1999-04-16 01:35:26 +00:00
|
|
|
|
/* Memory-access and commands for "inferior" process, for GDB.
|
2001-03-06 08:22:02 +00:00
|
|
|
|
Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
|
|
|
|
|
1996, 1997, 1998, 1999, 2000, 2001
|
1999-04-16 01:35:26 +00:00
|
|
|
|
Free Software Foundation, Inc.
|
|
|
|
|
|
1999-07-07 20:19:36 +00:00
|
|
|
|
This file is part of GDB.
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
1999-07-07 20:19:36 +00:00
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
|
|
|
(at your option) any later version.
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
1999-07-07 20:19:36 +00:00
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
|
GNU General Public License for more details.
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
1999-07-07 20:19:36 +00:00
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
|
along with this program; if not, write to the Free Software
|
|
|
|
|
Foundation, Inc., 59 Temple Place - Suite 330,
|
|
|
|
|
Boston, MA 02111-1307, USA. */
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
|
|
|
|
#include "defs.h"
|
|
|
|
|
#include <signal.h>
|
|
|
|
|
#include "gdb_string.h"
|
|
|
|
|
#include "symtab.h"
|
|
|
|
|
#include "gdbtypes.h"
|
|
|
|
|
#include "frame.h"
|
|
|
|
|
#include "inferior.h"
|
|
|
|
|
#include "environ.h"
|
|
|
|
|
#include "value.h"
|
|
|
|
|
#include "gdbcmd.h"
|
2001-01-27 00:43:26 +00:00
|
|
|
|
#include "symfile.h"
|
1999-04-16 01:35:26 +00:00
|
|
|
|
#include "gdbcore.h"
|
|
|
|
|
#include "target.h"
|
|
|
|
|
#include "language.h"
|
|
|
|
|
#include "symfile.h"
|
|
|
|
|
#include "objfiles.h"
|
* completer.c (gdb_completer_loc_break_characters): New variable.
(line_completion_function): If we are completing on locations,
back up the start of word pointer past all characters which can
appear in a location spec.
(location_completer): New function.
* completer.h: Add prototype for location_completer.
* symtab.c (make_source_files_completion_list)
(add_filename_to_list, not_interesting_fname): New functions.
(filename_seen): New function, body extracted from
output_source_filename.
(output_source_filename): Call filename_seen to check if the file
was already printed.
(make_symbol_completion_list): If TEXT includes a
double-quoted string, return an empty list, not NULL.
(make_file_symbol_completion_list): New function, similar to
make_symbol_completion_list but with an additional argument
SRCFILE.
* symtab.h (make_file_symbol_completion_list)
(make_source_files_completion_list): Add prototypes.
* breakpoint.c (_initialize_breakpoint): Make location_completer
be the completion function for all commands which set breakpoints
and watchpoints.
(top-level): #include "completer.h".
* tracepoint.c (_initialize_tracepoint): Make location_completer
be the completion function for the "trace" command.
(top-level): #include "completer.h".
* printcmd.c (_initialize_printcmd): Make location_completer be
the completion function for the "print", "inspect", "call", and
"disassemble" commands.
(top-level): #include "completer.h".
* infcmd.c (_initialize_infcmd): Make location_completer be the
completion function for the "go", "jump", and "until" commands.
(top-level): #include "completer.h".
2001-06-11 16:05:25 +00:00
|
|
|
|
#include "completer.h"
|
2000-02-03 04:14:45 +00:00
|
|
|
|
#ifdef UI_OUT
|
|
|
|
|
#include "ui-out.h"
|
|
|
|
|
#endif
|
1999-09-28 21:55:21 +00:00
|
|
|
|
#include "event-top.h"
|
1999-08-09 21:36:23 +00:00
|
|
|
|
#include "parser-defs.h"
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
|
|
|
|
/* Functions exported for general use: */
|
|
|
|
|
|
2000-05-28 01:12:42 +00:00
|
|
|
|
void nofp_registers_info (char *, int);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
2000-05-28 01:12:42 +00:00
|
|
|
|
void all_registers_info (char *, int);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
2000-05-28 01:12:42 +00:00
|
|
|
|
void registers_info (char *, int);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
|
|
|
|
/* Local functions: */
|
|
|
|
|
|
2000-05-28 01:12:42 +00:00
|
|
|
|
void continue_command (char *, int);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
1999-11-09 01:23:30 +00:00
|
|
|
|
static void print_return_value (int struct_return, struct type *value_type);
|
|
|
|
|
|
2000-05-28 01:12:42 +00:00
|
|
|
|
static void finish_command_continuation (struct continuation_arg *);
|
1999-07-05 17:58:44 +00:00
|
|
|
|
|
2000-05-28 01:12:42 +00:00
|
|
|
|
static void until_next_command (int);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
2000-05-28 01:12:42 +00:00
|
|
|
|
static void until_command (char *, int);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
2000-05-28 01:12:42 +00:00
|
|
|
|
static void path_info (char *, int);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
2000-05-28 01:12:42 +00:00
|
|
|
|
static void path_command (char *, int);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
2000-05-28 01:12:42 +00:00
|
|
|
|
static void unset_command (char *, int);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
2000-05-28 01:12:42 +00:00
|
|
|
|
static void float_info (char *, int);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
2000-05-28 01:12:42 +00:00
|
|
|
|
static void detach_command (char *, int);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
1999-08-09 21:36:23 +00:00
|
|
|
|
static void interrupt_target_command (char *args, int from_tty);
|
|
|
|
|
|
2000-05-28 01:12:42 +00:00
|
|
|
|
static void unset_environment_command (char *, int);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
2000-05-28 01:12:42 +00:00
|
|
|
|
static void set_environment_command (char *, int);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
2000-05-28 01:12:42 +00:00
|
|
|
|
static void environment_info (char *, int);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
2000-05-28 01:12:42 +00:00
|
|
|
|
static void program_info (char *, int);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
2000-05-28 01:12:42 +00:00
|
|
|
|
static void finish_command (char *, int);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
2000-05-28 01:12:42 +00:00
|
|
|
|
static void signal_command (char *, int);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
2000-05-28 01:12:42 +00:00
|
|
|
|
static void jump_command (char *, int);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
2000-05-28 01:12:42 +00:00
|
|
|
|
static void step_1 (int, int, char *);
|
1999-12-07 03:56:43 +00:00
|
|
|
|
static void step_once (int skip_subroutines, int single_inst, int count);
|
|
|
|
|
static void step_1_continuation (struct continuation_arg *arg);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
2000-05-28 01:12:42 +00:00
|
|
|
|
void nexti_command (char *, int);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
2000-05-28 01:12:42 +00:00
|
|
|
|
void stepi_command (char *, int);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
2000-05-28 01:12:42 +00:00
|
|
|
|
static void next_command (char *, int);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
2000-05-28 01:12:42 +00:00
|
|
|
|
static void step_command (char *, int);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
2000-05-28 01:12:42 +00:00
|
|
|
|
static void run_command (char *, int);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
2000-05-28 01:12:42 +00:00
|
|
|
|
static void run_no_args_command (char *args, int from_tty);
|
1999-05-25 18:09:09 +00:00
|
|
|
|
|
2000-05-28 01:12:42 +00:00
|
|
|
|
static void go_command (char *line_no, int from_tty);
|
1999-05-25 18:09:09 +00:00
|
|
|
|
|
2000-05-28 01:12:42 +00:00
|
|
|
|
static int strip_bg_char (char **);
|
1999-07-05 17:58:44 +00:00
|
|
|
|
|
2000-05-28 01:12:42 +00:00
|
|
|
|
void _initialize_infcmd (void);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
|
|
|
|
#define GO_USAGE "Usage: go <location>\n"
|
|
|
|
|
|
2000-05-28 01:12:42 +00:00
|
|
|
|
static void breakpoint_auto_delete_contents (PTR);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
|
|
|
|
#define ERROR_NO_INFERIOR \
|
|
|
|
|
if (!target_has_execution) error ("The program is not being run.");
|
|
|
|
|
|
|
|
|
|
/* String containing arguments to give to the program, separated by spaces.
|
|
|
|
|
Empty string (pointer to '\0') means no args. */
|
|
|
|
|
|
|
|
|
|
static char *inferior_args;
|
|
|
|
|
|
|
|
|
|
/* File name for default use for standard in/out in the inferior. */
|
|
|
|
|
|
|
|
|
|
char *inferior_io_terminal;
|
|
|
|
|
|
|
|
|
|
/* Pid of our debugged inferior, or 0 if no inferior now.
|
|
|
|
|
Since various parts of infrun.c test this to see whether there is a program
|
|
|
|
|
being debugged it should be nonzero (currently 3 is used) for remote
|
|
|
|
|
debugging. */
|
|
|
|
|
|
2001-05-04 04:15:33 +00:00
|
|
|
|
ptid_t inferior_ptid;
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
|
|
|
|
/* Last signal that the inferior received (why it stopped). */
|
|
|
|
|
|
|
|
|
|
enum target_signal stop_signal;
|
|
|
|
|
|
|
|
|
|
/* Address at which inferior stopped. */
|
|
|
|
|
|
|
|
|
|
CORE_ADDR stop_pc;
|
|
|
|
|
|
|
|
|
|
/* Chain containing status of breakpoint(s) that we have stopped at. */
|
|
|
|
|
|
|
|
|
|
bpstat stop_bpstat;
|
|
|
|
|
|
|
|
|
|
/* Flag indicating that a command has proceeded the inferior past the
|
|
|
|
|
current breakpoint. */
|
|
|
|
|
|
|
|
|
|
int breakpoint_proceeded;
|
|
|
|
|
|
|
|
|
|
/* Nonzero if stopped due to a step command. */
|
|
|
|
|
|
|
|
|
|
int stop_step;
|
|
|
|
|
|
|
|
|
|
/* Nonzero if stopped due to completion of a stack dummy routine. */
|
|
|
|
|
|
|
|
|
|
int stop_stack_dummy;
|
|
|
|
|
|
|
|
|
|
/* Nonzero if stopped due to a random (unexpected) signal in inferior
|
|
|
|
|
process. */
|
|
|
|
|
|
|
|
|
|
int stopped_by_random_signal;
|
|
|
|
|
|
|
|
|
|
/* Range to single step within.
|
|
|
|
|
If this is nonzero, respond to a single-step signal
|
|
|
|
|
by continuing to step if the pc is in this range. */
|
|
|
|
|
|
1999-07-07 20:19:36 +00:00
|
|
|
|
CORE_ADDR step_range_start; /* Inclusive */
|
|
|
|
|
CORE_ADDR step_range_end; /* Exclusive */
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
|
|
|
|
/* Stack frame address as of when stepping command was issued.
|
|
|
|
|
This is how we know when we step into a subroutine call,
|
|
|
|
|
and how to set the frame for the breakpoint used to step out. */
|
|
|
|
|
|
|
|
|
|
CORE_ADDR step_frame_address;
|
|
|
|
|
|
|
|
|
|
/* Our notion of the current stack pointer. */
|
|
|
|
|
|
|
|
|
|
CORE_ADDR step_sp;
|
|
|
|
|
|
2000-11-10 19:27:45 +00:00
|
|
|
|
enum step_over_calls_kind step_over_calls;
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
|
|
|
|
/* If stepping, nonzero means step count is > 1
|
|
|
|
|
so don't print frame next time inferior stops
|
|
|
|
|
if it stops due to stepping. */
|
|
|
|
|
|
|
|
|
|
int step_multi;
|
|
|
|
|
|
|
|
|
|
/* Environment to use for running inferior,
|
|
|
|
|
in format described in environ.h. */
|
|
|
|
|
|
|
|
|
|
struct environ *inferior_environ;
|
|
|
|
|
|
2001-01-24 16:28:20 +00:00
|
|
|
|
/* Accessor routines. */
|
|
|
|
|
|
|
|
|
|
char *
|
|
|
|
|
get_inferior_args (void)
|
|
|
|
|
{
|
|
|
|
|
return inferior_args;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
char *
|
|
|
|
|
set_inferior_args (char *newargs)
|
|
|
|
|
{
|
|
|
|
|
char *saved_args = inferior_args;
|
|
|
|
|
|
|
|
|
|
inferior_args = newargs;
|
|
|
|
|
|
|
|
|
|
return saved_args;
|
|
|
|
|
}
|
1999-07-07 20:19:36 +00:00
|
|
|
|
|
1999-07-05 17:58:44 +00:00
|
|
|
|
/* This function detects whether or not a '&' character (indicating
|
|
|
|
|
background execution) has been added as *the last* of the arguments ARGS
|
|
|
|
|
of a command. If it has, it removes it and returns 1. Otherwise it
|
|
|
|
|
does nothing and returns 0. */
|
1999-07-07 20:19:36 +00:00
|
|
|
|
static int
|
2000-07-30 01:48:28 +00:00
|
|
|
|
strip_bg_char (char **args)
|
1999-07-05 17:58:44 +00:00
|
|
|
|
{
|
|
|
|
|
char *p = NULL;
|
1999-07-07 20:19:36 +00:00
|
|
|
|
|
1999-07-07 17:31:57 +00:00
|
|
|
|
p = strchr (*args, '&');
|
1999-07-07 20:19:36 +00:00
|
|
|
|
|
1999-07-07 17:31:57 +00:00
|
|
|
|
if (p)
|
1999-07-05 17:58:44 +00:00
|
|
|
|
{
|
|
|
|
|
if (p == (*args + strlen (*args) - 1))
|
|
|
|
|
{
|
1999-07-07 20:19:36 +00:00
|
|
|
|
if (strlen (*args) > 1)
|
1999-07-05 17:58:44 +00:00
|
|
|
|
{
|
|
|
|
|
do
|
|
|
|
|
p--;
|
|
|
|
|
while (*p == ' ' || *p == '\t');
|
|
|
|
|
*(p + 1) = '\0';
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
*args = 0;
|
|
|
|
|
return 1;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
1999-04-16 01:35:26 +00:00
|
|
|
|
/* ARGSUSED */
|
|
|
|
|
void
|
2000-07-30 01:48:28 +00:00
|
|
|
|
tty_command (char *file, int from_tty)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
if (file == 0)
|
|
|
|
|
error_no_arg ("terminal name for running target process");
|
|
|
|
|
|
|
|
|
|
inferior_io_terminal = savestring (file, strlen (file));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void
|
2000-07-30 01:48:28 +00:00
|
|
|
|
run_command (char *args, int from_tty)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
char *exec_file;
|
|
|
|
|
|
|
|
|
|
dont_repeat ();
|
|
|
|
|
|
2001-05-04 04:15:33 +00:00
|
|
|
|
if (! ptid_equal (inferior_ptid, null_ptid) && target_has_execution)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
1999-07-19 23:30:11 +00:00
|
|
|
|
if (from_tty
|
|
|
|
|
&& !query ("The program being debugged has been started already.\n\
|
1999-04-16 01:35:26 +00:00
|
|
|
|
Start it from the beginning? "))
|
|
|
|
|
error ("Program not restarted.");
|
|
|
|
|
target_kill ();
|
|
|
|
|
#if defined(SOLIB_RESTART)
|
|
|
|
|
SOLIB_RESTART ();
|
|
|
|
|
#endif
|
|
|
|
|
init_wait_for_inferior ();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
clear_breakpoint_hit_counts ();
|
|
|
|
|
|
|
|
|
|
exec_file = (char *) get_exec_file (0);
|
|
|
|
|
|
|
|
|
|
/* Purge old solib objfiles. */
|
|
|
|
|
objfile_purge_solibs ();
|
|
|
|
|
|
|
|
|
|
do_run_cleanups (NULL);
|
|
|
|
|
|
|
|
|
|
/* The exec file is re-read every time we do a generic_mourn_inferior, so
|
|
|
|
|
we just have to worry about the symbol file. */
|
|
|
|
|
reread_symbols ();
|
|
|
|
|
|
|
|
|
|
/* We keep symbols from add-symbol-file, on the grounds that the
|
|
|
|
|
user might want to add some symbols before running the program
|
|
|
|
|
(right?). But sometimes (dynamic loading where the user manually
|
|
|
|
|
introduces the new symbols with add-symbol-file), the code which
|
|
|
|
|
the symbols describe does not persist between runs. Currently
|
|
|
|
|
the user has to manually nuke all symbols between runs if they
|
|
|
|
|
want them to go away (PR 2207). This is probably reasonable. */
|
|
|
|
|
|
1999-07-05 17:58:44 +00:00
|
|
|
|
if (!args)
|
1999-09-28 21:55:21 +00:00
|
|
|
|
{
|
|
|
|
|
if (event_loop_p && target_can_async_p ())
|
|
|
|
|
async_disable_stdin ();
|
|
|
|
|
}
|
1999-07-05 17:58:44 +00:00
|
|
|
|
else
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
1999-07-05 17:58:44 +00:00
|
|
|
|
int async_exec = strip_bg_char (&args);
|
|
|
|
|
|
|
|
|
|
/* If we get a request for running in the bg but the target
|
|
|
|
|
doesn't support it, error out. */
|
1999-09-28 21:55:21 +00:00
|
|
|
|
if (event_loop_p && async_exec && !target_can_async_p ())
|
1999-07-05 17:58:44 +00:00
|
|
|
|
error ("Asynchronous execution not supported on this target.");
|
|
|
|
|
|
|
|
|
|
/* If we don't get a request of running in the bg, then we need
|
1999-07-07 20:19:36 +00:00
|
|
|
|
to simulate synchronous (fg) execution. */
|
1999-09-28 21:55:21 +00:00
|
|
|
|
if (event_loop_p && !async_exec && target_can_async_p ())
|
1999-07-05 17:58:44 +00:00
|
|
|
|
{
|
|
|
|
|
/* Simulate synchronous execution */
|
1999-09-28 21:55:21 +00:00
|
|
|
|
async_disable_stdin ();
|
1999-07-05 17:58:44 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* If there were other args, beside '&', process them. */
|
|
|
|
|
if (args)
|
|
|
|
|
{
|
2001-01-24 16:28:20 +00:00
|
|
|
|
char *old_args = set_inferior_args (xstrdup (args));
|
|
|
|
|
xfree (old_args);
|
1999-07-05 17:58:44 +00:00
|
|
|
|
}
|
1999-04-16 01:35:26 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (from_tty)
|
|
|
|
|
{
|
2000-02-03 04:14:45 +00:00
|
|
|
|
#ifdef UI_OUT
|
|
|
|
|
ui_out_field_string (uiout, NULL, "Starting program");
|
|
|
|
|
ui_out_text (uiout, ": ");
|
|
|
|
|
if (exec_file)
|
|
|
|
|
ui_out_field_string (uiout, "execfile", exec_file);
|
|
|
|
|
ui_out_spaces (uiout, 1);
|
|
|
|
|
ui_out_field_string (uiout, "infargs", inferior_args);
|
|
|
|
|
ui_out_text (uiout, "\n");
|
|
|
|
|
ui_out_flush (uiout);
|
|
|
|
|
#else
|
1999-07-07 20:19:36 +00:00
|
|
|
|
puts_filtered ("Starting program: ");
|
1999-04-16 01:35:26 +00:00
|
|
|
|
if (exec_file)
|
1999-07-07 20:19:36 +00:00
|
|
|
|
puts_filtered (exec_file);
|
|
|
|
|
puts_filtered (" ");
|
|
|
|
|
puts_filtered (inferior_args);
|
|
|
|
|
puts_filtered ("\n");
|
1999-04-16 01:35:26 +00:00
|
|
|
|
gdb_flush (gdb_stdout);
|
2000-02-03 04:14:45 +00:00
|
|
|
|
#endif
|
1999-04-16 01:35:26 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
target_create_inferior (exec_file, inferior_args,
|
|
|
|
|
environ_vector (inferior_environ));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static void
|
2000-07-30 01:48:28 +00:00
|
|
|
|
run_no_args_command (char *args, int from_tty)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
2001-01-24 16:28:20 +00:00
|
|
|
|
char *old_args = set_inferior_args (xstrdup (""));
|
|
|
|
|
xfree (old_args);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
}
|
|
|
|
|
|
1999-07-07 20:19:36 +00:00
|
|
|
|
|
1999-04-16 01:35:26 +00:00
|
|
|
|
void
|
2000-07-30 01:48:28 +00:00
|
|
|
|
continue_command (char *proc_count_exp, int from_tty)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
1999-07-07 20:19:36 +00:00
|
|
|
|
int async_exec = 0;
|
1999-04-16 01:35:26 +00:00
|
|
|
|
ERROR_NO_INFERIOR;
|
|
|
|
|
|
1999-07-05 17:58:44 +00:00
|
|
|
|
/* Find out whether we must run in the background. */
|
|
|
|
|
if (proc_count_exp != NULL)
|
|
|
|
|
async_exec = strip_bg_char (&proc_count_exp);
|
|
|
|
|
|
|
|
|
|
/* If we must run in the background, but the target can't do it,
|
|
|
|
|
error out. */
|
1999-09-28 21:55:21 +00:00
|
|
|
|
if (event_loop_p && async_exec && !target_can_async_p ())
|
1999-07-05 17:58:44 +00:00
|
|
|
|
error ("Asynchronous execution not supported on this target.");
|
|
|
|
|
|
|
|
|
|
/* If we are not asked to run in the bg, then prepare to run in the
|
|
|
|
|
foreground, synchronously. */
|
1999-09-28 21:55:21 +00:00
|
|
|
|
if (event_loop_p && !async_exec && target_can_async_p ())
|
1999-07-07 20:19:36 +00:00
|
|
|
|
{
|
1999-07-05 17:58:44 +00:00
|
|
|
|
/* Simulate synchronous execution */
|
1999-09-28 21:55:21 +00:00
|
|
|
|
async_disable_stdin ();
|
1999-07-05 17:58:44 +00:00
|
|
|
|
}
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
1999-07-05 17:58:44 +00:00
|
|
|
|
/* If have argument (besides '&'), set proceed count of breakpoint
|
|
|
|
|
we stopped at. */
|
1999-04-16 01:35:26 +00:00
|
|
|
|
if (proc_count_exp != NULL)
|
|
|
|
|
{
|
|
|
|
|
bpstat bs = stop_bpstat;
|
|
|
|
|
int num = bpstat_num (&bs);
|
|
|
|
|
if (num == 0 && from_tty)
|
|
|
|
|
{
|
|
|
|
|
printf_filtered
|
|
|
|
|
("Not stopped at any breakpoint; argument ignored.\n");
|
|
|
|
|
}
|
|
|
|
|
while (num != 0)
|
|
|
|
|
{
|
|
|
|
|
set_ignore_count (num,
|
2000-10-30 15:32:51 +00:00
|
|
|
|
parse_and_eval_long (proc_count_exp) - 1,
|
1999-04-16 01:35:26 +00:00
|
|
|
|
from_tty);
|
|
|
|
|
/* set_ignore_count prints a message ending with a period.
|
|
|
|
|
So print two spaces before "Continuing.". */
|
|
|
|
|
if (from_tty)
|
|
|
|
|
printf_filtered (" ");
|
|
|
|
|
num = bpstat_num (&bs);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (from_tty)
|
|
|
|
|
printf_filtered ("Continuing.\n");
|
|
|
|
|
|
|
|
|
|
clear_proceed_status ();
|
|
|
|
|
|
1999-10-05 23:13:56 +00:00
|
|
|
|
proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Step until outside of current statement. */
|
|
|
|
|
|
|
|
|
|
/* ARGSUSED */
|
|
|
|
|
static void
|
2000-07-30 01:48:28 +00:00
|
|
|
|
step_command (char *count_string, int from_tty)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
step_1 (0, 0, count_string);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Likewise, but skip over subroutine calls as if single instructions. */
|
|
|
|
|
|
|
|
|
|
/* ARGSUSED */
|
|
|
|
|
static void
|
2000-07-30 01:48:28 +00:00
|
|
|
|
next_command (char *count_string, int from_tty)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
step_1 (1, 0, count_string);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Likewise, but step only one instruction. */
|
|
|
|
|
|
|
|
|
|
/* ARGSUSED */
|
|
|
|
|
void
|
2000-07-30 01:48:28 +00:00
|
|
|
|
stepi_command (char *count_string, int from_tty)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
step_1 (0, 1, count_string);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* ARGSUSED */
|
|
|
|
|
void
|
2000-07-30 01:48:28 +00:00
|
|
|
|
nexti_command (char *count_string, int from_tty)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
step_1 (1, 1, count_string);
|
|
|
|
|
}
|
|
|
|
|
|
2000-05-22 09:02:23 +00:00
|
|
|
|
static void
|
|
|
|
|
disable_longjmp_breakpoint_cleanup (void *ignore)
|
|
|
|
|
{
|
|
|
|
|
disable_longjmp_breakpoint ();
|
|
|
|
|
}
|
|
|
|
|
|
1999-04-16 01:35:26 +00:00
|
|
|
|
static void
|
2000-07-30 01:48:28 +00:00
|
|
|
|
step_1 (int skip_subroutines, int single_inst, char *count_string)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
register int count = 1;
|
|
|
|
|
struct frame_info *frame;
|
|
|
|
|
struct cleanup *cleanups = 0;
|
1999-07-05 17:58:44 +00:00
|
|
|
|
int async_exec = 0;
|
1999-07-07 20:19:36 +00:00
|
|
|
|
|
1999-04-16 01:35:26 +00:00
|
|
|
|
ERROR_NO_INFERIOR;
|
1999-07-05 17:58:44 +00:00
|
|
|
|
|
|
|
|
|
if (count_string)
|
|
|
|
|
async_exec = strip_bg_char (&count_string);
|
1999-07-07 20:19:36 +00:00
|
|
|
|
|
1999-07-05 17:58:44 +00:00
|
|
|
|
/* If we get a request for running in the bg but the target
|
|
|
|
|
doesn't support it, error out. */
|
1999-09-28 21:55:21 +00:00
|
|
|
|
if (event_loop_p && async_exec && !target_can_async_p ())
|
1999-07-05 17:58:44 +00:00
|
|
|
|
error ("Asynchronous execution not supported on this target.");
|
|
|
|
|
|
|
|
|
|
/* If we don't get a request of running in the bg, then we need
|
|
|
|
|
to simulate synchronous (fg) execution. */
|
1999-09-28 21:55:21 +00:00
|
|
|
|
if (event_loop_p && !async_exec && target_can_async_p ())
|
1999-07-05 17:58:44 +00:00
|
|
|
|
{
|
|
|
|
|
/* Simulate synchronous execution */
|
1999-09-28 21:55:21 +00:00
|
|
|
|
async_disable_stdin ();
|
1999-07-05 17:58:44 +00:00
|
|
|
|
}
|
|
|
|
|
|
2000-10-30 15:32:51 +00:00
|
|
|
|
count = count_string ? parse_and_eval_long (count_string) : 1;
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
1999-07-07 20:19:36 +00:00
|
|
|
|
if (!single_inst || skip_subroutines) /* leave si command alone */
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
1999-07-07 20:19:36 +00:00
|
|
|
|
enable_longjmp_breakpoint ();
|
1999-12-07 03:56:43 +00:00
|
|
|
|
if (!event_loop_p || !target_can_async_p ())
|
2000-05-22 09:02:23 +00:00
|
|
|
|
cleanups = make_cleanup (disable_longjmp_breakpoint_cleanup, 0 /*ignore*/);
|
1999-12-07 03:56:43 +00:00
|
|
|
|
else
|
2000-05-22 09:02:23 +00:00
|
|
|
|
make_exec_cleanup (disable_longjmp_breakpoint_cleanup, 0 /*ignore*/);
|
1999-12-07 03:56:43 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* In synchronous case, all is well, just use the regular for loop. */
|
|
|
|
|
if (!event_loop_p || !target_can_async_p ())
|
|
|
|
|
{
|
|
|
|
|
for (; count > 0; count--)
|
|
|
|
|
{
|
|
|
|
|
clear_proceed_status ();
|
|
|
|
|
|
|
|
|
|
frame = get_current_frame ();
|
|
|
|
|
if (!frame) /* Avoid coredump here. Why tho? */
|
|
|
|
|
error ("No current frame");
|
|
|
|
|
step_frame_address = FRAME_FP (frame);
|
|
|
|
|
step_sp = read_sp ();
|
|
|
|
|
|
|
|
|
|
if (!single_inst)
|
|
|
|
|
{
|
|
|
|
|
find_pc_line_pc_range (stop_pc, &step_range_start, &step_range_end);
|
|
|
|
|
if (step_range_end == 0)
|
|
|
|
|
{
|
|
|
|
|
char *name;
|
|
|
|
|
if (find_pc_partial_function (stop_pc, &name, &step_range_start,
|
|
|
|
|
&step_range_end) == 0)
|
|
|
|
|
error ("Cannot find bounds of current function");
|
|
|
|
|
|
|
|
|
|
target_terminal_ours ();
|
|
|
|
|
printf_filtered ("\
|
|
|
|
|
Single stepping until exit from function %s, \n\
|
|
|
|
|
which has no line number information.\n", name);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* Say we are stepping, but stop after one insn whatever it does. */
|
|
|
|
|
step_range_start = step_range_end = 1;
|
|
|
|
|
if (!skip_subroutines)
|
|
|
|
|
/* It is stepi.
|
|
|
|
|
Don't step over function calls, not even to functions lacking
|
|
|
|
|
line numbers. */
|
2000-11-10 19:27:45 +00:00
|
|
|
|
step_over_calls = STEP_OVER_NONE;
|
1999-12-07 03:56:43 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (skip_subroutines)
|
2000-11-10 19:27:45 +00:00
|
|
|
|
step_over_calls = STEP_OVER_ALL;
|
1999-12-07 03:56:43 +00:00
|
|
|
|
|
|
|
|
|
step_multi = (count > 1);
|
|
|
|
|
proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 1);
|
|
|
|
|
|
|
|
|
|
if (!stop_step)
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
/* FIXME: On nexti, this may have already been done (when we hit the
|
|
|
|
|
step resume break, I think). Probably this should be moved to
|
|
|
|
|
wait_for_inferior (near the top). */
|
|
|
|
|
#if defined (SHIFT_INST_REGS)
|
|
|
|
|
SHIFT_INST_REGS ();
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (!single_inst || skip_subroutines)
|
|
|
|
|
do_cleanups (cleanups);
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
/* In case of asynchronous target things get complicated, do only
|
|
|
|
|
one step for now, before returning control to the event loop. Let
|
|
|
|
|
the continuation figure out how many other steps we need to do,
|
|
|
|
|
and handle them one at the time, through step_once(). */
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
if (event_loop_p && target_can_async_p ())
|
|
|
|
|
step_once (skip_subroutines, single_inst, count);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
}
|
1999-12-07 03:56:43 +00:00
|
|
|
|
}
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
1999-12-07 03:56:43 +00:00
|
|
|
|
/* Called after we are done with one step operation, to check whether
|
|
|
|
|
we need to step again, before we print the prompt and return control
|
|
|
|
|
to the user. If count is > 1, we will need to do one more call to
|
|
|
|
|
proceed(), via step_once(). Basically it is like step_once and
|
|
|
|
|
step_1_continuation are co-recursive. */
|
|
|
|
|
static void
|
2000-07-30 01:48:28 +00:00
|
|
|
|
step_1_continuation (struct continuation_arg *arg)
|
1999-12-07 03:56:43 +00:00
|
|
|
|
{
|
2000-03-30 18:54:28 +00:00
|
|
|
|
int count;
|
|
|
|
|
int skip_subroutines;
|
|
|
|
|
int single_inst;
|
|
|
|
|
|
|
|
|
|
skip_subroutines = arg->data.integer;
|
|
|
|
|
single_inst = arg->next->data.integer;
|
|
|
|
|
count = arg->next->next->data.integer;
|
|
|
|
|
|
|
|
|
|
if (stop_step)
|
|
|
|
|
{
|
|
|
|
|
/* FIXME: On nexti, this may have already been done (when we hit the
|
|
|
|
|
step resume break, I think). Probably this should be moved to
|
|
|
|
|
wait_for_inferior (near the top). */
|
1999-12-07 03:56:43 +00:00
|
|
|
|
#if defined (SHIFT_INST_REGS)
|
2000-03-30 18:54:28 +00:00
|
|
|
|
SHIFT_INST_REGS ();
|
1999-12-07 03:56:43 +00:00
|
|
|
|
#endif
|
2000-03-30 18:54:28 +00:00
|
|
|
|
step_once (skip_subroutines, single_inst, count - 1);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
if (!single_inst || skip_subroutines)
|
|
|
|
|
do_exec_cleanups (ALL_CLEANUPS);
|
1999-12-07 03:56:43 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Do just one step operation. If count >1 we will have to set up a
|
|
|
|
|
continuation to be done after the target stops (after this one
|
|
|
|
|
step). This is useful to implement the 'step n' kind of commands, in
|
|
|
|
|
case of asynchronous targets. We had to split step_1 into two parts,
|
|
|
|
|
one to be done before proceed() and one afterwards. This function is
|
|
|
|
|
called in case of step n with n>1, after the first step operation has
|
|
|
|
|
been completed.*/
|
|
|
|
|
static void
|
2000-01-11 03:07:37 +00:00
|
|
|
|
step_once (int skip_subroutines, int single_inst, int count)
|
1999-12-07 03:56:43 +00:00
|
|
|
|
{
|
2000-01-11 03:07:37 +00:00
|
|
|
|
struct continuation_arg *arg1;
|
|
|
|
|
struct continuation_arg *arg2;
|
|
|
|
|
struct continuation_arg *arg3;
|
|
|
|
|
struct frame_info *frame;
|
1999-12-07 03:56:43 +00:00
|
|
|
|
|
|
|
|
|
if (count > 0)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
clear_proceed_status ();
|
|
|
|
|
|
|
|
|
|
frame = get_current_frame ();
|
1999-07-07 20:19:36 +00:00
|
|
|
|
if (!frame) /* Avoid coredump here. Why tho? */
|
1999-04-16 01:35:26 +00:00
|
|
|
|
error ("No current frame");
|
|
|
|
|
step_frame_address = FRAME_FP (frame);
|
|
|
|
|
step_sp = read_sp ();
|
|
|
|
|
|
1999-07-07 20:19:36 +00:00
|
|
|
|
if (!single_inst)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
find_pc_line_pc_range (stop_pc, &step_range_start, &step_range_end);
|
2000-11-10 19:27:45 +00:00
|
|
|
|
|
|
|
|
|
/* If we have no line info, switch to stepi mode. */
|
|
|
|
|
if (step_range_end == 0 && step_stop_if_no_debug)
|
|
|
|
|
{
|
|
|
|
|
step_range_start = step_range_end = 1;
|
|
|
|
|
}
|
|
|
|
|
else if (step_range_end == 0)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
char *name;
|
|
|
|
|
if (find_pc_partial_function (stop_pc, &name, &step_range_start,
|
|
|
|
|
&step_range_end) == 0)
|
|
|
|
|
error ("Cannot find bounds of current function");
|
|
|
|
|
|
|
|
|
|
target_terminal_ours ();
|
|
|
|
|
printf_filtered ("\
|
|
|
|
|
Single stepping until exit from function %s, \n\
|
|
|
|
|
which has no line number information.\n", name);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* Say we are stepping, but stop after one insn whatever it does. */
|
|
|
|
|
step_range_start = step_range_end = 1;
|
|
|
|
|
if (!skip_subroutines)
|
|
|
|
|
/* It is stepi.
|
|
|
|
|
Don't step over function calls, not even to functions lacking
|
|
|
|
|
line numbers. */
|
2000-11-10 19:27:45 +00:00
|
|
|
|
step_over_calls = STEP_OVER_NONE;
|
1999-04-16 01:35:26 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (skip_subroutines)
|
2000-11-10 19:27:45 +00:00
|
|
|
|
step_over_calls = STEP_OVER_ALL;
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
|
|
|
|
step_multi = (count > 1);
|
1999-12-07 03:56:43 +00:00
|
|
|
|
arg1 =
|
|
|
|
|
(struct continuation_arg *) xmalloc (sizeof (struct continuation_arg));
|
|
|
|
|
arg2 =
|
|
|
|
|
(struct continuation_arg *) xmalloc (sizeof (struct continuation_arg));
|
|
|
|
|
arg3 =
|
|
|
|
|
(struct continuation_arg *) xmalloc (sizeof (struct continuation_arg));
|
|
|
|
|
arg1->next = arg2;
|
2000-03-30 18:54:28 +00:00
|
|
|
|
arg1->data.integer = skip_subroutines;
|
1999-12-07 03:56:43 +00:00
|
|
|
|
arg2->next = arg3;
|
2000-03-30 18:54:28 +00:00
|
|
|
|
arg2->data.integer = single_inst;
|
1999-12-07 03:56:43 +00:00
|
|
|
|
arg3->next = NULL;
|
2000-03-30 18:54:28 +00:00
|
|
|
|
arg3->data.integer = count;
|
1999-12-07 03:56:43 +00:00
|
|
|
|
add_intermediate_continuation (step_1_continuation, arg1);
|
1999-10-05 23:13:56 +00:00
|
|
|
|
proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 1);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
}
|
|
|
|
|
}
|
1999-12-07 03:56:43 +00:00
|
|
|
|
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
|
|
|
|
/* Continue program at specified address. */
|
|
|
|
|
|
|
|
|
|
static void
|
2000-07-30 01:48:28 +00:00
|
|
|
|
jump_command (char *arg, int from_tty)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
register CORE_ADDR addr;
|
|
|
|
|
struct symtabs_and_lines sals;
|
|
|
|
|
struct symtab_and_line sal;
|
|
|
|
|
struct symbol *fn;
|
|
|
|
|
struct symbol *sfn;
|
1999-07-05 17:58:44 +00:00
|
|
|
|
int async_exec = 0;
|
1999-07-07 20:19:36 +00:00
|
|
|
|
|
1999-04-16 01:35:26 +00:00
|
|
|
|
ERROR_NO_INFERIOR;
|
|
|
|
|
|
1999-07-05 17:58:44 +00:00
|
|
|
|
/* Find out whether we must run in the background. */
|
|
|
|
|
if (arg != NULL)
|
|
|
|
|
async_exec = strip_bg_char (&arg);
|
|
|
|
|
|
|
|
|
|
/* If we must run in the background, but the target can't do it,
|
|
|
|
|
error out. */
|
1999-09-28 21:55:21 +00:00
|
|
|
|
if (event_loop_p && async_exec && !target_can_async_p ())
|
1999-07-05 17:58:44 +00:00
|
|
|
|
error ("Asynchronous execution not supported on this target.");
|
|
|
|
|
|
|
|
|
|
/* If we are not asked to run in the bg, then prepare to run in the
|
|
|
|
|
foreground, synchronously. */
|
1999-09-28 21:55:21 +00:00
|
|
|
|
if (event_loop_p && !async_exec && target_can_async_p ())
|
1999-07-07 20:19:36 +00:00
|
|
|
|
{
|
1999-07-05 17:58:44 +00:00
|
|
|
|
/* Simulate synchronous execution */
|
1999-09-28 21:55:21 +00:00
|
|
|
|
async_disable_stdin ();
|
1999-07-05 17:58:44 +00:00
|
|
|
|
}
|
|
|
|
|
|
1999-04-16 01:35:26 +00:00
|
|
|
|
if (!arg)
|
|
|
|
|
error_no_arg ("starting address");
|
|
|
|
|
|
|
|
|
|
sals = decode_line_spec_1 (arg, 1);
|
|
|
|
|
if (sals.nelts != 1)
|
|
|
|
|
{
|
|
|
|
|
error ("Unreasonable jump request");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
sal = sals.sals[0];
|
2000-12-15 01:01:51 +00:00
|
|
|
|
xfree (sals.sals);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
|
|
|
|
if (sal.symtab == 0 && sal.pc == 0)
|
|
|
|
|
error ("No source file has been specified.");
|
|
|
|
|
|
1999-07-07 20:19:36 +00:00
|
|
|
|
resolve_sal_pc (&sal); /* May error out */
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
|
|
|
|
/* See if we are trying to jump to another function. */
|
|
|
|
|
fn = get_frame_function (get_current_frame ());
|
|
|
|
|
sfn = find_pc_function (sal.pc);
|
|
|
|
|
if (fn != NULL && sfn != fn)
|
|
|
|
|
{
|
|
|
|
|
if (!query ("Line %d is not in `%s'. Jump anyway? ", sal.line,
|
|
|
|
|
SYMBOL_SOURCE_NAME (fn)))
|
|
|
|
|
{
|
|
|
|
|
error ("Not confirmed.");
|
|
|
|
|
/* NOTREACHED */
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
1999-07-07 20:19:36 +00:00
|
|
|
|
if (sfn != NULL)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
fixup_symbol_section (sfn, 0);
|
1999-07-07 20:19:36 +00:00
|
|
|
|
if (section_is_overlay (SYMBOL_BFD_SECTION (sfn)) &&
|
1999-04-16 01:35:26 +00:00
|
|
|
|
!section_is_mapped (SYMBOL_BFD_SECTION (sfn)))
|
|
|
|
|
{
|
|
|
|
|
if (!query ("WARNING!!! Destination is in unmapped overlay! Jump anyway? "))
|
|
|
|
|
{
|
|
|
|
|
error ("Not confirmed.");
|
|
|
|
|
/* NOTREACHED */
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
addr = sal.pc;
|
|
|
|
|
|
|
|
|
|
if (from_tty)
|
|
|
|
|
{
|
|
|
|
|
printf_filtered ("Continuing at ");
|
|
|
|
|
print_address_numeric (addr, 1, gdb_stdout);
|
|
|
|
|
printf_filtered (".\n");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
clear_proceed_status ();
|
|
|
|
|
proceed (addr, TARGET_SIGNAL_0, 0);
|
|
|
|
|
}
|
|
|
|
|
|
1999-07-07 20:19:36 +00:00
|
|
|
|
|
1999-04-16 01:35:26 +00:00
|
|
|
|
/* Go to line or address in current procedure */
|
|
|
|
|
static void
|
2000-07-30 01:48:28 +00:00
|
|
|
|
go_command (char *line_no, int from_tty)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
1999-07-07 20:19:36 +00:00
|
|
|
|
if (line_no == (char *) NULL || !*line_no)
|
1999-05-05 14:45:51 +00:00
|
|
|
|
printf_filtered (GO_USAGE);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
else
|
|
|
|
|
{
|
1999-05-05 14:45:51 +00:00
|
|
|
|
tbreak_command (line_no, from_tty);
|
|
|
|
|
jump_command (line_no, from_tty);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
1999-07-07 20:19:36 +00:00
|
|
|
|
|
1999-04-16 01:35:26 +00:00
|
|
|
|
/* Continue program giving it specified signal. */
|
|
|
|
|
|
|
|
|
|
static void
|
2000-07-30 01:48:28 +00:00
|
|
|
|
signal_command (char *signum_exp, int from_tty)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
enum target_signal oursig;
|
|
|
|
|
|
|
|
|
|
dont_repeat (); /* Too dangerous. */
|
|
|
|
|
ERROR_NO_INFERIOR;
|
|
|
|
|
|
|
|
|
|
if (!signum_exp)
|
|
|
|
|
error_no_arg ("signal number");
|
|
|
|
|
|
|
|
|
|
/* It would be even slicker to make signal names be valid expressions,
|
|
|
|
|
(the type could be "enum $signal" or some such), then the user could
|
|
|
|
|
assign them to convenience variables. */
|
|
|
|
|
oursig = target_signal_from_name (signum_exp);
|
|
|
|
|
|
|
|
|
|
if (oursig == TARGET_SIGNAL_UNKNOWN)
|
|
|
|
|
{
|
|
|
|
|
/* No, try numeric. */
|
2000-10-30 15:32:51 +00:00
|
|
|
|
int num = parse_and_eval_long (signum_exp);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
|
|
|
|
if (num == 0)
|
|
|
|
|
oursig = TARGET_SIGNAL_0;
|
|
|
|
|
else
|
|
|
|
|
oursig = target_signal_from_command (num);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (from_tty)
|
|
|
|
|
{
|
|
|
|
|
if (oursig == TARGET_SIGNAL_0)
|
|
|
|
|
printf_filtered ("Continuing with no signal.\n");
|
|
|
|
|
else
|
|
|
|
|
printf_filtered ("Continuing with signal %s.\n",
|
|
|
|
|
target_signal_to_name (oursig));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
clear_proceed_status ();
|
|
|
|
|
/* "signal 0" should not get stuck if we are stopped at a breakpoint.
|
|
|
|
|
FIXME: Neither should "signal foo" but when I tried passing
|
|
|
|
|
(CORE_ADDR)-1 unconditionally I got a testsuite failure which I haven't
|
|
|
|
|
tried to track down yet. */
|
1999-10-05 23:13:56 +00:00
|
|
|
|
proceed (oursig == TARGET_SIGNAL_0 ? (CORE_ADDR) -1 : stop_pc, oursig, 0);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Call breakpoint_auto_delete on the current contents of the bpstat
|
|
|
|
|
pointed to by arg (which is really a bpstat *). */
|
|
|
|
|
|
|
|
|
|
static void
|
2000-07-30 01:48:28 +00:00
|
|
|
|
breakpoint_auto_delete_contents (PTR arg)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
1999-07-07 20:19:36 +00:00
|
|
|
|
breakpoint_auto_delete (*(bpstat *) arg);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* Execute a "stack dummy", a piece of code stored in the stack
|
|
|
|
|
by the debugger to be executed in the inferior.
|
|
|
|
|
|
|
|
|
|
To call: first, do PUSH_DUMMY_FRAME.
|
|
|
|
|
Then push the contents of the dummy. It should end with a breakpoint insn.
|
|
|
|
|
Then call here, passing address at which to start the dummy.
|
|
|
|
|
|
|
|
|
|
The contents of all registers are saved before the dummy frame is popped
|
|
|
|
|
and copied into the buffer BUFFER.
|
|
|
|
|
|
|
|
|
|
The dummy's frame is automatically popped whenever that break is hit.
|
|
|
|
|
If that is the first time the program stops, run_stack_dummy
|
|
|
|
|
returns to its caller with that frame already gone and returns 0.
|
2000-02-01 03:19:29 +00:00
|
|
|
|
|
|
|
|
|
Otherwise, run_stack-dummy returns a non-zero value.
|
|
|
|
|
If the called function receives a random signal, we do not allow the user
|
|
|
|
|
to continue executing it as this may not work. The dummy frame is poped
|
|
|
|
|
and we return 1.
|
|
|
|
|
If we hit a breakpoint, we leave the frame in place and return 2 (the frame
|
|
|
|
|
will eventually be popped when we do hit the dummy end breakpoint). */
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
|
|
|
|
int
|
2000-07-30 01:48:28 +00:00
|
|
|
|
run_stack_dummy (CORE_ADDR addr, char *buffer)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
|
1999-12-22 21:45:38 +00:00
|
|
|
|
int saved_async = 0;
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
|
|
|
|
/* Now proceed, having reached the desired place. */
|
|
|
|
|
clear_proceed_status ();
|
1999-08-09 21:36:23 +00:00
|
|
|
|
|
1999-04-26 18:34:20 +00:00
|
|
|
|
if (CALL_DUMMY_BREAKPOINT_OFFSET_P)
|
|
|
|
|
{
|
|
|
|
|
struct breakpoint *bpt;
|
|
|
|
|
struct symtab_and_line sal;
|
1999-07-07 20:19:36 +00:00
|
|
|
|
|
|
|
|
|
INIT_SAL (&sal); /* initialize to zeroes */
|
1999-04-26 18:34:20 +00:00
|
|
|
|
if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
|
|
|
|
|
{
|
|
|
|
|
sal.pc = CALL_DUMMY_ADDRESS ();
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
sal.pc = addr - CALL_DUMMY_START_OFFSET + CALL_DUMMY_BREAKPOINT_OFFSET;
|
|
|
|
|
}
|
|
|
|
|
sal.section = find_pc_overlay (sal.pc);
|
1999-07-07 20:19:36 +00:00
|
|
|
|
|
1999-04-26 18:34:20 +00:00
|
|
|
|
/* Set up a FRAME for the dummy frame so we can pass it to
|
1999-07-07 20:19:36 +00:00
|
|
|
|
set_momentary_breakpoint. We need to give the breakpoint a
|
|
|
|
|
frame in case there is only one copy of the dummy (e.g.
|
|
|
|
|
CALL_DUMMY_LOCATION == AFTER_TEXT_END). */
|
1999-04-26 18:34:20 +00:00
|
|
|
|
flush_cached_frames ();
|
|
|
|
|
set_current_frame (create_new_frame (read_fp (), sal.pc));
|
1999-07-07 20:19:36 +00:00
|
|
|
|
|
1999-04-26 18:34:20 +00:00
|
|
|
|
/* If defined, CALL_DUMMY_BREAKPOINT_OFFSET is where we need to put
|
1999-07-07 20:19:36 +00:00
|
|
|
|
a breakpoint instruction. If not, the call dummy already has the
|
|
|
|
|
breakpoint instruction in it.
|
|
|
|
|
|
|
|
|
|
addr is the address of the call dummy plus the CALL_DUMMY_START_OFFSET,
|
|
|
|
|
so we need to subtract the CALL_DUMMY_START_OFFSET. */
|
1999-04-26 18:34:20 +00:00
|
|
|
|
bpt = set_momentary_breakpoint (sal,
|
|
|
|
|
get_current_frame (),
|
|
|
|
|
bp_call_dummy);
|
|
|
|
|
bpt->disposition = del;
|
1999-07-07 20:19:36 +00:00
|
|
|
|
|
1999-04-26 18:34:20 +00:00
|
|
|
|
/* If all error()s out of proceed ended up calling normal_stop (and
|
1999-07-07 20:19:36 +00:00
|
|
|
|
perhaps they should; it already does in the special case of error
|
|
|
|
|
out of resume()), then we wouldn't need this. */
|
1999-04-26 18:34:20 +00:00
|
|
|
|
make_cleanup (breakpoint_auto_delete_contents, &stop_bpstat);
|
|
|
|
|
}
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
|
|
|
|
disable_watchpoints_before_interactive_call_start ();
|
|
|
|
|
proceed_to_finish = 1; /* We want stop_registers, please... */
|
1999-12-22 21:45:38 +00:00
|
|
|
|
|
|
|
|
|
if (target_can_async_p ())
|
|
|
|
|
saved_async = target_async_mask (0);
|
|
|
|
|
|
1999-04-16 01:35:26 +00:00
|
|
|
|
proceed (addr, TARGET_SIGNAL_0, 0);
|
1999-12-22 21:45:38 +00:00
|
|
|
|
|
|
|
|
|
if (saved_async)
|
|
|
|
|
target_async_mask (saved_async);
|
|
|
|
|
|
1999-04-16 01:35:26 +00:00
|
|
|
|
enable_watchpoints_after_interactive_call_stop ();
|
|
|
|
|
|
|
|
|
|
discard_cleanups (old_cleanups);
|
|
|
|
|
|
2000-02-23 15:53:33 +00:00
|
|
|
|
/* We can stop during an inferior call because a signal is received. */
|
2000-02-01 03:19:29 +00:00
|
|
|
|
if (stopped_by_random_signal)
|
2000-02-23 15:53:33 +00:00
|
|
|
|
return 1;
|
2000-02-01 03:19:29 +00:00
|
|
|
|
|
|
|
|
|
/* We may also stop prematurely because we hit a breakpoint in the
|
2000-02-23 15:53:33 +00:00
|
|
|
|
called routine. */
|
1999-04-16 01:35:26 +00:00
|
|
|
|
if (!stop_stack_dummy)
|
2000-02-01 03:19:29 +00:00
|
|
|
|
return 2;
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
2000-02-01 03:19:29 +00:00
|
|
|
|
/* On normal return, the stack dummy has been popped already. */
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
1999-04-26 18:34:20 +00:00
|
|
|
|
memcpy (buffer, stop_registers, REGISTER_BYTES);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Proceed until we reach a different source line with pc greater than
|
|
|
|
|
our current one or exit the function. We skip calls in both cases.
|
|
|
|
|
|
|
|
|
|
Note that eventually this command should probably be changed so
|
|
|
|
|
that only source lines are printed out when we hit the breakpoint
|
|
|
|
|
we set. This may involve changes to wait_for_inferior and the
|
|
|
|
|
proceed status code. */
|
|
|
|
|
|
|
|
|
|
/* ARGSUSED */
|
|
|
|
|
static void
|
2000-07-30 01:48:28 +00:00
|
|
|
|
until_next_command (int from_tty)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
struct frame_info *frame;
|
|
|
|
|
CORE_ADDR pc;
|
|
|
|
|
struct symbol *func;
|
|
|
|
|
struct symtab_and_line sal;
|
1999-07-07 20:19:36 +00:00
|
|
|
|
|
1999-04-16 01:35:26 +00:00
|
|
|
|
clear_proceed_status ();
|
|
|
|
|
|
|
|
|
|
frame = get_current_frame ();
|
|
|
|
|
|
|
|
|
|
/* Step until either exited from this function or greater
|
|
|
|
|
than the current line (if in symbolic section) or pc (if
|
|
|
|
|
not). */
|
|
|
|
|
|
|
|
|
|
pc = read_pc ();
|
|
|
|
|
func = find_pc_function (pc);
|
1999-07-07 20:19:36 +00:00
|
|
|
|
|
1999-04-16 01:35:26 +00:00
|
|
|
|
if (!func)
|
|
|
|
|
{
|
|
|
|
|
struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (pc);
|
1999-07-07 20:19:36 +00:00
|
|
|
|
|
1999-04-16 01:35:26 +00:00
|
|
|
|
if (msymbol == NULL)
|
|
|
|
|
error ("Execution is not within a known function.");
|
1999-07-07 20:19:36 +00:00
|
|
|
|
|
1999-04-16 01:35:26 +00:00
|
|
|
|
step_range_start = SYMBOL_VALUE_ADDRESS (msymbol);
|
|
|
|
|
step_range_end = pc;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
sal = find_pc_line (pc, 0);
|
1999-07-07 20:19:36 +00:00
|
|
|
|
|
1999-04-16 01:35:26 +00:00
|
|
|
|
step_range_start = BLOCK_START (SYMBOL_BLOCK_VALUE (func));
|
|
|
|
|
step_range_end = sal.end;
|
|
|
|
|
}
|
1999-07-07 20:19:36 +00:00
|
|
|
|
|
2000-11-10 19:27:45 +00:00
|
|
|
|
step_over_calls = STEP_OVER_ALL;
|
1999-04-16 01:35:26 +00:00
|
|
|
|
step_frame_address = FRAME_FP (frame);
|
|
|
|
|
step_sp = read_sp ();
|
|
|
|
|
|
|
|
|
|
step_multi = 0; /* Only one call to proceed */
|
1999-07-07 20:19:36 +00:00
|
|
|
|
|
1999-10-05 23:13:56 +00:00
|
|
|
|
proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 1);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
}
|
|
|
|
|
|
1999-07-07 20:19:36 +00:00
|
|
|
|
static void
|
2000-07-30 01:48:28 +00:00
|
|
|
|
until_command (char *arg, int from_tty)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
1999-07-05 17:58:44 +00:00
|
|
|
|
int async_exec = 0;
|
|
|
|
|
|
1999-04-16 01:35:26 +00:00
|
|
|
|
if (!target_has_execution)
|
|
|
|
|
error ("The program is not running.");
|
1999-07-05 17:58:44 +00:00
|
|
|
|
|
|
|
|
|
/* Find out whether we must run in the background. */
|
|
|
|
|
if (arg != NULL)
|
|
|
|
|
async_exec = strip_bg_char (&arg);
|
|
|
|
|
|
|
|
|
|
/* If we must run in the background, but the target can't do it,
|
|
|
|
|
error out. */
|
1999-09-28 21:55:21 +00:00
|
|
|
|
if (event_loop_p && async_exec && !target_can_async_p ())
|
1999-07-05 17:58:44 +00:00
|
|
|
|
error ("Asynchronous execution not supported on this target.");
|
|
|
|
|
|
|
|
|
|
/* If we are not asked to run in the bg, then prepare to run in the
|
|
|
|
|
foreground, synchronously. */
|
1999-09-28 21:55:21 +00:00
|
|
|
|
if (event_loop_p && !async_exec && target_can_async_p ())
|
1999-07-07 20:19:36 +00:00
|
|
|
|
{
|
1999-07-05 17:58:44 +00:00
|
|
|
|
/* Simulate synchronous execution */
|
1999-09-28 21:55:21 +00:00
|
|
|
|
async_disable_stdin ();
|
1999-07-05 17:58:44 +00:00
|
|
|
|
}
|
|
|
|
|
|
1999-04-16 01:35:26 +00:00
|
|
|
|
if (arg)
|
|
|
|
|
until_break_command (arg, from_tty);
|
|
|
|
|
else
|
|
|
|
|
until_next_command (from_tty);
|
|
|
|
|
}
|
|
|
|
|
|
1999-07-05 17:58:44 +00:00
|
|
|
|
|
1999-11-09 01:23:30 +00:00
|
|
|
|
/* Print the result of a function at the end of a 'finish' command. */
|
|
|
|
|
static void
|
|
|
|
|
print_return_value (int structure_return, struct type *value_type)
|
|
|
|
|
{
|
|
|
|
|
register value_ptr value;
|
2000-02-03 04:14:45 +00:00
|
|
|
|
#ifdef UI_OUT
|
|
|
|
|
static struct ui_stream *stb = NULL;
|
|
|
|
|
#endif /* UI_OUT */
|
1999-11-09 01:23:30 +00:00
|
|
|
|
|
|
|
|
|
if (!structure_return)
|
|
|
|
|
{
|
|
|
|
|
value = value_being_returned (value_type, stop_registers, structure_return);
|
2000-02-03 04:14:45 +00:00
|
|
|
|
#ifdef UI_OUT
|
|
|
|
|
stb = ui_out_stream_new (uiout);
|
|
|
|
|
ui_out_text (uiout, "Value returned is ");
|
|
|
|
|
ui_out_field_fmt (uiout, "gdb-result-var", "$%d", record_latest_value (value));
|
2001-01-12 09:45:57 +00:00
|
|
|
|
ui_out_text (uiout, " = ");
|
2000-02-03 04:14:45 +00:00
|
|
|
|
value_print (value, stb->stream, 0, Val_no_prettyprint);
|
|
|
|
|
ui_out_field_stream (uiout, "return-value", stb);
|
|
|
|
|
ui_out_text (uiout, "\n");
|
|
|
|
|
#else /* UI_OUT */
|
1999-11-09 01:23:30 +00:00
|
|
|
|
printf_filtered ("Value returned is $%d = ", record_latest_value (value));
|
|
|
|
|
value_print (value, gdb_stdout, 0, Val_no_prettyprint);
|
|
|
|
|
printf_filtered ("\n");
|
2000-02-03 04:14:45 +00:00
|
|
|
|
#endif /* UI_OUT */
|
1999-11-09 01:23:30 +00:00
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* We cannot determine the contents of the structure because
|
|
|
|
|
it is on the stack, and we don't know where, since we did not
|
|
|
|
|
initiate the call, as opposed to the call_function_by_hand case */
|
|
|
|
|
#ifdef VALUE_RETURNED_FROM_STACK
|
|
|
|
|
value = 0;
|
2000-02-03 04:14:45 +00:00
|
|
|
|
#ifdef UI_OUT
|
|
|
|
|
ui_out_text (uiout, "Value returned has type: ");
|
|
|
|
|
ui_out_field_string (uiout, "return-type", TYPE_NAME (value_type));
|
|
|
|
|
ui_out_text (uiout, ".");
|
|
|
|
|
ui_out_text (uiout, " Cannot determine contents\n");
|
|
|
|
|
#else /* UI_OUT */
|
1999-11-09 01:23:30 +00:00
|
|
|
|
printf_filtered ("Value returned has type: %s.", TYPE_NAME (value_type));
|
|
|
|
|
printf_filtered (" Cannot determine contents\n");
|
2000-02-03 04:14:45 +00:00
|
|
|
|
#endif /* UI_OUT */
|
1999-11-09 01:23:30 +00:00
|
|
|
|
#else
|
|
|
|
|
value = value_being_returned (value_type, stop_registers, structure_return);
|
2000-02-03 04:14:45 +00:00
|
|
|
|
#ifdef UI_OUT
|
|
|
|
|
stb = ui_out_stream_new (uiout);
|
|
|
|
|
ui_out_text (uiout, "Value returned is ");
|
|
|
|
|
ui_out_field_fmt (uiout, "gdb-result-var", "$%d", record_latest_value (value));
|
2001-01-18 16:11:22 +00:00
|
|
|
|
ui_out_text (uiout, " = ");
|
2000-02-03 04:14:45 +00:00
|
|
|
|
value_print (value, stb->stream, 0, Val_no_prettyprint);
|
|
|
|
|
ui_out_field_stream (uiout, "return-value", stb);
|
|
|
|
|
ui_out_text (uiout, "\n");
|
|
|
|
|
#else
|
1999-11-09 01:23:30 +00:00
|
|
|
|
printf_filtered ("Value returned is $%d = ", record_latest_value (value));
|
|
|
|
|
value_print (value, gdb_stdout, 0, Val_no_prettyprint);
|
|
|
|
|
printf_filtered ("\n");
|
2000-02-03 04:14:45 +00:00
|
|
|
|
#endif
|
1999-11-09 01:23:30 +00:00
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
1999-07-05 17:58:44 +00:00
|
|
|
|
/* Stuff that needs to be done by the finish command after the target
|
|
|
|
|
has stopped. In asynchronous mode, we wait for the target to stop in
|
|
|
|
|
the call to poll or select in the event loop, so it is impossible to
|
|
|
|
|
do all the stuff as part of the finish_command function itself. The
|
|
|
|
|
only chance we have to complete this command is in
|
|
|
|
|
fetch_inferior_event, which is called by the event loop as soon as it
|
|
|
|
|
detects that the target has stopped. This function is called via the
|
2000-09-02 00:07:13 +00:00
|
|
|
|
cmd_continuation pointer. */
|
1999-07-05 17:58:44 +00:00
|
|
|
|
void
|
2000-07-30 01:48:28 +00:00
|
|
|
|
finish_command_continuation (struct continuation_arg *arg)
|
1999-07-05 17:58:44 +00:00
|
|
|
|
{
|
|
|
|
|
register struct symbol *function;
|
|
|
|
|
struct breakpoint *breakpoint;
|
2000-01-11 03:07:37 +00:00
|
|
|
|
struct cleanup *cleanups;
|
1999-07-07 20:19:36 +00:00
|
|
|
|
|
2000-03-30 18:54:28 +00:00
|
|
|
|
breakpoint = (struct breakpoint *) arg->data.pointer;
|
|
|
|
|
function = (struct symbol *) arg->next->data.pointer;
|
|
|
|
|
cleanups = (struct cleanup *) arg->next->next->data.pointer;
|
1999-07-05 17:58:44 +00:00
|
|
|
|
|
1999-07-07 20:19:36 +00:00
|
|
|
|
if (bpstat_find_breakpoint (stop_bpstat, breakpoint) != NULL
|
1999-07-05 17:58:44 +00:00
|
|
|
|
&& function != 0)
|
|
|
|
|
{
|
|
|
|
|
struct type *value_type;
|
|
|
|
|
CORE_ADDR funcaddr;
|
|
|
|
|
int struct_return;
|
|
|
|
|
|
|
|
|
|
value_type = TYPE_TARGET_TYPE (SYMBOL_TYPE (function));
|
|
|
|
|
if (!value_type)
|
2001-02-08 06:03:54 +00:00
|
|
|
|
internal_error (__FILE__, __LINE__,
|
|
|
|
|
"finish_command: function has no target type");
|
1999-07-07 20:19:36 +00:00
|
|
|
|
|
1999-07-05 17:58:44 +00:00
|
|
|
|
if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
|
|
|
|
|
{
|
2000-01-11 03:07:37 +00:00
|
|
|
|
do_exec_cleanups (cleanups);
|
1999-07-05 17:58:44 +00:00
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
funcaddr = BLOCK_START (SYMBOL_BLOCK_VALUE (function));
|
|
|
|
|
|
|
|
|
|
struct_return = using_struct_return (value_of_variable (function, NULL),
|
1999-07-07 20:19:36 +00:00
|
|
|
|
funcaddr,
|
|
|
|
|
check_typedef (value_type),
|
1999-11-09 01:23:30 +00:00
|
|
|
|
BLOCK_GCC_COMPILED (SYMBOL_BLOCK_VALUE (function)));
|
1999-07-05 17:58:44 +00:00
|
|
|
|
|
1999-11-09 01:23:30 +00:00
|
|
|
|
print_return_value (struct_return, value_type);
|
1999-07-05 17:58:44 +00:00
|
|
|
|
}
|
2000-01-11 03:07:37 +00:00
|
|
|
|
do_exec_cleanups (cleanups);
|
1999-07-05 17:58:44 +00:00
|
|
|
|
}
|
|
|
|
|
|
1999-04-16 01:35:26 +00:00
|
|
|
|
/* "finish": Set a temporary breakpoint at the place
|
|
|
|
|
the selected frame will return to, then continue. */
|
|
|
|
|
|
|
|
|
|
static void
|
2000-07-30 01:48:28 +00:00
|
|
|
|
finish_command (char *arg, int from_tty)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
struct symtab_and_line sal;
|
|
|
|
|
register struct frame_info *frame;
|
|
|
|
|
register struct symbol *function;
|
|
|
|
|
struct breakpoint *breakpoint;
|
|
|
|
|
struct cleanup *old_chain;
|
2000-01-11 03:07:37 +00:00
|
|
|
|
struct continuation_arg *arg1, *arg2, *arg3;
|
1999-07-05 17:58:44 +00:00
|
|
|
|
|
|
|
|
|
int async_exec = 0;
|
|
|
|
|
|
|
|
|
|
/* Find out whether we must run in the background. */
|
|
|
|
|
if (arg != NULL)
|
|
|
|
|
async_exec = strip_bg_char (&arg);
|
|
|
|
|
|
|
|
|
|
/* If we must run in the background, but the target can't do it,
|
|
|
|
|
error out. */
|
1999-09-28 21:55:21 +00:00
|
|
|
|
if (event_loop_p && async_exec && !target_can_async_p ())
|
1999-07-05 17:58:44 +00:00
|
|
|
|
error ("Asynchronous execution not supported on this target.");
|
|
|
|
|
|
|
|
|
|
/* If we are not asked to run in the bg, then prepare to run in the
|
|
|
|
|
foreground, synchronously. */
|
1999-09-28 21:55:21 +00:00
|
|
|
|
if (event_loop_p && !async_exec && target_can_async_p ())
|
1999-07-07 20:19:36 +00:00
|
|
|
|
{
|
1999-07-05 17:58:44 +00:00
|
|
|
|
/* Simulate synchronous execution */
|
1999-09-28 21:55:21 +00:00
|
|
|
|
async_disable_stdin ();
|
1999-07-05 17:58:44 +00:00
|
|
|
|
}
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
|
|
|
|
if (arg)
|
|
|
|
|
error ("The \"finish\" command does not take any arguments.");
|
|
|
|
|
if (!target_has_execution)
|
|
|
|
|
error ("The program is not running.");
|
|
|
|
|
if (selected_frame == NULL)
|
|
|
|
|
error ("No selected frame.");
|
|
|
|
|
|
|
|
|
|
frame = get_prev_frame (selected_frame);
|
|
|
|
|
if (frame == 0)
|
|
|
|
|
error ("\"finish\" not meaningful in the outermost frame.");
|
|
|
|
|
|
|
|
|
|
clear_proceed_status ();
|
|
|
|
|
|
|
|
|
|
sal = find_pc_line (frame->pc, 0);
|
|
|
|
|
sal.pc = frame->pc;
|
|
|
|
|
|
|
|
|
|
breakpoint = set_momentary_breakpoint (sal, frame, bp_finish);
|
|
|
|
|
|
1999-09-28 21:55:21 +00:00
|
|
|
|
if (!event_loop_p || !target_can_async_p ())
|
2000-05-15 05:54:02 +00:00
|
|
|
|
old_chain = make_cleanup_delete_breakpoint (breakpoint);
|
1999-07-05 17:58:44 +00:00
|
|
|
|
else
|
2000-05-15 05:54:02 +00:00
|
|
|
|
old_chain = make_exec_cleanup_delete_breakpoint (breakpoint);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
|
|
|
|
/* Find the function we will return from. */
|
|
|
|
|
|
|
|
|
|
function = find_pc_function (selected_frame->pc);
|
|
|
|
|
|
|
|
|
|
/* Print info on the selected frame, including level number
|
|
|
|
|
but not source. */
|
|
|
|
|
if (from_tty)
|
|
|
|
|
{
|
|
|
|
|
printf_filtered ("Run till exit from ");
|
|
|
|
|
print_stack_frame (selected_frame, selected_frame_level, 0);
|
|
|
|
|
}
|
|
|
|
|
|
1999-07-05 17:58:44 +00:00
|
|
|
|
/* If running asynchronously and the target support asynchronous
|
|
|
|
|
execution, set things up for the rest of the finish command to be
|
|
|
|
|
completed later on, when gdb has detected that the target has
|
|
|
|
|
stopped, in fetch_inferior_event. */
|
1999-09-28 21:55:21 +00:00
|
|
|
|
if (event_loop_p && target_can_async_p ())
|
1999-07-05 17:58:44 +00:00
|
|
|
|
{
|
1999-07-07 20:19:36 +00:00
|
|
|
|
arg1 =
|
1999-07-05 17:58:44 +00:00
|
|
|
|
(struct continuation_arg *) xmalloc (sizeof (struct continuation_arg));
|
1999-07-07 20:19:36 +00:00
|
|
|
|
arg2 =
|
1999-07-05 17:58:44 +00:00
|
|
|
|
(struct continuation_arg *) xmalloc (sizeof (struct continuation_arg));
|
2000-01-11 03:07:37 +00:00
|
|
|
|
arg3 =
|
|
|
|
|
(struct continuation_arg *) xmalloc (sizeof (struct continuation_arg));
|
1999-07-05 17:58:44 +00:00
|
|
|
|
arg1->next = arg2;
|
2000-01-11 03:07:37 +00:00
|
|
|
|
arg2->next = arg3;
|
|
|
|
|
arg3->next = NULL;
|
2000-03-30 18:54:28 +00:00
|
|
|
|
arg1->data.pointer = breakpoint;
|
|
|
|
|
arg2->data.pointer = function;
|
|
|
|
|
arg3->data.pointer = old_chain;
|
1999-07-05 17:58:44 +00:00
|
|
|
|
add_continuation (finish_command_continuation, arg1);
|
|
|
|
|
}
|
|
|
|
|
|
1999-07-07 20:19:36 +00:00
|
|
|
|
proceed_to_finish = 1; /* We want stop_registers, please... */
|
1999-10-05 23:13:56 +00:00
|
|
|
|
proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
1999-07-05 17:58:44 +00:00
|
|
|
|
/* Do this only if not running asynchronously or if the target
|
|
|
|
|
cannot do async execution. Otherwise, complete this command when
|
1999-07-07 20:19:36 +00:00
|
|
|
|
the target actually stops, in fetch_inferior_event. */
|
1999-09-28 21:55:21 +00:00
|
|
|
|
if (!event_loop_p || !target_can_async_p ())
|
1999-07-07 20:19:36 +00:00
|
|
|
|
{
|
|
|
|
|
|
|
|
|
|
/* Did we stop at our breakpoint? */
|
|
|
|
|
if (bpstat_find_breakpoint (stop_bpstat, breakpoint) != NULL
|
|
|
|
|
&& function != 0)
|
|
|
|
|
{
|
|
|
|
|
struct type *value_type;
|
|
|
|
|
CORE_ADDR funcaddr;
|
|
|
|
|
int struct_return;
|
|
|
|
|
|
|
|
|
|
value_type = TYPE_TARGET_TYPE (SYMBOL_TYPE (function));
|
|
|
|
|
if (!value_type)
|
2001-02-08 06:03:54 +00:00
|
|
|
|
internal_error (__FILE__, __LINE__,
|
|
|
|
|
"finish_command: function has no target type");
|
1999-07-07 20:19:36 +00:00
|
|
|
|
|
|
|
|
|
/* FIXME: Shouldn't we do the cleanups before returning? */
|
|
|
|
|
if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
funcaddr = BLOCK_START (SYMBOL_BLOCK_VALUE (function));
|
|
|
|
|
|
|
|
|
|
struct_return =
|
|
|
|
|
using_struct_return (value_of_variable (function, NULL),
|
|
|
|
|
funcaddr,
|
|
|
|
|
check_typedef (value_type),
|
|
|
|
|
BLOCK_GCC_COMPILED (SYMBOL_BLOCK_VALUE (function)));
|
|
|
|
|
|
1999-11-09 01:23:30 +00:00
|
|
|
|
print_return_value (struct_return, value_type);
|
1999-07-07 20:19:36 +00:00
|
|
|
|
}
|
|
|
|
|
do_cleanups (old_chain);
|
|
|
|
|
}
|
1999-04-16 01:35:26 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* ARGSUSED */
|
|
|
|
|
static void
|
2000-07-30 01:48:28 +00:00
|
|
|
|
program_info (char *args, int from_tty)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
bpstat bs = stop_bpstat;
|
|
|
|
|
int num = bpstat_num (&bs);
|
1999-07-07 20:19:36 +00:00
|
|
|
|
|
1999-04-16 01:35:26 +00:00
|
|
|
|
if (!target_has_execution)
|
|
|
|
|
{
|
|
|
|
|
printf_filtered ("The program being debugged is not being run.\n");
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
target_files_info ();
|
|
|
|
|
printf_filtered ("Program stopped at %s.\n",
|
1999-07-07 20:19:36 +00:00
|
|
|
|
local_hex_string ((unsigned long) stop_pc));
|
1999-04-16 01:35:26 +00:00
|
|
|
|
if (stop_step)
|
|
|
|
|
printf_filtered ("It stopped after being stepped.\n");
|
|
|
|
|
else if (num != 0)
|
|
|
|
|
{
|
|
|
|
|
/* There may be several breakpoints in the same place, so this
|
1999-07-07 20:19:36 +00:00
|
|
|
|
isn't as strange as it seems. */
|
1999-04-16 01:35:26 +00:00
|
|
|
|
while (num != 0)
|
|
|
|
|
{
|
|
|
|
|
if (num < 0)
|
|
|
|
|
{
|
|
|
|
|
printf_filtered ("It stopped at a breakpoint that has ");
|
|
|
|
|
printf_filtered ("since been deleted.\n");
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
printf_filtered ("It stopped at breakpoint %d.\n", num);
|
|
|
|
|
num = bpstat_num (&bs);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else if (stop_signal != TARGET_SIGNAL_0)
|
|
|
|
|
{
|
|
|
|
|
printf_filtered ("It stopped with signal %s, %s.\n",
|
|
|
|
|
target_signal_to_name (stop_signal),
|
|
|
|
|
target_signal_to_string (stop_signal));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (!from_tty)
|
|
|
|
|
{
|
|
|
|
|
printf_filtered ("Type \"info stack\" or \"info registers\" ");
|
|
|
|
|
printf_filtered ("for more information.\n");
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void
|
2000-07-30 01:48:28 +00:00
|
|
|
|
environment_info (char *var, int from_tty)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
if (var)
|
|
|
|
|
{
|
|
|
|
|
register char *val = get_in_environ (inferior_environ, var);
|
|
|
|
|
if (val)
|
|
|
|
|
{
|
|
|
|
|
puts_filtered (var);
|
|
|
|
|
puts_filtered (" = ");
|
|
|
|
|
puts_filtered (val);
|
|
|
|
|
puts_filtered ("\n");
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
puts_filtered ("Environment variable \"");
|
|
|
|
|
puts_filtered (var);
|
|
|
|
|
puts_filtered ("\" not defined.\n");
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
register char **vector = environ_vector (inferior_environ);
|
|
|
|
|
while (*vector)
|
|
|
|
|
{
|
|
|
|
|
puts_filtered (*vector++);
|
|
|
|
|
puts_filtered ("\n");
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void
|
2000-07-30 01:48:28 +00:00
|
|
|
|
set_environment_command (char *arg, int from_tty)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
register char *p, *val, *var;
|
|
|
|
|
int nullset = 0;
|
|
|
|
|
|
|
|
|
|
if (arg == 0)
|
|
|
|
|
error_no_arg ("environment variable and value");
|
|
|
|
|
|
|
|
|
|
/* Find seperation between variable name and value */
|
|
|
|
|
p = (char *) strchr (arg, '=');
|
|
|
|
|
val = (char *) strchr (arg, ' ');
|
|
|
|
|
|
|
|
|
|
if (p != 0 && val != 0)
|
|
|
|
|
{
|
|
|
|
|
/* We have both a space and an equals. If the space is before the
|
1999-07-07 20:19:36 +00:00
|
|
|
|
equals, walk forward over the spaces til we see a nonspace
|
|
|
|
|
(possibly the equals). */
|
1999-04-16 01:35:26 +00:00
|
|
|
|
if (p > val)
|
|
|
|
|
while (*val == ' ')
|
|
|
|
|
val++;
|
|
|
|
|
|
|
|
|
|
/* Now if the = is after the char following the spaces,
|
1999-07-07 20:19:36 +00:00
|
|
|
|
take the char following the spaces. */
|
1999-04-16 01:35:26 +00:00
|
|
|
|
if (p > val)
|
|
|
|
|
p = val - 1;
|
|
|
|
|
}
|
|
|
|
|
else if (val != 0 && p == 0)
|
|
|
|
|
p = val;
|
|
|
|
|
|
|
|
|
|
if (p == arg)
|
|
|
|
|
error_no_arg ("environment variable to set");
|
|
|
|
|
|
|
|
|
|
if (p == 0 || p[1] == 0)
|
|
|
|
|
{
|
|
|
|
|
nullset = 1;
|
|
|
|
|
if (p == 0)
|
|
|
|
|
p = arg + strlen (arg); /* So that savestring below will work */
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* Not setting variable value to null */
|
|
|
|
|
val = p + 1;
|
|
|
|
|
while (*val == ' ' || *val == '\t')
|
|
|
|
|
val++;
|
|
|
|
|
}
|
|
|
|
|
|
1999-07-07 20:19:36 +00:00
|
|
|
|
while (p != arg && (p[-1] == ' ' || p[-1] == '\t'))
|
|
|
|
|
p--;
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
|
|
|
|
var = savestring (arg, p - arg);
|
|
|
|
|
if (nullset)
|
|
|
|
|
{
|
|
|
|
|
printf_filtered ("Setting environment variable ");
|
|
|
|
|
printf_filtered ("\"%s\" to null value.\n", var);
|
|
|
|
|
set_in_environ (inferior_environ, var, "");
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
set_in_environ (inferior_environ, var, val);
|
2000-12-15 01:01:51 +00:00
|
|
|
|
xfree (var);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void
|
2000-07-30 01:48:28 +00:00
|
|
|
|
unset_environment_command (char *var, int from_tty)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
if (var == 0)
|
|
|
|
|
{
|
|
|
|
|
/* If there is no argument, delete all environment variables.
|
1999-07-07 20:19:36 +00:00
|
|
|
|
Ask for confirmation if reading from the terminal. */
|
1999-04-16 01:35:26 +00:00
|
|
|
|
if (!from_tty || query ("Delete all environment variables? "))
|
|
|
|
|
{
|
|
|
|
|
free_environ (inferior_environ);
|
|
|
|
|
inferior_environ = make_environ ();
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
unset_in_environ (inferior_environ, var);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Handle the execution path (PATH variable) */
|
|
|
|
|
|
|
|
|
|
static const char path_var_name[] = "PATH";
|
|
|
|
|
|
|
|
|
|
/* ARGSUSED */
|
|
|
|
|
static void
|
2000-07-30 01:48:28 +00:00
|
|
|
|
path_info (char *args, int from_tty)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
puts_filtered ("Executable and object file path: ");
|
|
|
|
|
puts_filtered (get_in_environ (inferior_environ, path_var_name));
|
|
|
|
|
puts_filtered ("\n");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Add zero or more directories to the front of the execution path. */
|
|
|
|
|
|
|
|
|
|
static void
|
2000-07-30 01:48:28 +00:00
|
|
|
|
path_command (char *dirname, int from_tty)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
char *exec_path;
|
|
|
|
|
char *env;
|
|
|
|
|
dont_repeat ();
|
|
|
|
|
env = get_in_environ (inferior_environ, path_var_name);
|
|
|
|
|
/* Can be null if path is not set */
|
|
|
|
|
if (!env)
|
|
|
|
|
env = "";
|
2001-01-31 01:24:03 +00:00
|
|
|
|
exec_path = xstrdup (env);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
mod_path (dirname, &exec_path);
|
|
|
|
|
set_in_environ (inferior_environ, path_var_name, exec_path);
|
2000-12-15 01:01:51 +00:00
|
|
|
|
xfree (exec_path);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
if (from_tty)
|
1999-07-07 20:19:36 +00:00
|
|
|
|
path_info ((char *) NULL, from_tty);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
}
|
|
|
|
|
|
1999-07-07 20:19:36 +00:00
|
|
|
|
|
1999-04-16 01:35:26 +00:00
|
|
|
|
#ifdef REGISTER_NAMES
|
|
|
|
|
char *gdb_register_names[] = REGISTER_NAMES;
|
|
|
|
|
#endif
|
|
|
|
|
/* Print out the machine register regnum. If regnum is -1,
|
|
|
|
|
print all registers (fpregs == 1) or all non-float registers
|
|
|
|
|
(fpregs == 0).
|
|
|
|
|
|
|
|
|
|
For most machines, having all_registers_info() print the
|
|
|
|
|
register(s) one per line is good enough. If a different format
|
|
|
|
|
is required, (eg, for MIPS or Pyramid 90x, which both have
|
|
|
|
|
lots of regs), or there is an existing convention for showing
|
|
|
|
|
all the registers, define the macro DO_REGISTERS_INFO(regnum, fp)
|
1999-07-07 20:19:36 +00:00
|
|
|
|
to provide that format. */
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
2000-08-01 14:48:01 +00:00
|
|
|
|
void
|
2000-07-30 01:48:28 +00:00
|
|
|
|
do_registers_info (int regnum, int fpregs)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
register int i;
|
2001-03-21 16:42:39 +00:00
|
|
|
|
int numregs = NUM_REGS + NUM_PSEUDO_REGS;
|
2001-05-16 20:05:49 +00:00
|
|
|
|
char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
|
|
|
|
|
char *virtual_buffer = (char*) alloca (MAX_REGISTER_VIRTUAL_SIZE);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
|
|
|
|
for (i = 0; i < numregs; i++)
|
|
|
|
|
{
|
|
|
|
|
/* Decide between printing all regs, nonfloat regs, or specific reg. */
|
1999-07-07 20:19:36 +00:00
|
|
|
|
if (regnum == -1)
|
|
|
|
|
{
|
|
|
|
|
if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (i)) == TYPE_CODE_FLT && !fpregs)
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
if (i != regnum)
|
|
|
|
|
continue;
|
|
|
|
|
}
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
|
|
|
|
/* If the register name is empty, it is undefined for this
|
1999-07-07 20:19:36 +00:00
|
|
|
|
processor, so don't display anything. */
|
1999-04-16 01:35:26 +00:00
|
|
|
|
if (REGISTER_NAME (i) == NULL || *(REGISTER_NAME (i)) == '\0')
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
fputs_filtered (REGISTER_NAME (i), gdb_stdout);
|
|
|
|
|
print_spaces_filtered (15 - strlen (REGISTER_NAME (i)), gdb_stdout);
|
|
|
|
|
|
|
|
|
|
/* Get the data in raw format. */
|
|
|
|
|
if (read_relative_register_raw_bytes (i, raw_buffer))
|
|
|
|
|
{
|
|
|
|
|
printf_filtered ("*value not available*\n");
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Convert raw data to virtual format if necessary. */
|
|
|
|
|
if (REGISTER_CONVERTIBLE (i))
|
|
|
|
|
{
|
|
|
|
|
REGISTER_CONVERT_TO_VIRTUAL (i, REGISTER_VIRTUAL_TYPE (i),
|
|
|
|
|
raw_buffer, virtual_buffer);
|
|
|
|
|
}
|
|
|
|
|
else
|
1999-05-25 18:09:09 +00:00
|
|
|
|
{
|
|
|
|
|
memcpy (virtual_buffer, raw_buffer,
|
|
|
|
|
REGISTER_VIRTUAL_SIZE (i));
|
|
|
|
|
}
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
|
|
|
|
/* If virtual format is floating, print it that way, and in raw hex. */
|
|
|
|
|
if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (i)) == TYPE_CODE_FLT)
|
|
|
|
|
{
|
|
|
|
|
register int j;
|
|
|
|
|
|
|
|
|
|
#ifdef INVALID_FLOAT
|
|
|
|
|
if (INVALID_FLOAT (virtual_buffer, REGISTER_VIRTUAL_SIZE (i)))
|
|
|
|
|
printf_filtered ("<invalid float>");
|
|
|
|
|
else
|
|
|
|
|
#endif
|
|
|
|
|
val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
|
|
|
|
|
gdb_stdout, 0, 1, 0, Val_pretty_default);
|
|
|
|
|
|
|
|
|
|
printf_filtered ("\t(raw 0x");
|
|
|
|
|
for (j = 0; j < REGISTER_RAW_SIZE (i); j++)
|
|
|
|
|
{
|
|
|
|
|
register int idx = TARGET_BYTE_ORDER == BIG_ENDIAN ? j
|
1999-07-07 20:19:36 +00:00
|
|
|
|
: REGISTER_RAW_SIZE (i) - 1 - j;
|
|
|
|
|
printf_filtered ("%02x", (unsigned char) raw_buffer[idx]);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
}
|
|
|
|
|
printf_filtered (")");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* FIXME! val_print probably can handle all of these cases now... */
|
|
|
|
|
|
|
|
|
|
/* Else if virtual format is too long for printf,
|
1999-07-07 20:19:36 +00:00
|
|
|
|
print in hex a byte at a time. */
|
1999-04-16 01:35:26 +00:00
|
|
|
|
else if (REGISTER_VIRTUAL_SIZE (i) > (int) sizeof (long))
|
|
|
|
|
{
|
|
|
|
|
register int j;
|
|
|
|
|
printf_filtered ("0x");
|
|
|
|
|
for (j = 0; j < REGISTER_VIRTUAL_SIZE (i); j++)
|
1999-07-07 20:19:36 +00:00
|
|
|
|
printf_filtered ("%02x", (unsigned char) virtual_buffer[j]);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
}
|
|
|
|
|
/* Else print as integer in hex and in decimal. */
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
|
|
|
|
|
gdb_stdout, 'x', 1, 0, Val_pretty_default);
|
|
|
|
|
printf_filtered ("\t");
|
|
|
|
|
val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
|
1999-07-07 20:19:36 +00:00
|
|
|
|
gdb_stdout, 0, 1, 0, Val_pretty_default);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* The SPARC wants to print even-numbered float regs as doubles
|
1999-07-07 20:19:36 +00:00
|
|
|
|
in addition to printing them as floats. */
|
1999-04-16 01:35:26 +00:00
|
|
|
|
#ifdef PRINT_REGISTER_HOOK
|
|
|
|
|
PRINT_REGISTER_HOOK (i);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
printf_filtered ("\n");
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void
|
2000-07-30 01:48:28 +00:00
|
|
|
|
registers_info (char *addr_exp, int fpregs)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
int regnum, numregs;
|
|
|
|
|
register char *end;
|
|
|
|
|
|
|
|
|
|
if (!target_has_registers)
|
|
|
|
|
error ("The program has no registers now.");
|
|
|
|
|
if (selected_frame == NULL)
|
|
|
|
|
error ("No selected frame.");
|
|
|
|
|
|
|
|
|
|
if (!addr_exp)
|
|
|
|
|
{
|
1999-07-07 20:19:36 +00:00
|
|
|
|
DO_REGISTERS_INFO (-1, fpregs);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
do
|
1999-07-07 20:19:36 +00:00
|
|
|
|
{
|
1999-04-16 01:35:26 +00:00
|
|
|
|
if (addr_exp[0] == '$')
|
|
|
|
|
addr_exp++;
|
|
|
|
|
end = addr_exp;
|
|
|
|
|
while (*end != '\0' && *end != ' ' && *end != '\t')
|
|
|
|
|
++end;
|
2001-03-21 16:42:39 +00:00
|
|
|
|
numregs = NUM_REGS + NUM_PSEUDO_REGS;
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
|
|
|
|
regnum = target_map_name_to_register (addr_exp, end - addr_exp);
|
1999-07-07 20:19:36 +00:00
|
|
|
|
if (regnum >= 0)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
goto found;
|
|
|
|
|
|
|
|
|
|
regnum = numregs;
|
|
|
|
|
|
|
|
|
|
if (*addr_exp >= '0' && *addr_exp <= '9')
|
1999-07-07 20:19:36 +00:00
|
|
|
|
regnum = atoi (addr_exp); /* Take a number */
|
|
|
|
|
if (regnum >= numregs) /* Bad name, or bad number */
|
1999-04-16 01:35:26 +00:00
|
|
|
|
error ("%.*s: invalid register", end - addr_exp, addr_exp);
|
|
|
|
|
|
1999-07-07 20:19:36 +00:00
|
|
|
|
found:
|
|
|
|
|
DO_REGISTERS_INFO (regnum, fpregs);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
|
|
|
|
addr_exp = end;
|
|
|
|
|
while (*addr_exp == ' ' || *addr_exp == '\t')
|
|
|
|
|
++addr_exp;
|
1999-07-07 20:19:36 +00:00
|
|
|
|
}
|
|
|
|
|
while (*addr_exp != '\0');
|
1999-04-16 01:35:26 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void
|
2000-07-30 01:48:28 +00:00
|
|
|
|
all_registers_info (char *addr_exp, int from_tty)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
registers_info (addr_exp, 1);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void
|
2000-07-30 01:48:28 +00:00
|
|
|
|
nofp_registers_info (char *addr_exp, int from_tty)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
registers_info (addr_exp, 0);
|
|
|
|
|
}
|
|
|
|
|
|
1999-07-07 20:19:36 +00:00
|
|
|
|
|
1999-04-16 01:35:26 +00:00
|
|
|
|
/*
|
|
|
|
|
* TODO:
|
|
|
|
|
* Should save/restore the tty state since it might be that the
|
|
|
|
|
* program to be debugged was started on this tty and it wants
|
|
|
|
|
* the tty in some state other than what we want. If it's running
|
|
|
|
|
* on another terminal or without a terminal, then saving and
|
|
|
|
|
* restoring the tty state is a harmless no-op.
|
|
|
|
|
* This only needs to be done if we are attaching to a process.
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
attach_command --
|
|
|
|
|
takes a program started up outside of gdb and ``attaches'' to it.
|
|
|
|
|
This stops it cold in its tracks and allows us to start debugging it.
|
|
|
|
|
and wait for the trace-trap that results from attaching. */
|
|
|
|
|
|
|
|
|
|
void
|
2000-07-30 01:48:28 +00:00
|
|
|
|
attach_command (char *args, int from_tty)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
#ifdef SOLIB_ADD
|
|
|
|
|
extern int auto_solib_add;
|
|
|
|
|
#endif
|
|
|
|
|
|
1999-07-07 20:19:36 +00:00
|
|
|
|
char *exec_file;
|
|
|
|
|
char *full_exec_path = NULL;
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
1999-07-07 20:19:36 +00:00
|
|
|
|
dont_repeat (); /* Not for the faint of heart */
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
|
|
|
|
if (target_has_execution)
|
|
|
|
|
{
|
|
|
|
|
if (query ("A program is being debugged already. Kill it? "))
|
|
|
|
|
target_kill ();
|
|
|
|
|
else
|
|
|
|
|
error ("Not killed.");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
target_attach (args, from_tty);
|
|
|
|
|
|
|
|
|
|
/* Set up the "saved terminal modes" of the inferior
|
|
|
|
|
based on what modes we are starting it with. */
|
|
|
|
|
target_terminal_init ();
|
|
|
|
|
|
|
|
|
|
/* Install inferior's terminal modes. */
|
|
|
|
|
target_terminal_inferior ();
|
|
|
|
|
|
|
|
|
|
/* Set up execution context to know that we should return from
|
|
|
|
|
wait_for_inferior as soon as the target reports a stop. */
|
|
|
|
|
init_wait_for_inferior ();
|
|
|
|
|
clear_proceed_status ();
|
|
|
|
|
|
|
|
|
|
/* No traps are generated when attaching to inferior under Mach 3
|
|
|
|
|
or GNU hurd. */
|
|
|
|
|
#ifndef ATTACH_NO_WAIT
|
2000-07-06 20:58:33 +00:00
|
|
|
|
stop_soon_quietly = 1;
|
1999-04-16 01:35:26 +00:00
|
|
|
|
wait_for_inferior ();
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* If no exec file is yet known, try to determine it from the
|
|
|
|
|
* process itself.
|
|
|
|
|
*/
|
|
|
|
|
exec_file = (char *) get_exec_file (0);
|
1999-07-07 20:19:36 +00:00
|
|
|
|
if (!exec_file)
|
|
|
|
|
{
|
2001-05-04 04:15:33 +00:00
|
|
|
|
exec_file = target_pid_to_exec_file (PIDGET (inferior_ptid));
|
1999-07-07 20:19:36 +00:00
|
|
|
|
if (exec_file)
|
|
|
|
|
{
|
|
|
|
|
/* It's possible we don't have a full path, but rather just a
|
|
|
|
|
filename. Some targets, such as HP-UX, don't provide the
|
|
|
|
|
full path, sigh.
|
|
|
|
|
|
|
|
|
|
Attempt to qualify the filename against the source path.
|
|
|
|
|
(If that fails, we'll just fall back on the original
|
|
|
|
|
filename. Not much more we can do...)
|
|
|
|
|
*/
|
|
|
|
|
if (!source_full_path_of (exec_file, &full_exec_path))
|
|
|
|
|
full_exec_path = savestring (exec_file, strlen (exec_file));
|
|
|
|
|
|
|
|
|
|
exec_file_attach (full_exec_path, from_tty);
|
2001-01-27 00:43:26 +00:00
|
|
|
|
symbol_file_add_main (full_exec_path, from_tty);
|
1999-07-07 20:19:36 +00:00
|
|
|
|
}
|
1999-04-16 01:35:26 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#ifdef SOLIB_ADD
|
|
|
|
|
if (auto_solib_add)
|
|
|
|
|
{
|
|
|
|
|
/* Add shared library symbols from the newly attached process, if any. */
|
1999-07-07 20:19:36 +00:00
|
|
|
|
SOLIB_ADD ((char *) 0, from_tty, ¤t_target);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
re_enable_breakpoints_in_shlibs ();
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* Take any necessary post-attaching actions for this platform.
|
1999-07-07 20:19:36 +00:00
|
|
|
|
*/
|
2001-05-04 04:15:33 +00:00
|
|
|
|
target_post_attach (PIDGET (inferior_ptid));
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
|
|
|
|
normal_stop ();
|
1999-09-28 21:55:21 +00:00
|
|
|
|
|
|
|
|
|
if (attach_hook)
|
|
|
|
|
attach_hook ();
|
1999-04-16 01:35:26 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* detach_command --
|
|
|
|
|
* takes a program previously attached to and detaches it.
|
|
|
|
|
* The program resumes execution and will no longer stop
|
|
|
|
|
* on signals, etc. We better not have left any breakpoints
|
|
|
|
|
* in the program or it'll die when it hits one. For this
|
|
|
|
|
* to work, it may be necessary for the process to have been
|
|
|
|
|
* previously attached. It *might* work if the program was
|
|
|
|
|
* started via the normal ptrace (PTRACE_TRACEME).
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
static void
|
2000-07-30 01:48:28 +00:00
|
|
|
|
detach_command (char *args, int from_tty)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
1999-07-07 20:19:36 +00:00
|
|
|
|
dont_repeat (); /* Not for the faint of heart */
|
1999-04-16 01:35:26 +00:00
|
|
|
|
target_detach (args, from_tty);
|
|
|
|
|
#if defined(SOLIB_RESTART)
|
|
|
|
|
SOLIB_RESTART ();
|
|
|
|
|
#endif
|
1999-09-28 21:55:21 +00:00
|
|
|
|
if (detach_hook)
|
|
|
|
|
detach_hook ();
|
1999-04-16 01:35:26 +00:00
|
|
|
|
}
|
|
|
|
|
|
1999-07-05 17:58:44 +00:00
|
|
|
|
/* Stop the execution of the target while running in async mode, in
|
|
|
|
|
the backgound. */
|
2000-02-03 04:14:45 +00:00
|
|
|
|
#ifdef UI_OUT
|
|
|
|
|
void
|
2000-07-30 01:48:28 +00:00
|
|
|
|
interrupt_target_command_wrapper (char *args, int from_tty)
|
2000-02-03 04:14:45 +00:00
|
|
|
|
{
|
|
|
|
|
interrupt_target_command (args, from_tty);
|
|
|
|
|
}
|
|
|
|
|
#endif
|
1999-07-05 17:58:44 +00:00
|
|
|
|
static void
|
2000-07-30 01:48:28 +00:00
|
|
|
|
interrupt_target_command (char *args, int from_tty)
|
1999-07-05 17:58:44 +00:00
|
|
|
|
{
|
1999-09-28 21:55:21 +00:00
|
|
|
|
if (event_loop_p && target_can_async_p ())
|
1999-07-05 17:58:44 +00:00
|
|
|
|
{
|
1999-07-07 20:19:36 +00:00
|
|
|
|
dont_repeat (); /* Not for the faint of heart */
|
1999-07-05 17:58:44 +00:00
|
|
|
|
target_stop ();
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
1999-04-16 01:35:26 +00:00
|
|
|
|
/* ARGSUSED */
|
|
|
|
|
static void
|
2000-07-30 01:48:28 +00:00
|
|
|
|
float_info (char *addr_exp, int from_tty)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
#ifdef FLOAT_INFO
|
|
|
|
|
FLOAT_INFO;
|
|
|
|
|
#else
|
|
|
|
|
printf_filtered ("No floating point info available for this processor.\n");
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* ARGSUSED */
|
|
|
|
|
static void
|
2000-07-30 01:48:28 +00:00
|
|
|
|
unset_command (char *args, int from_tty)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
printf_filtered ("\"unset\" must be followed by the name of ");
|
|
|
|
|
printf_filtered ("an unset subcommand.\n");
|
|
|
|
|
help_list (unsetlist, "unset ", -1, gdb_stdout);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void
|
2000-07-30 01:48:28 +00:00
|
|
|
|
_initialize_infcmd (void)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
struct cmd_list_element *c;
|
1999-07-07 20:19:36 +00:00
|
|
|
|
|
* completer.c (gdb_completer_loc_break_characters): New variable.
(line_completion_function): If we are completing on locations,
back up the start of word pointer past all characters which can
appear in a location spec.
(location_completer): New function.
* completer.h: Add prototype for location_completer.
* symtab.c (make_source_files_completion_list)
(add_filename_to_list, not_interesting_fname): New functions.
(filename_seen): New function, body extracted from
output_source_filename.
(output_source_filename): Call filename_seen to check if the file
was already printed.
(make_symbol_completion_list): If TEXT includes a
double-quoted string, return an empty list, not NULL.
(make_file_symbol_completion_list): New function, similar to
make_symbol_completion_list but with an additional argument
SRCFILE.
* symtab.h (make_file_symbol_completion_list)
(make_source_files_completion_list): Add prototypes.
* breakpoint.c (_initialize_breakpoint): Make location_completer
be the completion function for all commands which set breakpoints
and watchpoints.
(top-level): #include "completer.h".
* tracepoint.c (_initialize_tracepoint): Make location_completer
be the completion function for the "trace" command.
(top-level): #include "completer.h".
* printcmd.c (_initialize_printcmd): Make location_completer be
the completion function for the "print", "inspect", "call", and
"disassemble" commands.
(top-level): #include "completer.h".
* infcmd.c (_initialize_infcmd): Make location_completer be the
completion function for the "go", "jump", and "until" commands.
(top-level): #include "completer.h".
2001-06-11 16:05:25 +00:00
|
|
|
|
c = add_com ("tty", class_run, tty_command,
|
|
|
|
|
"Set terminal for future runs of program being debugged.");
|
2001-02-19 11:47:16 +00:00
|
|
|
|
c->completer = filename_completer;
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
2001-02-19 11:47:16 +00:00
|
|
|
|
c = add_set_cmd ("args", class_run, var_string_noescape,
|
|
|
|
|
(char *) &inferior_args,
|
|
|
|
|
"Set argument list to give program being debugged when it is started.\n\
|
1999-04-16 01:35:26 +00:00
|
|
|
|
Follow this command with any number of args, to be passed to the program.",
|
2001-02-19 11:47:16 +00:00
|
|
|
|
&setlist);
|
|
|
|
|
add_show_from_set (c, &showlist);
|
|
|
|
|
c->completer = filename_completer;
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
|
|
|
|
c = add_cmd
|
|
|
|
|
("environment", no_class, environment_info,
|
|
|
|
|
"The environment to give the program, or one variable's value.\n\
|
|
|
|
|
With an argument VAR, prints the value of environment variable VAR to\n\
|
|
|
|
|
give the program being debugged. With no arguments, prints the entire\n\
|
|
|
|
|
environment to be given to the program.", &showlist);
|
|
|
|
|
c->completer = noop_completer;
|
|
|
|
|
|
|
|
|
|
add_prefix_cmd ("unset", no_class, unset_command,
|
|
|
|
|
"Complement to certain \"set\" commands",
|
|
|
|
|
&unsetlist, "unset ", 0, &cmdlist);
|
1999-07-07 20:19:36 +00:00
|
|
|
|
|
1999-04-16 01:35:26 +00:00
|
|
|
|
c = add_cmd ("environment", class_run, unset_environment_command,
|
1999-07-07 20:19:36 +00:00
|
|
|
|
"Cancel environment variable VAR for the program.\n\
|
1999-04-16 01:35:26 +00:00
|
|
|
|
This does not affect the program until the next \"run\" command.",
|
1999-07-07 20:19:36 +00:00
|
|
|
|
&unsetlist);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
c->completer = noop_completer;
|
|
|
|
|
|
|
|
|
|
c = add_cmd ("environment", class_run, set_environment_command,
|
|
|
|
|
"Set environment variable value to give the program.\n\
|
|
|
|
|
Arguments are VAR VALUE where VAR is variable name and VALUE is value.\n\
|
|
|
|
|
VALUES of environment variables are uninterpreted strings.\n\
|
|
|
|
|
This does not affect the program until the next \"run\" command.",
|
1999-07-07 20:19:36 +00:00
|
|
|
|
&setlist);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
c->completer = noop_completer;
|
1999-07-07 20:19:36 +00:00
|
|
|
|
|
2001-02-19 11:47:16 +00:00
|
|
|
|
c = add_com ("path", class_files, path_command,
|
|
|
|
|
"Add directory DIR(s) to beginning of search path for object files.\n\
|
1999-04-16 01:35:26 +00:00
|
|
|
|
$cwd in the path means the current working directory.\n\
|
|
|
|
|
This path is equivalent to the $PATH shell variable. It is a list of\n\
|
|
|
|
|
directories, separated by colons. These directories are searched to find\n\
|
|
|
|
|
fully linked executable files and separately compiled object files as needed.");
|
2001-02-19 11:47:16 +00:00
|
|
|
|
c->completer = filename_completer;
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
|
|
|
|
c = add_cmd ("paths", no_class, path_info,
|
1999-07-07 20:19:36 +00:00
|
|
|
|
"Current search path for finding object files.\n\
|
1999-04-16 01:35:26 +00:00
|
|
|
|
$cwd in the path means the current working directory.\n\
|
|
|
|
|
This path is equivalent to the $PATH shell variable. It is a list of\n\
|
|
|
|
|
directories, separated by colons. These directories are searched to find\n\
|
|
|
|
|
fully linked executable files and separately compiled object files as needed.",
|
|
|
|
|
&showlist);
|
|
|
|
|
c->completer = noop_completer;
|
|
|
|
|
|
1999-07-07 20:19:36 +00:00
|
|
|
|
add_com ("attach", class_run, attach_command,
|
|
|
|
|
"Attach to a process or file outside of GDB.\n\
|
1999-04-16 01:35:26 +00:00
|
|
|
|
This command attaches to another target, of the same type as your last\n\
|
|
|
|
|
\"target\" command (\"info files\" will show your target stack).\n\
|
|
|
|
|
The command may take as argument a process id or a device file.\n\
|
|
|
|
|
For a process id, you must have permission to send the process a signal,\n\
|
|
|
|
|
and it must have the same effective uid as the debugger.\n\
|
|
|
|
|
When using \"attach\" with a process id, the debugger finds the\n\
|
|
|
|
|
program running in the process, looking first in the current working\n\
|
|
|
|
|
directory, or (if not found there) using the source file search path\n\
|
|
|
|
|
(see the \"directory\" command). You can also use the \"file\" command\n\
|
|
|
|
|
to specify the program, and to load its symbol table.");
|
|
|
|
|
|
|
|
|
|
add_com ("detach", class_run, detach_command,
|
|
|
|
|
"Detach a process or file previously attached.\n\
|
|
|
|
|
If a process, it is no longer traced, and it continues its execution. If\n\
|
|
|
|
|
you were debugging a file, the file is closed and gdb no longer accesses it.");
|
|
|
|
|
|
|
|
|
|
add_com ("signal", class_run, signal_command,
|
|
|
|
|
"Continue program giving it signal specified by the argument.\n\
|
|
|
|
|
An argument of \"0\" means continue program without giving it a signal.");
|
|
|
|
|
|
|
|
|
|
add_com ("stepi", class_run, stepi_command,
|
|
|
|
|
"Step one instruction exactly.\n\
|
|
|
|
|
Argument N means do this N times (or till program stops for another reason).");
|
|
|
|
|
add_com_alias ("si", "stepi", class_alias, 0);
|
|
|
|
|
|
|
|
|
|
add_com ("nexti", class_run, nexti_command,
|
|
|
|
|
"Step one instruction, but proceed through subroutine calls.\n\
|
|
|
|
|
Argument N means do this N times (or till program stops for another reason).");
|
|
|
|
|
add_com_alias ("ni", "nexti", class_alias, 0);
|
|
|
|
|
|
|
|
|
|
add_com ("finish", class_run, finish_command,
|
|
|
|
|
"Execute until selected stack frame returns.\n\
|
|
|
|
|
Upon return, the value returned is printed and put in the value history.");
|
|
|
|
|
|
|
|
|
|
add_com ("next", class_run, next_command,
|
|
|
|
|
"Step program, proceeding through subroutine calls.\n\
|
|
|
|
|
Like the \"step\" command as long as subroutine calls do not happen;\n\
|
|
|
|
|
when they do, the call is treated as one instruction.\n\
|
|
|
|
|
Argument N means do this N times (or till program stops for another reason).");
|
|
|
|
|
add_com_alias ("n", "next", class_run, 1);
|
|
|
|
|
if (xdb_commands)
|
1999-07-07 20:19:36 +00:00
|
|
|
|
add_com_alias ("S", "next", class_run, 1);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
|
|
|
|
add_com ("step", class_run, step_command,
|
|
|
|
|
"Step program until it reaches a different source line.\n\
|
|
|
|
|
Argument N means do this N times (or till program stops for another reason).");
|
|
|
|
|
add_com_alias ("s", "step", class_run, 1);
|
|
|
|
|
|
* completer.c (gdb_completer_loc_break_characters): New variable.
(line_completion_function): If we are completing on locations,
back up the start of word pointer past all characters which can
appear in a location spec.
(location_completer): New function.
* completer.h: Add prototype for location_completer.
* symtab.c (make_source_files_completion_list)
(add_filename_to_list, not_interesting_fname): New functions.
(filename_seen): New function, body extracted from
output_source_filename.
(output_source_filename): Call filename_seen to check if the file
was already printed.
(make_symbol_completion_list): If TEXT includes a
double-quoted string, return an empty list, not NULL.
(make_file_symbol_completion_list): New function, similar to
make_symbol_completion_list but with an additional argument
SRCFILE.
* symtab.h (make_file_symbol_completion_list)
(make_source_files_completion_list): Add prototypes.
* breakpoint.c (_initialize_breakpoint): Make location_completer
be the completion function for all commands which set breakpoints
and watchpoints.
(top-level): #include "completer.h".
* tracepoint.c (_initialize_tracepoint): Make location_completer
be the completion function for the "trace" command.
(top-level): #include "completer.h".
* printcmd.c (_initialize_printcmd): Make location_completer be
the completion function for the "print", "inspect", "call", and
"disassemble" commands.
(top-level): #include "completer.h".
* infcmd.c (_initialize_infcmd): Make location_completer be the
completion function for the "go", "jump", and "until" commands.
(top-level): #include "completer.h".
2001-06-11 16:05:25 +00:00
|
|
|
|
c = add_com ("until", class_run, until_command,
|
|
|
|
|
"Execute until the program reaches a source line greater than the current\n\
|
1999-04-16 01:35:26 +00:00
|
|
|
|
or a specified line or address or function (same args as break command).\n\
|
|
|
|
|
Execution will also stop upon exit from the current stack frame.");
|
* completer.c (gdb_completer_loc_break_characters): New variable.
(line_completion_function): If we are completing on locations,
back up the start of word pointer past all characters which can
appear in a location spec.
(location_completer): New function.
* completer.h: Add prototype for location_completer.
* symtab.c (make_source_files_completion_list)
(add_filename_to_list, not_interesting_fname): New functions.
(filename_seen): New function, body extracted from
output_source_filename.
(output_source_filename): Call filename_seen to check if the file
was already printed.
(make_symbol_completion_list): If TEXT includes a
double-quoted string, return an empty list, not NULL.
(make_file_symbol_completion_list): New function, similar to
make_symbol_completion_list but with an additional argument
SRCFILE.
* symtab.h (make_file_symbol_completion_list)
(make_source_files_completion_list): Add prototypes.
* breakpoint.c (_initialize_breakpoint): Make location_completer
be the completion function for all commands which set breakpoints
and watchpoints.
(top-level): #include "completer.h".
* tracepoint.c (_initialize_tracepoint): Make location_completer
be the completion function for the "trace" command.
(top-level): #include "completer.h".
* printcmd.c (_initialize_printcmd): Make location_completer be
the completion function for the "print", "inspect", "call", and
"disassemble" commands.
(top-level): #include "completer.h".
* infcmd.c (_initialize_infcmd): Make location_completer be the
completion function for the "go", "jump", and "until" commands.
(top-level): #include "completer.h".
2001-06-11 16:05:25 +00:00
|
|
|
|
c->completer = location_completer;
|
1999-04-16 01:35:26 +00:00
|
|
|
|
add_com_alias ("u", "until", class_run, 1);
|
1999-07-07 20:19:36 +00:00
|
|
|
|
|
* completer.c (gdb_completer_loc_break_characters): New variable.
(line_completion_function): If we are completing on locations,
back up the start of word pointer past all characters which can
appear in a location spec.
(location_completer): New function.
* completer.h: Add prototype for location_completer.
* symtab.c (make_source_files_completion_list)
(add_filename_to_list, not_interesting_fname): New functions.
(filename_seen): New function, body extracted from
output_source_filename.
(output_source_filename): Call filename_seen to check if the file
was already printed.
(make_symbol_completion_list): If TEXT includes a
double-quoted string, return an empty list, not NULL.
(make_file_symbol_completion_list): New function, similar to
make_symbol_completion_list but with an additional argument
SRCFILE.
* symtab.h (make_file_symbol_completion_list)
(make_source_files_completion_list): Add prototypes.
* breakpoint.c (_initialize_breakpoint): Make location_completer
be the completion function for all commands which set breakpoints
and watchpoints.
(top-level): #include "completer.h".
* tracepoint.c (_initialize_tracepoint): Make location_completer
be the completion function for the "trace" command.
(top-level): #include "completer.h".
* printcmd.c (_initialize_printcmd): Make location_completer be
the completion function for the "print", "inspect", "call", and
"disassemble" commands.
(top-level): #include "completer.h".
* infcmd.c (_initialize_infcmd): Make location_completer be the
completion function for the "go", "jump", and "until" commands.
(top-level): #include "completer.h".
2001-06-11 16:05:25 +00:00
|
|
|
|
c = add_com ("jump", class_run, jump_command,
|
|
|
|
|
"Continue program being debugged at specified line or address.\n\
|
1999-04-16 01:35:26 +00:00
|
|
|
|
Give as argument either LINENUM or *ADDR, where ADDR is an expression\n\
|
|
|
|
|
for an address to start at.");
|
* completer.c (gdb_completer_loc_break_characters): New variable.
(line_completion_function): If we are completing on locations,
back up the start of word pointer past all characters which can
appear in a location spec.
(location_completer): New function.
* completer.h: Add prototype for location_completer.
* symtab.c (make_source_files_completion_list)
(add_filename_to_list, not_interesting_fname): New functions.
(filename_seen): New function, body extracted from
output_source_filename.
(output_source_filename): Call filename_seen to check if the file
was already printed.
(make_symbol_completion_list): If TEXT includes a
double-quoted string, return an empty list, not NULL.
(make_file_symbol_completion_list): New function, similar to
make_symbol_completion_list but with an additional argument
SRCFILE.
* symtab.h (make_file_symbol_completion_list)
(make_source_files_completion_list): Add prototypes.
* breakpoint.c (_initialize_breakpoint): Make location_completer
be the completion function for all commands which set breakpoints
and watchpoints.
(top-level): #include "completer.h".
* tracepoint.c (_initialize_tracepoint): Make location_completer
be the completion function for the "trace" command.
(top-level): #include "completer.h".
* printcmd.c (_initialize_printcmd): Make location_completer be
the completion function for the "print", "inspect", "call", and
"disassemble" commands.
(top-level): #include "completer.h".
* infcmd.c (_initialize_infcmd): Make location_completer be the
completion function for the "go", "jump", and "until" commands.
(top-level): #include "completer.h".
2001-06-11 16:05:25 +00:00
|
|
|
|
c->completer = location_completer;
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
1999-05-05 14:45:51 +00:00
|
|
|
|
if (xdb_commands)
|
* completer.c (gdb_completer_loc_break_characters): New variable.
(line_completion_function): If we are completing on locations,
back up the start of word pointer past all characters which can
appear in a location spec.
(location_completer): New function.
* completer.h: Add prototype for location_completer.
* symtab.c (make_source_files_completion_list)
(add_filename_to_list, not_interesting_fname): New functions.
(filename_seen): New function, body extracted from
output_source_filename.
(output_source_filename): Call filename_seen to check if the file
was already printed.
(make_symbol_completion_list): If TEXT includes a
double-quoted string, return an empty list, not NULL.
(make_file_symbol_completion_list): New function, similar to
make_symbol_completion_list but with an additional argument
SRCFILE.
* symtab.h (make_file_symbol_completion_list)
(make_source_files_completion_list): Add prototypes.
* breakpoint.c (_initialize_breakpoint): Make location_completer
be the completion function for all commands which set breakpoints
and watchpoints.
(top-level): #include "completer.h".
* tracepoint.c (_initialize_tracepoint): Make location_completer
be the completion function for the "trace" command.
(top-level): #include "completer.h".
* printcmd.c (_initialize_printcmd): Make location_completer be
the completion function for the "print", "inspect", "call", and
"disassemble" commands.
(top-level): #include "completer.h".
* infcmd.c (_initialize_infcmd): Make location_completer be the
completion function for the "go", "jump", and "until" commands.
(top-level): #include "completer.h".
2001-06-11 16:05:25 +00:00
|
|
|
|
{
|
|
|
|
|
c = add_com ("go", class_run, go_command,
|
|
|
|
|
"Usage: go <location>\n\
|
1999-04-16 01:35:26 +00:00
|
|
|
|
Continue program being debugged, stopping at specified line or \n\
|
|
|
|
|
address.\n\
|
|
|
|
|
Give as argument either LINENUM or *ADDR, where ADDR is an \n\
|
|
|
|
|
expression for an address to start at.\n\
|
|
|
|
|
This command is a combination of tbreak and jump.");
|
* completer.c (gdb_completer_loc_break_characters): New variable.
(line_completion_function): If we are completing on locations,
back up the start of word pointer past all characters which can
appear in a location spec.
(location_completer): New function.
* completer.h: Add prototype for location_completer.
* symtab.c (make_source_files_completion_list)
(add_filename_to_list, not_interesting_fname): New functions.
(filename_seen): New function, body extracted from
output_source_filename.
(output_source_filename): Call filename_seen to check if the file
was already printed.
(make_symbol_completion_list): If TEXT includes a
double-quoted string, return an empty list, not NULL.
(make_file_symbol_completion_list): New function, similar to
make_symbol_completion_list but with an additional argument
SRCFILE.
* symtab.h (make_file_symbol_completion_list)
(make_source_files_completion_list): Add prototypes.
* breakpoint.c (_initialize_breakpoint): Make location_completer
be the completion function for all commands which set breakpoints
and watchpoints.
(top-level): #include "completer.h".
* tracepoint.c (_initialize_tracepoint): Make location_completer
be the completion function for the "trace" command.
(top-level): #include "completer.h".
* printcmd.c (_initialize_printcmd): Make location_completer be
the completion function for the "print", "inspect", "call", and
"disassemble" commands.
(top-level): #include "completer.h".
* infcmd.c (_initialize_infcmd): Make location_completer be the
completion function for the "go", "jump", and "until" commands.
(top-level): #include "completer.h".
2001-06-11 16:05:25 +00:00
|
|
|
|
c->completer = location_completer;
|
|
|
|
|
}
|
1999-05-05 14:45:51 +00:00
|
|
|
|
|
1999-04-16 01:35:26 +00:00
|
|
|
|
if (xdb_commands)
|
1999-07-07 20:19:36 +00:00
|
|
|
|
add_com_alias ("g", "go", class_run, 1);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
|
|
|
|
add_com ("continue", class_run, continue_command,
|
|
|
|
|
"Continue program being debugged, after signal or breakpoint.\n\
|
|
|
|
|
If proceeding from breakpoint, a number N may be used as an argument,\n\
|
|
|
|
|
which means to set the ignore count of that breakpoint to N - 1 (so that\n\
|
|
|
|
|
the breakpoint won't break until the Nth time it is reached).");
|
|
|
|
|
add_com_alias ("c", "cont", class_run, 1);
|
|
|
|
|
add_com_alias ("fg", "cont", class_run, 1);
|
|
|
|
|
|
2001-02-19 11:47:16 +00:00
|
|
|
|
c = add_com ("run", class_run, run_command,
|
1999-04-16 01:35:26 +00:00
|
|
|
|
"Start debugged program. You may specify arguments to give it.\n\
|
|
|
|
|
Args may include \"*\", or \"[...]\"; they are expanded using \"sh\".\n\
|
|
|
|
|
Input and output redirection with \">\", \"<\", or \">>\" are also allowed.\n\n\
|
|
|
|
|
With no arguments, uses arguments last specified (with \"run\" or \"set args\").\n\
|
|
|
|
|
To cancel previous arguments and run with no arguments,\n\
|
|
|
|
|
use \"set args\" without arguments.");
|
2001-02-19 11:47:16 +00:00
|
|
|
|
c->completer = filename_completer;
|
1999-04-16 01:35:26 +00:00
|
|
|
|
add_com_alias ("r", "run", class_run, 1);
|
|
|
|
|
if (xdb_commands)
|
|
|
|
|
add_com ("R", class_run, run_no_args_command,
|
1999-07-07 20:19:36 +00:00
|
|
|
|
"Start debugged program with no arguments.");
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
1999-07-05 17:58:44 +00:00
|
|
|
|
add_com ("interrupt", class_run, interrupt_target_command,
|
|
|
|
|
"Interrupt the execution of the debugged program.");
|
|
|
|
|
|
1999-04-16 01:35:26 +00:00
|
|
|
|
add_info ("registers", nofp_registers_info,
|
1999-07-07 20:19:36 +00:00
|
|
|
|
"List of integer registers and their contents, for selected stack frame.\n\
|
1999-04-16 01:35:26 +00:00
|
|
|
|
Register name as argument means describe only that register.");
|
2000-04-19 07:51:26 +00:00
|
|
|
|
add_info_alias ("r", "registers", 1);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
|
|
|
|
if (xdb_commands)
|
1999-07-07 20:19:36 +00:00
|
|
|
|
add_com ("lr", class_info, nofp_registers_info,
|
|
|
|
|
"List of integer registers and their contents, for selected stack frame.\n\
|
1999-04-16 01:35:26 +00:00
|
|
|
|
Register name as argument means describe only that register.");
|
|
|
|
|
add_info ("all-registers", all_registers_info,
|
1999-07-07 20:19:36 +00:00
|
|
|
|
"List of all registers and their contents, for selected stack frame.\n\
|
1999-04-16 01:35:26 +00:00
|
|
|
|
Register name as argument means describe only that register.");
|
|
|
|
|
|
|
|
|
|
add_info ("program", program_info,
|
|
|
|
|
"Execution status of the program.");
|
|
|
|
|
|
|
|
|
|
add_info ("float", float_info,
|
|
|
|
|
"Print the status of the floating point unit\n");
|
|
|
|
|
|
2001-01-24 16:28:20 +00:00
|
|
|
|
set_inferior_args (xstrdup ("")); /* Initially no args */
|
1999-04-16 01:35:26 +00:00
|
|
|
|
inferior_environ = make_environ ();
|
|
|
|
|
init_environ (inferior_environ);
|
|
|
|
|
}
|