reinsert_breakpoints_at, reinsert_all_breakpoints): Reinsert
software and hardware breakpoints.
(check_breakpoints, breakpoint_here, breakpoint_inserted_here):
Check both software and hardware breakpoints.
(validate_inserted_breakpoint): Assert the breakpoint is a
software breakpoint. Set the inserted flag to -1 instead of
setting shlib_disabled.
(delete_disabled_breakpoints): Adjust.
(validate_breakpoints): Only validate software breakpoints.
Adjust to inserted flag change.
(check_mem_read, check_mem_write): Skip breakpoint types other
than software breakpoints. Adjust to inserted flag change.
* mem-break.h (enum raw_bkpt_type): New enum.
(raw_breakpoint, struct process_info): Forward declare.
(Z_packet_to_target_hw_bp_type): Delete declaration.
(raw_bkpt_type_to_target_hw_bp_type, Z_packet_to_raw_bkpt_type)
(set_gdb_breakpoint, delete_gdb_breakpoint)
(clear_breakpoint_conditions): New declarations.
(set_gdb_breakpoint_at, clear_gdb_breakpoint_conditions): Delete.
(breakpoint_inserted_here): Update comment.
(add_breakpoint_condition, add_breakpoint_commands): Replace
address parameter with a breakpoint pointer parameter.
(gdb_breakpoint_here): Update comment.
(delete_gdb_breakpoint_at): Delete.
(insert_memory_breakpoint, remove_memory_breakpoint): Declare.
* server.c (process_point_options): Take a struct breakpoint
pointer instead of an address. Adjust.
(process_serial_event) <Z/z packets>: Use set_gdb_breakpoint and
delete_gdb_breakpoint.
* spu-low.c (spu_target_ops): Install NULL as
supports_z_point_type method.
* target.h: Include mem-break.h.
(struct target_ops) <prepare_to_access_memory>: Update comment.
<supports_z_point_type>: New field.
<insert_point, remove_point>: Take an enum raw_bkpt_type argument
instead of a char. Also take a raw breakpoint pointer.
* win32-arm-low.c (the_low_target): Install NULL as
supports_z_point_type.
* win32-i386-low.c (i386_supports_z_point_type): New function.
(i386_insert_point, i386_remove_point): Adjust to new interface.
(the_low_target): Install i386_supports_z_point_type.
* win32-low.c (win32_supports_z_point_type): New function.
(win32_insert_point, win32_remove_point): Adjust to new interface.
(win32_target_ops): Install win32_supports_z_point_type.
* win32-low.h (struct win32_target_ops):
<supports_z_point_type>: New method.
<insert_point, remove_point>: Take an enum raw_bkpt_type argument
instead of a char. Also take a raw breakpoint pointer.
gdb/testsuite/
2014-05-20 Pedro Alves <palves@redhat.com>
* gdb.base/break-idempotent.c: New file.
* gdb.base/break-idempotent.exp: New file.
2014-05-20 17:24:28 +00:00
|
|
|
aarch64_supports_z_point_type,
|
2013-02-04 18:20:05 +00:00
|
|
|
aarch64_insert_point,
|
|
|
|
aarch64_remove_point,
|
|
|
|
aarch64_stopped_by_watchpoint,
|
|
|
|
aarch64_stopped_data_address,
|
2015-07-02 11:11:47 +00:00
|
|
|
NULL, /* collect_ptrace_register */
|
|
|
|
NULL, /* supply_ptrace_register */
|
|
|
|
NULL, /* siginfo_fixup */
|
2013-02-04 18:20:05 +00:00
|
|
|
aarch64_linux_new_process,
|
|
|
|
aarch64_linux_new_thread,
|
Arch-specific remote follow fork
This patch implements the architecture-specific pieces of follow-fork
for remote and extended-remote Linux targets, which in the current
implementation copyies the parent's debug register state into the new
child's data structures. This is required for x86, arm, aarch64, and
mips.
This follows the native implementation as closely as possible by
implementing a new linux_target_ops function 'new_fork', which is
analogous to 'linux_nat_new_fork' in linux-nat.c. In gdbserver, the debug
registers are stored in the process list, instead of an
architecture-specific list, so the function arguments are process_info
pointers instead of an lwp_info and a pid as in the native implementation.
In the MIPS implementation the debug register mirror is stored differently
from x86, ARM, and aarch64, so instead of doing a simple structure assignment
I had to clone the list of watchpoint structures.
Tested using gdb.threads/watchpoint-fork.exp on x86, and ran manual tests
on a MIPS board and an ARM board. Aarch64 hasn't been tested.
gdb/gdbserver/ChangeLog:
* linux-aarch64-low.c (aarch64_linux_new_fork): New function.
(the_low_target) <new_fork>: Initialize new member.
* linux-arm-low.c (arm_new_fork): New function.
(the_low_target) <new_fork>: Initialize new member.
* linux-low.c (handle_extended_wait): Call new target function
new_fork.
* linux-low.h (struct linux_target_ops) <new_fork>: New member.
* linux-mips-low.c (mips_add_watchpoint): New function
extracted from mips_insert_point.
(the_low_target) <new_fork>: Initialize new member.
(mips_linux_new_fork): New function.
(mips_insert_point): Call mips_add_watchpoint.
* linux-x86-low.c (x86_linux_new_fork): New function.
(the_low_target) <new_fork>: Initialize new member.
2015-05-12 16:52:44 +00:00
|
|
|
aarch64_linux_new_fork,
|
2013-02-04 18:20:05 +00:00
|
|
|
aarch64_linux_prepare_to_resume,
|
2015-07-02 11:11:47 +00:00
|
|
|
NULL, /* process_qsupported */
|
2015-07-09 15:35:11 +00:00
|
|
|
aarch64_supports_tracepoints,
|
2015-07-15 13:58:32 +00:00
|
|
|
NULL, /* get_thread_area */
|
|
|
|
NULL, /* install_fast_tracepoint_jump_pad */
|
|
|
|
NULL, /* emit_ops */
|
|
|
|
NULL, /* get_min_fast_tracepoint_insn_len */
|
|
|
|
aarch64_supports_range_stepping,
|
2013-02-04 18:20:05 +00:00
|
|
|
};
|
[GDBserver] Multi-process + multi-arch
This patch makes GDBserver support multi-process + biarch.
Currently, if you're debugging more than one process at once with a
single gdbserver (in extended-remote mode), then all processes must
have the same architecture (e.g., 64-bit vs 32-bit). Otherwise, you
see this:
Added inferior 2
[Switching to inferior 2 [<null>] (<noexec>)]
Reading symbols from /home/pedro/gdb/tests/main32...done.
Temporary breakpoint 2 at 0x4004cf: main. (2 locations)
Starting program: /home/pedro/gdb/tests/main32
warning: Selected architecture i386 is not compatible with reported target architecture i386:x86-64
warning: Architecture rejected target-supplied description
Remote 'g' packet reply is too long: 000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000090cfffff0000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000000000000000000b042f7460000000000020000230000002b0000002b0000002b000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000007f03000000000000ffff0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000801f00003b0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
... etc, etc ...
Even though the process was running a 32-bit program, GDBserver sent
back to GDB a register set in 64-bit layout.
A patch (http://sourceware.org/ml/gdb-patches/2012-11/msg00228.html) a
while ago made GDB track a target_gdbarch per inferior, and as
consequence, fetch a target description per-inferior. This patch is
the GDBserver counterpart, that makes GDBserver keep track of each
process'es XML target description and register layout. So in the
example above, GDBserver will send the correct register set in 32-bit
layout to GDB.
A new "struct target_desc" object (tdesc for short) is added, that
holds the target description and register layout information about
each process. Each `struct process_info' holds a pointer to a target
description. The regcache also gains a pointer to a target
description, mainly for convenience, and parallel with GDB (and
possible future support for programs that flip processor modes).
The low target's arch_setup routines are responsible for setting the
process'es correct tdesc. This isn't that much different to how
things were done before, except that instead of detecting the inferior
process'es architecture and calling the corresponding
init_registers_FOO routine, which would change the regcache layout
globals and recreate the threads' regcaches, the regcache.c globals
are gone, and the init_registers_$BAR routines now each initialize a
separate global struct target_desc object (one for each arch variant
GDBserver supports), and so all the init_registers_$BAR routines that
are built into GDBserver are called early at GDBserver startup time
(similarly to how GDB handles its built-in target descriptions), and
then the arch_setup routine is responsible for making
process_info->tdesc point to one of these target description globals.
The regcache module is all parameterized to get the regcache's layout
from the tdesc object instead of the old register_bytes, etc. globals.
The threads' regcaches are now created lazily. The old scheme where
we created each of them when we added a new thread doesn't work
anymore, because we add the main thread/lwp before we see it stop for
the first time, and it is only when we see the thread stop for the
first time that we have a chance of determining the inferior's
architecture (through the_low_target.arch_setup). Therefore when we
add the main thread we don't know which architecture/tdesc its
regcache should have.
This patch makes the gdb.multi/multi-arch.exp test now pass against
(extended-remote) GDBserver. It currently fails, without this patch.
The IPA also uses the regcache, so it gains a new global struct
target_desc pointer, which points at the description of the process it
is loaded in.
Re. the linux-low.c & friends changes. Since the register map
etc. may differ between processes (64-bit vs 32-bit) etc., the
linux_target_ops num_regs, regmap and regset_bitmap data fields are no
longer sufficient. A new method is added in their place that returns
a pointer to a new struct that includes all info linux-low.c needs to
access registers of the current inferior.
The patch/discussion that originally introduced
linux-low.c:disabled_regsets mentions that the disabled_regsets set
may be different per mode (in a biarch setup), and indeed that is
cleared whenever we start a new (first) inferior, so that global is
moved as well behind the new `struct regs_info'.
On the x86 side:
I simply replaced the i387-fp.c:num_xmm_registers global with a check
for 64-bit or 32-bit process, which is equivalent to how the global
was set. This avoided coming up with some more general mechanism that
would work for all targets that use this module (GNU/Linux, Windows,
etc.).
Tested:
GNU/Linux IA64
GNU/Linux MIPS64
GNU/Linux PowerPC (Fedora 16)
GNU/Linux s390x (Fedora 16)
GNU/Linux sparc64 (Debian)
GNU/Linux x86_64, -m64 and -m32 (Fedora 17)
Cross built, and smoke tested:
i686-w64-mingw32, under Wine.
GNU/Linux TI C6x, by Yao Qi.
Cross built but otherwise not tested:
aarch64-linux-gnu
arm-linux-gnu
m68k-linux
nios2-linux-gnu
sh-linux-gnu
spu
tilegx-unknown-linux-gnu
Completely untested:
GNU/Linux Blackfin
GNU/Linux CRIS
GNU/Linux CRISv32
GNU/Linux TI Xtensa
GNU/Linux M32R
LynxOS
QNX NTO
gdb/gdbserver/
2013-06-07 Pedro Alves <palves@redhat.com>
* Makefile.in (OBS): Add tdesc.o.
(IPA_OBJS): Add tdesc-ipa.o.
(tdesc-ipa.o): New rule.
* ax.c (gdb_eval_agent_expr): Adjust register_size call to new
interface.
* linux-low.c (new_inferior): Delete.
(disabled_regsets, num_regsets): Delete.
(linux_add_process): Adjust to set the new per-process
new_inferior flag.
(linux_detach_one_lwp): Adjust to call regcache_invalidate_thread.
(linux_wait_for_lwp): Adjust. Only call arch_setup if the event
was a stop. When calling arch_setup, switch the current inferior
to the thread that got an event.
(linux_resume_one_lwp): Adjust to call regcache_invalidate_thread.
(regsets_fetch_inferior_registers)
(regsets_store_inferior_registers): New regsets_info parameter.
Adjust to use it.
(linux_register_in_regsets): New regs_info parameter. Adjust to
use it.
(register_addr, fetch_register, store_register): New usrregs_info
parameter. Adjust to use it.
(usr_fetch_inferior_registers, usr_store_inferior_registers): New
parameter regs_info. Adjust to use it.
(linux_fetch_registers): Get the current inferior's regs_info, and
adjust to use it.
(linux_store_registers): Ditto.
[HAVE_LINUX_REGSETS] (initialize_regsets_info): New.
(initialize_low): Don't initialize the target_regsets here. Call
initialize_low_arch.
* linux-low.h (target_regsets): Delete declaration.
(struct regsets_info): New.
(struct usrregs_info): New.
(struct regs_info): New.
(struct process_info_private) <new_inferior>: New field.
(struct linux_target_ops): Delete the num_regs, regmap, and
regset_bitmap fields. New field regs_info.
[HAVE_LINUX_REGSETS] (initialize_regsets_info): Declare.
* i387-fp.c (num_xmm_registers): Delete.
(i387_cache_to_fsave, i387_fsave_to_cache): Adjust find_regno
calls to new interface.
(i387_cache_to_fxsave, i387_cache_to_xsave, i387_fxsave_to_cache)
(i387_xsave_to_cache): Adjust find_regno calls to new interface.
Infer the number of xmm registers from the regcache's target
description.
* i387-fp.h (num_xmm_registers): Delete.
* inferiors.c (add_thread): Don't install the thread's regcache
here.
* proc-service.c (gregset_info): Fetch the current inferior's
regs_info. Adjust to use it.
* regcache.c: Include tdesc.h.
(register_bytes, reg_defs, num_registers)
(gdbserver_expedite_regs): Delete.
(get_thread_regcache): If the thread doesn't have a regcache yet,
create one, instead of aborting gdbserver.
(regcache_invalidate_one): Rename to ...
(regcache_invalidate_thread): ... this.
(regcache_invalidate_one): New.
(regcache_invalidate): Only invalidate registers of the current
process.
(init_register_cache): Add target_desc parameter, and use it.
(new_register_cache): Ditto. Assert the target description has a
non zero registers_size.
(regcache_cpy): Add assertions. Adjust.
(realloc_register_cache, set_register_cache): Delete.
(registers_to_string, registers_from_string): Adjust.
(find_register_by_name, find_regno, find_register_by_number)
(register_cache_size): Add target_desc parameter, and use it.
(free_register_cache_thread, free_register_cache_thread_one)
(regcache_release, register_cache_size): New.
(register_size): Add target_desc parameter, and use it.
(register_data, supply_register, supply_register_zeroed)
(supply_regblock, supply_register_by_name, collect_register)
(collect_register_as_string, collect_register_by_name): Adjust.
* regcache.h (struct target_desc): Forward declare.
(struct regcache) <tdesc>: New field.
(init_register_cache, new_register_cache): Add target_desc
parameter.
(regcache_invalidate_thread): Declare.
(regcache_invalidate_one): Delete declaration.
(regcache_release): Declare.
(find_register_by_number, register_cache_size, register_size)
(find_regno): Add target_desc parameter.
(gdbserver_expedite_regs, gdbserver_xmltarget): Delete
declarations.
* remote-utils.c: Include tdesc.h.
(outreg, prepare_resume_reply): Adjust.
* server.c: Include tdesc.h.
(gdbserver_xmltarget): Delete declaration.
(get_features_xml, process_serial_event): Adjust.
* server.h [IN_PROCESS_AGENT] (struct target_desc): Forward
declare.
(struct process_info) <tdesc>: New field.
(ipa_tdesc): Declare.
* tdesc.c: New file.
* tdesc.h: New file.
* tracepoint.c: Include tdesc.h.
[IN_PROCESS_AGENT] (ipa_tdesc): Define.
(get_context_regcache): Adjust to pass ipa_tdesc down.
(do_action_at_tracepoint): Adjust to get the register cache size
from the context regcache's description.
(traceframe_walk_blocks): Adjust to get the register cache size
from the current trace frame's description.
(traceframe_get_pc): Adjust to get current trace frame's
description and pass it down.
(gdb_collect): Adjust to get the register cache size from the
IPA's description.
* linux-amd64-ipa.c (tdesc_amd64_linux): Declare.
(gdbserver_xmltarget): Delete.
(initialize_low_tracepoint): Set the ipa's target description.
* linux-i386-ipa.c (tdesc_i386_linux): Declare.
(initialize_low_tracepoint): Set the ipa's target description.
* linux-x86-low.c: Include tdesc.h.
[__x86_64__] (is_64bit_tdesc): New.
(ps_get_thread_area, x86_get_thread_area): Use it.
(i386_cannot_store_register): Rename to ...
(x86_cannot_store_register): ... this. Use is_64bit_tdesc.
(i386_cannot_fetch_register): Rename to ...
(x86_cannot_fetch_register): ... this. Use is_64bit_tdesc.
(x86_fill_gregset, x86_store_gregset): Adjust register_size calls
to new interface.
(target_regsets): Rename to ...
(x86_regsets): ... this.
(x86_get_pc, x86_set_pc): Adjust register_size calls to new
interface.
(x86_siginfo_fixup): Use is_64bit_tdesc.
[__x86_64__] (tdesc_amd64_linux, tdesc_amd64_avx_linux)
(tdesc_x32_avx_linux, tdesc_x32_linux)
(tdesc_i386_linux, tdesc_i386_mmx_linux, tdesc_i386_avx_linux):
Declare.
(x86_linux_update_xmltarget): Delete.
(I386_LINUX_XSAVE_XCR0_OFFSET): Define.
(have_ptrace_getfpxregs, have_ptrace_getregset): New.
(AMD64_LINUX_USER64_CS): New.
(x86_linux_read_description): New, based on
x86_linux_update_xmltarget.
(same_process_callback): New.
(x86_arch_setup_process_callback): New.
(x86_linux_update_xmltarget): New.
(x86_regsets_info): New.
(amd64_linux_regs_info): New.
(i386_linux_usrregs_info): New.
(i386_linux_regs_info): New.
(x86_linux_regs_info): New.
(x86_arch_setup): Reimplement.
(x86_install_fast_tracepoint_jump_pad): Use is_64bit_tdesc.
(x86_emit_ops): Ditto.
(the_low_target): Adjust. Install x86_linux_regs_info,
x86_cannot_fetch_register, and x86_cannot_store_register.
(initialize_low_arch): New.
* linux-ia64-low.c (tdesc_ia64): Declare.
(ia64_fetch_register): Adjust.
(ia64_usrregs_info, regs_info): New globals.
(ia64_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-sparc-low.c (tdesc_sparc64): Declare.
(sparc_fill_gregset_to_stack, sparc_store_gregset_from_stack):
Adjust.
(sparc_arch_setup): New function.
(sparc_regsets_info, sparc_usrregs_info, regs_info): New globals.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-ppc-low.c (tdesc_powerpc_32l, tdesc_powerpc_altivec32l)
(tdesc_powerpc_cell32l, tdesc_powerpc_vsx32l)
(tdesc_powerpc_isa205_32l, tdesc_powerpc_isa205_altivec32l)
(tdesc_powerpc_isa205_vsx32l, tdesc_powerpc_e500l)
(tdesc_powerpc_64l, tdesc_powerpc_altivec64l)
(tdesc_powerpc_cell64l, tdesc_powerpc_vsx64l)
(tdesc_powerpc_isa205_64l, tdesc_powerpc_isa205_altivec64l)
(tdesc_powerpc_isa205_vsx64l): Declare.
(ppc_cannot_store_register, ppc_collect_ptrace_register)
(ppc_supply_ptrace_register, parse_spufs_run, ppc_get_pc)
(ppc_set_pc, ppc_get_hwcap): Adjust.
(ppc_usrregs_info): Forward declare.
(!__powerpc64__) ppc_regmap_adjusted: New global.
(ppc_arch_setup): Adjust to the current process'es target
description.
(ppc_fill_vsxregset, ppc_store_vsxregset, ppc_fill_vrregset)
(ppc_store_vrregset, ppc_fill_evrregset, ppc_store_evrregse)
(ppc_store_evrregset): Adjust.
(target_regsets): Rename to ...
(ppc_regsets): ... this, and make static.
(ppc_usrregs_info, ppc_regsets_info, regs_info): New globals.
(ppc_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-s390-low.c (tdesc_s390_linux32, tdesc_s390_linux32v1)
(tdesc_s390_linux32v2, tdesc_s390_linux64, tdesc_s390_linux64v1)
(tdesc_s390_linux64v2, tdesc_s390x_linux64, tdesc_s390x_linux64v1)
(tdesc_s390x_linux64v2): Declare.
(s390_collect_ptrace_register, s390_supply_ptrace_register)
(s390_fill_gregset, s390_store_last_break): Adjust.
(target_regsets): Rename to ...
(s390_regsets): ... this, and make static.
(s390_get_pc, s390_set_pc): Adjust.
(s390_get_hwcap): New target_desc parameter, and use it.
[__s390x__] (have_hwcap_s390_high_gprs): New global.
(s390_arch_setup): Adjust to set the current process'es target
description. Don't adjust the regmap.
(s390_usrregs_info, s390_regsets_info, regs_info): New globals.
[__s390x__] (s390_usrregs_info_3264, s390_regsets_info_3264)
(regs_info_3264): New globals.
(s390_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-mips-low.c (tdesc_mips_linux, tdesc_mips_dsp_linux)
(tdesc_mips64_linux, tdesc_mips64_dsp_linux): Declare.
[__mips64] (init_registers_mips_linux)
(init_registers_mips_dsp_linux): Delete defines.
[__mips64] (tdesc_mips_linux, tdesc_mips_dsp_linux): New defines.
(have_dsp): New global.
(mips_read_description): New, based on mips_arch_setup.
(mips_arch_setup): Reimplement.
(get_usrregs_info): New function.
(mips_cannot_fetch_register, mips_cannot_store_register)
(mips_get_pc, mips_set_pc, mips_fill_gregset, mips_store_gregset)
(mips_fill_fpregset, mips_store_fpregset): Adjust.
(target_regsets): Rename to ...
(mips_regsets): ... this, and make static.
(mips_regsets_info, mips_dsp_usrregs_info, mips_usrregs_info)
(dsp_regs_info, regs_info): New globals.
(mips_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-arm-low.c (tdesc_arm, tdesc_arm_with_iwmmxt)
(tdesc_arm_with_vfpv2, tdesc_arm_with_vfpv3, tdesc_arm_with_neon):
Declare.
(arm_fill_vfpregset, arm_store_vfpregset): Adjust.
(arm_read_description): New, with bits factored from
arm_arch_setup.
(arm_arch_setup): Reimplement.
(target_regsets): Rename to ...
(arm_regsets): ... this, and make static.
(arm_regsets_info, arm_usrregs_info, regs_info): New globals.
(arm_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-m68k-low.c (tdesc_m68k): Declare.
(target_regsets): Rename to ...
(m68k_regsets): ... this, and make static.
(m68k_regsets_info, m68k_usrregs_info, regs_info): New globals.
(m68k_regs_info): New function.
(m68k_arch_setup): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-sh-low.c (tdesc_sharch): Declare.
(target_regsets): Rename to ...
(sh_regsets): ... this, and make static.
(sh_regsets_info, sh_usrregs_info, regs_info): New globals.
(sh_regs_info, sh_arch_setup): New functions.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-bfin-low.c (tdesc_bfin): Declare.
(bfin_arch_setup): New function.
(bfin_usrregs_info, regs_info): New globals.
(bfin_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-cris-low.c (tdesc_cris): Declare.
(cris_arch_setup): New function.
(cris_usrregs_info, regs_info): New globals.
(cris_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-cris-low.c (tdesc_crisv32): Declare.
(cris_arch_setup): New function.
(cris_regsets_info, cris_usrregs_info, regs_info): New globals.
(cris_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-m32r-low.c (tdesc_m32r): Declare.
(m32r_arch_setup): New function.
(m32r_usrregs_info, regs_info): New globals.
(m32r_regs_info): Adjust.
(initialize_low_arch): New function.
* linux-tic6x-low.c (tdesc_tic6x_c64xp_linux)
(tdesc_tic6x_c64x_linux, tdesc_tic6x_c62x_linux): Declare.
(tic6x_usrregs_info): Forward declare.
(tic6x_read_description): New function, based on ...
(tic6x_arch_setup): ... this. Reimplement.
(target_regsets): Rename to ...
(tic6x_regsets): ... this, and make static.
(tic6x_regsets_info, tic6x_usrregs_info, regs_info): New globals.
(tic6x_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-xtensa-low.c (tdesc_xtensa): Declare.
(xtensa_fill_gregset, xtensa_store_gregset): Adjust.
(target_regsets): Rename to ...
(xtensa_regsets): ... this, and make static.
(xtensa_regsets_info, xtensa_usrregs_info, regs_info): New
globals.
(xtensa_arch_setup, xtensa_regs_info): New functions.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-nios2-low.c (tdesc_nios2_linux): Declare.
(nios2_arch_setup): Set the current process'es tdesc.
(target_regsets): Rename to ...
(nios2_regsets): ... this.
(nios2_regsets_info, nios2_usrregs_info, regs_info): New globals.
(nios2_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-aarch64-low.c (tdesc_aarch64): Declare.
(aarch64_arch_setup): Set the current process'es tdesc.
(target_regsets): Rename to ...
(aarch64_regsets): ... this.
(aarch64_regsets_info, aarch64_usrregs_info, regs_info): New globals.
(aarch64_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-tile-low.c (tdesc_tilegx, tdesc_tilegx32): Declare
globals.
(target_regsets): Rename to ...
(tile_regsets): ... this.
(tile_regsets_info, tile_usrregs_info, regs_info): New globals.
(tile_regs_info): New function.
(tile_arch_setup): Set the current process'es tdesc.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* spu-low.c (tdesc_spu): Declare.
(spu_create_inferior, spu_attach): Set the new process'es tdesc.
* win32-arm-low.c (tdesc_arm): Declare.
(arm_arch_setup): New function.
(the_low_target): Install arm_arch_setup instead of
init_registers_arm.
* win32-i386-low.c (tdesc_i386, tdesc_amd64): Declare.
(init_windows_x86): Rename to ...
(i386_arch_setup): ... this. Set `win32_tdesc'.
(the_low_target): Adjust.
* win32-low.c (win32_tdesc): New global.
(child_add_thread): Don't create the thread cache here.
(do_initial_child_stuff): Set the new process'es tdesc.
* win32-low.h (struct target_desc): Forward declare.
(win32_tdesc): Declare.
* lynx-i386-low.c (tdesc_i386): Declare global.
(lynx_i386_arch_setup): Set `lynx_tdesc'.
* lynx-low.c (lynx_tdesc): New global.
(lynx_add_process): Set the new process'es tdesc.
* lynx-low.h (struct target_desc): Forward declare.
(lynx_tdesc): Declare global.
* lynx-ppc-low.c (tdesc_powerpc_32): Declare global.
(lynx_ppc_arch_setup): Set `lynx_tdesc'.
* nto-low.c (nto_tdesc): New global.
(do_attach): Set the new process'es tdesc.
* nto-low.h (struct target_desc): Forward declare.
(nto_tdesc): Declare.
* nto-x86-low.c (tdesc_i386): Declare.
(nto_x86_arch_setup): Set `nto_tdesc'.
gdb/
2013-06-07 Pedro Alves <palves@redhat.com>
* regformats/regdat.sh: Output #include tdesc.h. Make globals
static. Output a global target description pointer.
(init_registers_${name}): Adjust to initialize a
target description structure.
2013-06-07 10:46:59 +00:00
|
|
|
|
|
|
|
void
|
|
|
|
initialize_low_arch (void)
|
|
|
|
{
|
|
|
|
init_registers_aarch64 ();
|
|
|
|
|
2015-08-04 13:34:14 +00:00
|
|
|
initialize_low_arch_aarch32 ();
|
|
|
|
|
[GDBserver] Multi-process + multi-arch
This patch makes GDBserver support multi-process + biarch.
Currently, if you're debugging more than one process at once with a
single gdbserver (in extended-remote mode), then all processes must
have the same architecture (e.g., 64-bit vs 32-bit). Otherwise, you
see this:
Added inferior 2
[Switching to inferior 2 [<null>] (<noexec>)]
Reading symbols from /home/pedro/gdb/tests/main32...done.
Temporary breakpoint 2 at 0x4004cf: main. (2 locations)
Starting program: /home/pedro/gdb/tests/main32
warning: Selected architecture i386 is not compatible with reported target architecture i386:x86-64
warning: Architecture rejected target-supplied description
Remote 'g' packet reply is too long: 000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000090cfffff0000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000000000000000000b042f7460000000000020000230000002b0000002b0000002b000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000007f03000000000000ffff0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000801f00003b0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
... etc, etc ...
Even though the process was running a 32-bit program, GDBserver sent
back to GDB a register set in 64-bit layout.
A patch (http://sourceware.org/ml/gdb-patches/2012-11/msg00228.html) a
while ago made GDB track a target_gdbarch per inferior, and as
consequence, fetch a target description per-inferior. This patch is
the GDBserver counterpart, that makes GDBserver keep track of each
process'es XML target description and register layout. So in the
example above, GDBserver will send the correct register set in 32-bit
layout to GDB.
A new "struct target_desc" object (tdesc for short) is added, that
holds the target description and register layout information about
each process. Each `struct process_info' holds a pointer to a target
description. The regcache also gains a pointer to a target
description, mainly for convenience, and parallel with GDB (and
possible future support for programs that flip processor modes).
The low target's arch_setup routines are responsible for setting the
process'es correct tdesc. This isn't that much different to how
things were done before, except that instead of detecting the inferior
process'es architecture and calling the corresponding
init_registers_FOO routine, which would change the regcache layout
globals and recreate the threads' regcaches, the regcache.c globals
are gone, and the init_registers_$BAR routines now each initialize a
separate global struct target_desc object (one for each arch variant
GDBserver supports), and so all the init_registers_$BAR routines that
are built into GDBserver are called early at GDBserver startup time
(similarly to how GDB handles its built-in target descriptions), and
then the arch_setup routine is responsible for making
process_info->tdesc point to one of these target description globals.
The regcache module is all parameterized to get the regcache's layout
from the tdesc object instead of the old register_bytes, etc. globals.
The threads' regcaches are now created lazily. The old scheme where
we created each of them when we added a new thread doesn't work
anymore, because we add the main thread/lwp before we see it stop for
the first time, and it is only when we see the thread stop for the
first time that we have a chance of determining the inferior's
architecture (through the_low_target.arch_setup). Therefore when we
add the main thread we don't know which architecture/tdesc its
regcache should have.
This patch makes the gdb.multi/multi-arch.exp test now pass against
(extended-remote) GDBserver. It currently fails, without this patch.
The IPA also uses the regcache, so it gains a new global struct
target_desc pointer, which points at the description of the process it
is loaded in.
Re. the linux-low.c & friends changes. Since the register map
etc. may differ between processes (64-bit vs 32-bit) etc., the
linux_target_ops num_regs, regmap and regset_bitmap data fields are no
longer sufficient. A new method is added in their place that returns
a pointer to a new struct that includes all info linux-low.c needs to
access registers of the current inferior.
The patch/discussion that originally introduced
linux-low.c:disabled_regsets mentions that the disabled_regsets set
may be different per mode (in a biarch setup), and indeed that is
cleared whenever we start a new (first) inferior, so that global is
moved as well behind the new `struct regs_info'.
On the x86 side:
I simply replaced the i387-fp.c:num_xmm_registers global with a check
for 64-bit or 32-bit process, which is equivalent to how the global
was set. This avoided coming up with some more general mechanism that
would work for all targets that use this module (GNU/Linux, Windows,
etc.).
Tested:
GNU/Linux IA64
GNU/Linux MIPS64
GNU/Linux PowerPC (Fedora 16)
GNU/Linux s390x (Fedora 16)
GNU/Linux sparc64 (Debian)
GNU/Linux x86_64, -m64 and -m32 (Fedora 17)
Cross built, and smoke tested:
i686-w64-mingw32, under Wine.
GNU/Linux TI C6x, by Yao Qi.
Cross built but otherwise not tested:
aarch64-linux-gnu
arm-linux-gnu
m68k-linux
nios2-linux-gnu
sh-linux-gnu
spu
tilegx-unknown-linux-gnu
Completely untested:
GNU/Linux Blackfin
GNU/Linux CRIS
GNU/Linux CRISv32
GNU/Linux TI Xtensa
GNU/Linux M32R
LynxOS
QNX NTO
gdb/gdbserver/
2013-06-07 Pedro Alves <palves@redhat.com>
* Makefile.in (OBS): Add tdesc.o.
(IPA_OBJS): Add tdesc-ipa.o.
(tdesc-ipa.o): New rule.
* ax.c (gdb_eval_agent_expr): Adjust register_size call to new
interface.
* linux-low.c (new_inferior): Delete.
(disabled_regsets, num_regsets): Delete.
(linux_add_process): Adjust to set the new per-process
new_inferior flag.
(linux_detach_one_lwp): Adjust to call regcache_invalidate_thread.
(linux_wait_for_lwp): Adjust. Only call arch_setup if the event
was a stop. When calling arch_setup, switch the current inferior
to the thread that got an event.
(linux_resume_one_lwp): Adjust to call regcache_invalidate_thread.
(regsets_fetch_inferior_registers)
(regsets_store_inferior_registers): New regsets_info parameter.
Adjust to use it.
(linux_register_in_regsets): New regs_info parameter. Adjust to
use it.
(register_addr, fetch_register, store_register): New usrregs_info
parameter. Adjust to use it.
(usr_fetch_inferior_registers, usr_store_inferior_registers): New
parameter regs_info. Adjust to use it.
(linux_fetch_registers): Get the current inferior's regs_info, and
adjust to use it.
(linux_store_registers): Ditto.
[HAVE_LINUX_REGSETS] (initialize_regsets_info): New.
(initialize_low): Don't initialize the target_regsets here. Call
initialize_low_arch.
* linux-low.h (target_regsets): Delete declaration.
(struct regsets_info): New.
(struct usrregs_info): New.
(struct regs_info): New.
(struct process_info_private) <new_inferior>: New field.
(struct linux_target_ops): Delete the num_regs, regmap, and
regset_bitmap fields. New field regs_info.
[HAVE_LINUX_REGSETS] (initialize_regsets_info): Declare.
* i387-fp.c (num_xmm_registers): Delete.
(i387_cache_to_fsave, i387_fsave_to_cache): Adjust find_regno
calls to new interface.
(i387_cache_to_fxsave, i387_cache_to_xsave, i387_fxsave_to_cache)
(i387_xsave_to_cache): Adjust find_regno calls to new interface.
Infer the number of xmm registers from the regcache's target
description.
* i387-fp.h (num_xmm_registers): Delete.
* inferiors.c (add_thread): Don't install the thread's regcache
here.
* proc-service.c (gregset_info): Fetch the current inferior's
regs_info. Adjust to use it.
* regcache.c: Include tdesc.h.
(register_bytes, reg_defs, num_registers)
(gdbserver_expedite_regs): Delete.
(get_thread_regcache): If the thread doesn't have a regcache yet,
create one, instead of aborting gdbserver.
(regcache_invalidate_one): Rename to ...
(regcache_invalidate_thread): ... this.
(regcache_invalidate_one): New.
(regcache_invalidate): Only invalidate registers of the current
process.
(init_register_cache): Add target_desc parameter, and use it.
(new_register_cache): Ditto. Assert the target description has a
non zero registers_size.
(regcache_cpy): Add assertions. Adjust.
(realloc_register_cache, set_register_cache): Delete.
(registers_to_string, registers_from_string): Adjust.
(find_register_by_name, find_regno, find_register_by_number)
(register_cache_size): Add target_desc parameter, and use it.
(free_register_cache_thread, free_register_cache_thread_one)
(regcache_release, register_cache_size): New.
(register_size): Add target_desc parameter, and use it.
(register_data, supply_register, supply_register_zeroed)
(supply_regblock, supply_register_by_name, collect_register)
(collect_register_as_string, collect_register_by_name): Adjust.
* regcache.h (struct target_desc): Forward declare.
(struct regcache) <tdesc>: New field.
(init_register_cache, new_register_cache): Add target_desc
parameter.
(regcache_invalidate_thread): Declare.
(regcache_invalidate_one): Delete declaration.
(regcache_release): Declare.
(find_register_by_number, register_cache_size, register_size)
(find_regno): Add target_desc parameter.
(gdbserver_expedite_regs, gdbserver_xmltarget): Delete
declarations.
* remote-utils.c: Include tdesc.h.
(outreg, prepare_resume_reply): Adjust.
* server.c: Include tdesc.h.
(gdbserver_xmltarget): Delete declaration.
(get_features_xml, process_serial_event): Adjust.
* server.h [IN_PROCESS_AGENT] (struct target_desc): Forward
declare.
(struct process_info) <tdesc>: New field.
(ipa_tdesc): Declare.
* tdesc.c: New file.
* tdesc.h: New file.
* tracepoint.c: Include tdesc.h.
[IN_PROCESS_AGENT] (ipa_tdesc): Define.
(get_context_regcache): Adjust to pass ipa_tdesc down.
(do_action_at_tracepoint): Adjust to get the register cache size
from the context regcache's description.
(traceframe_walk_blocks): Adjust to get the register cache size
from the current trace frame's description.
(traceframe_get_pc): Adjust to get current trace frame's
description and pass it down.
(gdb_collect): Adjust to get the register cache size from the
IPA's description.
* linux-amd64-ipa.c (tdesc_amd64_linux): Declare.
(gdbserver_xmltarget): Delete.
(initialize_low_tracepoint): Set the ipa's target description.
* linux-i386-ipa.c (tdesc_i386_linux): Declare.
(initialize_low_tracepoint): Set the ipa's target description.
* linux-x86-low.c: Include tdesc.h.
[__x86_64__] (is_64bit_tdesc): New.
(ps_get_thread_area, x86_get_thread_area): Use it.
(i386_cannot_store_register): Rename to ...
(x86_cannot_store_register): ... this. Use is_64bit_tdesc.
(i386_cannot_fetch_register): Rename to ...
(x86_cannot_fetch_register): ... this. Use is_64bit_tdesc.
(x86_fill_gregset, x86_store_gregset): Adjust register_size calls
to new interface.
(target_regsets): Rename to ...
(x86_regsets): ... this.
(x86_get_pc, x86_set_pc): Adjust register_size calls to new
interface.
(x86_siginfo_fixup): Use is_64bit_tdesc.
[__x86_64__] (tdesc_amd64_linux, tdesc_amd64_avx_linux)
(tdesc_x32_avx_linux, tdesc_x32_linux)
(tdesc_i386_linux, tdesc_i386_mmx_linux, tdesc_i386_avx_linux):
Declare.
(x86_linux_update_xmltarget): Delete.
(I386_LINUX_XSAVE_XCR0_OFFSET): Define.
(have_ptrace_getfpxregs, have_ptrace_getregset): New.
(AMD64_LINUX_USER64_CS): New.
(x86_linux_read_description): New, based on
x86_linux_update_xmltarget.
(same_process_callback): New.
(x86_arch_setup_process_callback): New.
(x86_linux_update_xmltarget): New.
(x86_regsets_info): New.
(amd64_linux_regs_info): New.
(i386_linux_usrregs_info): New.
(i386_linux_regs_info): New.
(x86_linux_regs_info): New.
(x86_arch_setup): Reimplement.
(x86_install_fast_tracepoint_jump_pad): Use is_64bit_tdesc.
(x86_emit_ops): Ditto.
(the_low_target): Adjust. Install x86_linux_regs_info,
x86_cannot_fetch_register, and x86_cannot_store_register.
(initialize_low_arch): New.
* linux-ia64-low.c (tdesc_ia64): Declare.
(ia64_fetch_register): Adjust.
(ia64_usrregs_info, regs_info): New globals.
(ia64_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-sparc-low.c (tdesc_sparc64): Declare.
(sparc_fill_gregset_to_stack, sparc_store_gregset_from_stack):
Adjust.
(sparc_arch_setup): New function.
(sparc_regsets_info, sparc_usrregs_info, regs_info): New globals.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-ppc-low.c (tdesc_powerpc_32l, tdesc_powerpc_altivec32l)
(tdesc_powerpc_cell32l, tdesc_powerpc_vsx32l)
(tdesc_powerpc_isa205_32l, tdesc_powerpc_isa205_altivec32l)
(tdesc_powerpc_isa205_vsx32l, tdesc_powerpc_e500l)
(tdesc_powerpc_64l, tdesc_powerpc_altivec64l)
(tdesc_powerpc_cell64l, tdesc_powerpc_vsx64l)
(tdesc_powerpc_isa205_64l, tdesc_powerpc_isa205_altivec64l)
(tdesc_powerpc_isa205_vsx64l): Declare.
(ppc_cannot_store_register, ppc_collect_ptrace_register)
(ppc_supply_ptrace_register, parse_spufs_run, ppc_get_pc)
(ppc_set_pc, ppc_get_hwcap): Adjust.
(ppc_usrregs_info): Forward declare.
(!__powerpc64__) ppc_regmap_adjusted: New global.
(ppc_arch_setup): Adjust to the current process'es target
description.
(ppc_fill_vsxregset, ppc_store_vsxregset, ppc_fill_vrregset)
(ppc_store_vrregset, ppc_fill_evrregset, ppc_store_evrregse)
(ppc_store_evrregset): Adjust.
(target_regsets): Rename to ...
(ppc_regsets): ... this, and make static.
(ppc_usrregs_info, ppc_regsets_info, regs_info): New globals.
(ppc_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-s390-low.c (tdesc_s390_linux32, tdesc_s390_linux32v1)
(tdesc_s390_linux32v2, tdesc_s390_linux64, tdesc_s390_linux64v1)
(tdesc_s390_linux64v2, tdesc_s390x_linux64, tdesc_s390x_linux64v1)
(tdesc_s390x_linux64v2): Declare.
(s390_collect_ptrace_register, s390_supply_ptrace_register)
(s390_fill_gregset, s390_store_last_break): Adjust.
(target_regsets): Rename to ...
(s390_regsets): ... this, and make static.
(s390_get_pc, s390_set_pc): Adjust.
(s390_get_hwcap): New target_desc parameter, and use it.
[__s390x__] (have_hwcap_s390_high_gprs): New global.
(s390_arch_setup): Adjust to set the current process'es target
description. Don't adjust the regmap.
(s390_usrregs_info, s390_regsets_info, regs_info): New globals.
[__s390x__] (s390_usrregs_info_3264, s390_regsets_info_3264)
(regs_info_3264): New globals.
(s390_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-mips-low.c (tdesc_mips_linux, tdesc_mips_dsp_linux)
(tdesc_mips64_linux, tdesc_mips64_dsp_linux): Declare.
[__mips64] (init_registers_mips_linux)
(init_registers_mips_dsp_linux): Delete defines.
[__mips64] (tdesc_mips_linux, tdesc_mips_dsp_linux): New defines.
(have_dsp): New global.
(mips_read_description): New, based on mips_arch_setup.
(mips_arch_setup): Reimplement.
(get_usrregs_info): New function.
(mips_cannot_fetch_register, mips_cannot_store_register)
(mips_get_pc, mips_set_pc, mips_fill_gregset, mips_store_gregset)
(mips_fill_fpregset, mips_store_fpregset): Adjust.
(target_regsets): Rename to ...
(mips_regsets): ... this, and make static.
(mips_regsets_info, mips_dsp_usrregs_info, mips_usrregs_info)
(dsp_regs_info, regs_info): New globals.
(mips_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-arm-low.c (tdesc_arm, tdesc_arm_with_iwmmxt)
(tdesc_arm_with_vfpv2, tdesc_arm_with_vfpv3, tdesc_arm_with_neon):
Declare.
(arm_fill_vfpregset, arm_store_vfpregset): Adjust.
(arm_read_description): New, with bits factored from
arm_arch_setup.
(arm_arch_setup): Reimplement.
(target_regsets): Rename to ...
(arm_regsets): ... this, and make static.
(arm_regsets_info, arm_usrregs_info, regs_info): New globals.
(arm_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-m68k-low.c (tdesc_m68k): Declare.
(target_regsets): Rename to ...
(m68k_regsets): ... this, and make static.
(m68k_regsets_info, m68k_usrregs_info, regs_info): New globals.
(m68k_regs_info): New function.
(m68k_arch_setup): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-sh-low.c (tdesc_sharch): Declare.
(target_regsets): Rename to ...
(sh_regsets): ... this, and make static.
(sh_regsets_info, sh_usrregs_info, regs_info): New globals.
(sh_regs_info, sh_arch_setup): New functions.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-bfin-low.c (tdesc_bfin): Declare.
(bfin_arch_setup): New function.
(bfin_usrregs_info, regs_info): New globals.
(bfin_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-cris-low.c (tdesc_cris): Declare.
(cris_arch_setup): New function.
(cris_usrregs_info, regs_info): New globals.
(cris_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-cris-low.c (tdesc_crisv32): Declare.
(cris_arch_setup): New function.
(cris_regsets_info, cris_usrregs_info, regs_info): New globals.
(cris_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-m32r-low.c (tdesc_m32r): Declare.
(m32r_arch_setup): New function.
(m32r_usrregs_info, regs_info): New globals.
(m32r_regs_info): Adjust.
(initialize_low_arch): New function.
* linux-tic6x-low.c (tdesc_tic6x_c64xp_linux)
(tdesc_tic6x_c64x_linux, tdesc_tic6x_c62x_linux): Declare.
(tic6x_usrregs_info): Forward declare.
(tic6x_read_description): New function, based on ...
(tic6x_arch_setup): ... this. Reimplement.
(target_regsets): Rename to ...
(tic6x_regsets): ... this, and make static.
(tic6x_regsets_info, tic6x_usrregs_info, regs_info): New globals.
(tic6x_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-xtensa-low.c (tdesc_xtensa): Declare.
(xtensa_fill_gregset, xtensa_store_gregset): Adjust.
(target_regsets): Rename to ...
(xtensa_regsets): ... this, and make static.
(xtensa_regsets_info, xtensa_usrregs_info, regs_info): New
globals.
(xtensa_arch_setup, xtensa_regs_info): New functions.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-nios2-low.c (tdesc_nios2_linux): Declare.
(nios2_arch_setup): Set the current process'es tdesc.
(target_regsets): Rename to ...
(nios2_regsets): ... this.
(nios2_regsets_info, nios2_usrregs_info, regs_info): New globals.
(nios2_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-aarch64-low.c (tdesc_aarch64): Declare.
(aarch64_arch_setup): Set the current process'es tdesc.
(target_regsets): Rename to ...
(aarch64_regsets): ... this.
(aarch64_regsets_info, aarch64_usrregs_info, regs_info): New globals.
(aarch64_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-tile-low.c (tdesc_tilegx, tdesc_tilegx32): Declare
globals.
(target_regsets): Rename to ...
(tile_regsets): ... this.
(tile_regsets_info, tile_usrregs_info, regs_info): New globals.
(tile_regs_info): New function.
(tile_arch_setup): Set the current process'es tdesc.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* spu-low.c (tdesc_spu): Declare.
(spu_create_inferior, spu_attach): Set the new process'es tdesc.
* win32-arm-low.c (tdesc_arm): Declare.
(arm_arch_setup): New function.
(the_low_target): Install arm_arch_setup instead of
init_registers_arm.
* win32-i386-low.c (tdesc_i386, tdesc_amd64): Declare.
(init_windows_x86): Rename to ...
(i386_arch_setup): ... this. Set `win32_tdesc'.
(the_low_target): Adjust.
* win32-low.c (win32_tdesc): New global.
(child_add_thread): Don't create the thread cache here.
(do_initial_child_stuff): Set the new process'es tdesc.
* win32-low.h (struct target_desc): Forward declare.
(win32_tdesc): Declare.
* lynx-i386-low.c (tdesc_i386): Declare global.
(lynx_i386_arch_setup): Set `lynx_tdesc'.
* lynx-low.c (lynx_tdesc): New global.
(lynx_add_process): Set the new process'es tdesc.
* lynx-low.h (struct target_desc): Forward declare.
(lynx_tdesc): Declare global.
* lynx-ppc-low.c (tdesc_powerpc_32): Declare global.
(lynx_ppc_arch_setup): Set `lynx_tdesc'.
* nto-low.c (nto_tdesc): New global.
(do_attach): Set the new process'es tdesc.
* nto-low.h (struct target_desc): Forward declare.
(nto_tdesc): Declare.
* nto-x86-low.c (tdesc_i386): Declare.
(nto_x86_arch_setup): Set `nto_tdesc'.
gdb/
2013-06-07 Pedro Alves <palves@redhat.com>
* regformats/regdat.sh: Output #include tdesc.h. Make globals
static. Output a global target description pointer.
(init_registers_${name}): Adjust to initialize a
target description structure.
2013-06-07 10:46:59 +00:00
|
|
|
initialize_regsets_info (&aarch64_regsets_info);
|
|
|
|
}
|