old-cross-binutils/gdb/arm-linux-nat.c

547 lines
15 KiB
C
Raw Normal View History

1999-12-22 21:45:38 +00:00
/* GNU/Linux on ARM native support.
2000-02-28 20:51:08 +00:00
Copyright 1999, 2000 Free Software Foundation, Inc.
1999-12-22 21:45:38 +00:00
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "defs.h"
#include "inferior.h"
#include "gdbcore.h"
#include "gdb_string.h"
#include <sys/user.h>
#include <sys/ptrace.h>
#include <sys/utsname.h>
extern int arm_apcs_32;
#define typeNone 0x00
#define typeSingle 0x01
#define typeDouble 0x02
#define typeExtended 0x03
#define FPWORDS 28
#define CPSR_REGNUM 16
typedef union tagFPREG
{
unsigned int fSingle;
unsigned int fDouble[2];
unsigned int fExtended[3];
}
FPREG;
typedef struct tagFPA11
{
FPREG fpreg[8]; /* 8 floating point registers */
unsigned int fpsr; /* floating point status register */
unsigned int fpcr; /* floating point control register */
unsigned char fType[8]; /* type of floating point value held in
floating point registers. */
int initflag; /* NWFPE initialization flag. */
}
FPA11;
/* The following variables are used to determine the version of the
underlying Linux operating system. Examples:
Linux 2.0.35 Linux 2.2.12
os_version = 0x00020023 os_version = 0x0002020c
os_major = 2 os_major = 2
os_minor = 0 os_minor = 2
os_release = 35 os_release = 12
Note: os_version = (os_major << 16) | (os_minor << 8) | os_release
These are initialized using get_linux_version() from
_initialize_arm_linux_nat(). */
static unsigned int os_version, os_major, os_minor, os_release;
static void
fetch_nwfpe_single (unsigned int fn, FPA11 * fpa11)
1999-12-22 21:45:38 +00:00
{
unsigned int mem[3];
mem[0] = fpa11->fpreg[fn].fSingle;
mem[1] = 0;
mem[2] = 0;
supply_register (F0_REGNUM + fn, (char *) &mem[0]);
}
static void
fetch_nwfpe_double (unsigned int fn, FPA11 * fpa11)
1999-12-22 21:45:38 +00:00
{
unsigned int mem[3];
mem[0] = fpa11->fpreg[fn].fDouble[1];
mem[1] = fpa11->fpreg[fn].fDouble[0];
mem[2] = 0;
supply_register (F0_REGNUM + fn, (char *) &mem[0]);
}
static void
fetch_nwfpe_none (unsigned int fn)
1999-12-22 21:45:38 +00:00
{
unsigned int mem[3] =
{0, 0, 0};
supply_register (F0_REGNUM + fn, (char *) &mem[0]);
}
static void
fetch_nwfpe_extended (unsigned int fn, FPA11 * fpa11)
1999-12-22 21:45:38 +00:00
{
unsigned int mem[3];
mem[0] = fpa11->fpreg[fn].fExtended[0]; /* sign & exponent */
mem[1] = fpa11->fpreg[fn].fExtended[2]; /* ls bits */
mem[2] = fpa11->fpreg[fn].fExtended[1]; /* ms bits */
supply_register (F0_REGNUM + fn, (char *) &mem[0]);
}
static void
store_nwfpe_single (unsigned int fn, FPA11 * fpa11)
1999-12-22 21:45:38 +00:00
{
unsigned int mem[3];
read_register_gen (F0_REGNUM + fn, (char *) &mem[0]);
fpa11->fpreg[fn].fSingle = mem[0];
fpa11->fType[fn] = typeSingle;
}
static void
store_nwfpe_double (unsigned int fn, FPA11 * fpa11)
1999-12-22 21:45:38 +00:00
{
unsigned int mem[3];
read_register_gen (F0_REGNUM + fn, (char *) &mem[0]);
fpa11->fpreg[fn].fDouble[1] = mem[0];
fpa11->fpreg[fn].fDouble[0] = mem[1];
fpa11->fType[fn] = typeDouble;
}
void
store_nwfpe_extended (unsigned int fn, FPA11 * fpa11)
1999-12-22 21:45:38 +00:00
{
unsigned int mem[3];
read_register_gen (F0_REGNUM + fn, (char *) &mem[0]);
fpa11->fpreg[fn].fExtended[0] = mem[0]; /* sign & exponent */
fpa11->fpreg[fn].fExtended[2] = mem[1]; /* ls bits */
fpa11->fpreg[fn].fExtended[1] = mem[2]; /* ms bits */
fpa11->fType[fn] = typeDouble;
}
/* Get the whole floating point state of the process and store the
floating point stack into registers[]. */
static void
fetch_fpregs (void)
{
int ret, regno;
FPA11 fp;
/* Read the floating point state. */
ret = ptrace (PT_GETFPREGS, inferior_pid, 0, &fp);
if (ret < 0)
{
warning ("Unable to fetch the floating point state.");
return;
}
/* Fetch fpsr. */
supply_register (FPS_REGNUM, (char *) &fp.fpsr);
/* Fetch the floating point registers. */
for (regno = F0_REGNUM; regno <= F7_REGNUM; regno++)
{
int fn = regno - F0_REGNUM;
unsigned int *p = (unsigned int *) &registers[REGISTER_BYTE (regno)];
switch (fp.fType[fn])
{
case typeSingle:
fetch_nwfpe_single (fn, &fp);
1999-12-22 21:45:38 +00:00
break;
case typeDouble:
fetch_nwfpe_double (fn, &fp);
1999-12-22 21:45:38 +00:00
break;
case typeExtended:
fetch_nwfpe_extended (fn, &fp);
1999-12-22 21:45:38 +00:00
break;
default:
fetch_nwfpe_none (fn);
1999-12-22 21:45:38 +00:00
}
}
}
/* Save the whole floating point state of the process using
the contents from registers[]. */
static void
store_fpregs (void)
{
int ret, regno;
FPA11 fp;
/* Store fpsr. */
if (register_valid[FPS_REGNUM])
read_register_gen (FPS_REGNUM, (char *) &fp.fpsr);
/* Store the floating point registers. */
for (regno = F0_REGNUM; regno <= F7_REGNUM; regno++)
{
if (register_valid[regno])
{
unsigned int fn = regno - F0_REGNUM;
switch (fp.fType[fn])
{
case typeSingle:
store_nwfpe_single (fn, &fp);
1999-12-22 21:45:38 +00:00
break;
case typeDouble:
store_nwfpe_double (fn, &fp);
1999-12-22 21:45:38 +00:00
break;
case typeExtended:
store_nwfpe_extended (fn, &fp);
1999-12-22 21:45:38 +00:00
break;
}
}
}
ret = ptrace (PTRACE_SETFPREGS, inferior_pid, 0, &fp);
if (ret < 0)
{
warning ("Unable to store floating point state.");
return;
}
}
/* Fetch all general registers of the process and store into
registers[]. */
static void
fetch_regs (void)
{
int ret, regno;
struct pt_regs regs;
ret = ptrace (PTRACE_GETREGS, inferior_pid, 0, &regs);
if (ret < 0)
{
warning ("Unable to fetch general registers.");
return;
}
for (regno = A1_REGNUM; regno < PC_REGNUM; regno++)
supply_register (regno, (char *) &regs.uregs[regno]);
if (arm_apcs_32)
supply_register (PS_REGNUM, (char *) &regs.uregs[CPSR_REGNUM]);
else
supply_register (PS_REGNUM, (char *) &regs.uregs[PC_REGNUM]);
regs.uregs[PC_REGNUM] = ADDR_BITS_REMOVE (regs.uregs[PC_REGNUM]);
supply_register (PC_REGNUM, (char *) &regs.uregs[PC_REGNUM]);
}
/* Store all general registers of the process from the values in
registers[]. */
static void
store_regs (void)
{
int ret, regno;
struct pt_regs regs;
ret = ptrace (PTRACE_GETREGS, inferior_pid, 0, &regs);
if (ret < 0)
{
warning ("Unable to fetch general registers.");
return;
}
for (regno = A1_REGNUM; regno <= PC_REGNUM; regno++)
{
if (register_valid[regno])
read_register_gen (regno, (char *) &regs.uregs[regno]);
}
ret = ptrace (PTRACE_SETREGS, inferior_pid, 0, &regs);
if (ret < 0)
{
warning ("Unable to store general registers.");
return;
}
}
/* Fetch registers from the child process. Fetch all registers if
regno == -1, otherwise fetch all general registers or all floating
point registers depending upon the value of regno. */
void
fetch_inferior_registers (int regno)
{
if ((regno < F0_REGNUM) || (regno > FPS_REGNUM))
fetch_regs ();
if (((regno >= F0_REGNUM) && (regno <= FPS_REGNUM)) || (regno == -1))
fetch_fpregs ();
}
/* Store registers back into the inferior. Store all registers if
regno == -1, otherwise store all general registers or all floating
point registers depending upon the value of regno. */
void
store_inferior_registers (int regno)
{
if ((regno < F0_REGNUM) || (regno > FPS_REGNUM))
store_regs ();
if (((regno >= F0_REGNUM) && (regno <= FPS_REGNUM)) || (regno == -1))
store_fpregs ();
}
#ifdef GET_LONGJMP_TARGET
/* Figure out where the longjmp will land. We expect that we have
just entered longjmp and haven't yet altered r0, r1, so the
arguments are still in the registers. (A1_REGNUM) points at the
jmp_buf structure from which we extract the pc (JB_PC) that we will
land at. The pc is copied into ADDR. This routine returns true on
success. */
#define LONGJMP_TARGET_SIZE sizeof(int)
#define JB_ELEMENT_SIZE sizeof(int)
#define JB_SL 18
#define JB_FP 19
#define JB_SP 20
#define JB_PC 21
int
arm_get_longjmp_target (CORE_ADDR * pc)
{
CORE_ADDR jb_addr;
char buf[LONGJMP_TARGET_SIZE];
jb_addr = read_register (A1_REGNUM);
if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
LONGJMP_TARGET_SIZE))
return 0;
*pc = extract_address (buf, LONGJMP_TARGET_SIZE);
return 1;
}
#endif /* GET_LONGJMP_TARGET */
/*
Dynamic Linking on ARM Linux
----------------------------
Note: PLT = procedure linkage table
GOT = global offset table
As much as possible, ELF dynamic linking defers the resolution of
jump/call addresses until the last minute. The technique used is
inspired by the i386 ELF design, and is based on the following
constraints.
1) The calling technique should not force a change in the assembly
code produced for apps; it MAY cause changes in the way assembly
code is produced for position independent code (i.e. shared
libraries).
2) The technique must be such that all executable areas must not be
modified; and any modified areas must not be executed.
To do this, there are three steps involved in a typical jump:
1) in the code
2) through the PLT
3) using a pointer from the GOT
When the executable or library is first loaded, each GOT entry is
initialized to point to the code which implements dynamic name
resolution and code finding. This is normally a function in the
program interpreter (on ARM Linux this is usually ld-linux.so.2,
but it does not have to be). On the first invocation, the function
is located and the GOT entry is replaced with the real function
address. Subsequent calls go through steps 1, 2 and 3 and end up
calling the real code.
1) In the code:
b function_call
bl function_call
This is typical ARM code using the 26 bit relative branch or branch
and link instructions. The target of the instruction
(function_call is usually the address of the function to be called.
In position independent code, the target of the instruction is
actually an entry in the PLT when calling functions in a shared
library. Note that this call is identical to a normal function
call, only the target differs.
2) In the PLT:
The PLT is a synthetic area, created by the linker. It exists in
both executables and libraries. It is an array of stubs, one per
imported function call. It looks like this:
PLT[0]:
str lr, [sp, #-4]! @push the return address (lr)
ldr lr, [pc, #16] @load from 6 words ahead
add lr, pc, lr @form an address for GOT[0]
ldr pc, [lr, #8]! @jump to the contents of that addr
The return address (lr) is pushed on the stack and used for
calculations. The load on the second line loads the lr with
&GOT[3] - . - 20. The addition on the third leaves:
lr = (&GOT[3] - . - 20) + (. + 8)
lr = (&GOT[3] - 12)
lr = &GOT[0]
On the fourth line, the pc and lr are both updated, so that:
pc = GOT[2]
lr = &GOT[0] + 8
= &GOT[2]
NOTE: PLT[0] borrows an offset .word from PLT[1]. This is a little
"tight", but allows us to keep all the PLT entries the same size.
PLT[n+1]:
ldr ip, [pc, #4] @load offset from gotoff
add ip, pc, ip @add the offset to the pc
ldr pc, [ip] @jump to that address
gotoff: .word GOT[n+3] - .
The load on the first line, gets an offset from the fourth word of
the PLT entry. The add on the second line makes ip = &GOT[n+3],
which contains either a pointer to PLT[0] (the fixup trampoline) or
a pointer to the actual code.
3) In the GOT:
The GOT contains helper pointers for both code (PLT) fixups and
data fixups. The first 3 entries of the GOT are special. The next
M entries (where M is the number of entries in the PLT) belong to
the PLT fixups. The next D (all remaining) entries belong to
various data fixups. The actual size of the GOT is 3 + M + D.
The GOT is also a synthetic area, created by the linker. It exists
in both executables and libraries. When the GOT is first
initialized , all the GOT entries relating to PLT fixups are
pointing to code back at PLT[0].
The special entries in the GOT are:
GOT[0] = linked list pointer used by the dynamic loader
GOT[1] = pointer to the reloc table for this module
GOT[2] = pointer to the fixup/resolver code
The first invocation of function call comes through and uses the
fixup/resolver code. On the entry to the fixup/resolver code:
ip = &GOT[n+3]
lr = &GOT[2]
stack[0] = return address (lr) of the function call
[r0, r1, r2, r3] are still the arguments to the function call
This is enough information for the fixup/resolver code to work
with. Before the fixup/resolver code returns, it actually calls
the requested function and repairs &GOT[n+3]. */
CORE_ADDR
arm_skip_solib_resolver (CORE_ADDR pc)
{
/* FIXME */
return 0;
}
int
arm_linux_register_u_addr (int blockend, int regnum)
{
return blockend + REGISTER_BYTE (regnum);
}
int
arm_linux_kernel_u_size (void)
{
return (sizeof (struct user));
}
/* Extract from an array REGBUF containing the (raw) register state
a function return value of type TYPE, and copy that, in virtual format,
into VALBUF. */
void
arm_linux_extract_return_value (struct type *type,
char regbuf[REGISTER_BYTES],
char *valbuf)
{
/* ScottB: This needs to be looked at to handle the different
floating point emulators on ARM Linux. Right now the code
assumes that fetch inferior registers does the right thing for
GDB. I suspect this won't handle NWFPE registers correctly, nor
will the default ARM version (arm_extract_return_value()). */
int regnum = (TYPE_CODE_FLT == TYPE_CODE (type)) ? F0_REGNUM : A1_REGNUM;
memcpy (valbuf, &regbuf[REGISTER_BYTE (regnum)], TYPE_LENGTH (type));
}
static unsigned int
get_linux_version (unsigned int *vmajor,
unsigned int *vminor,
unsigned int *vrelease)
{
struct utsname info;
char *pmajor, *pminor, *prelease, *tail;
if (-1 == uname (&info))
{
warning ("Unable to determine Linux version.");
return -1;
}
pmajor = strtok (info.release, ".");
pminor = strtok (NULL, ".");
prelease = strtok (NULL, ".");
*vmajor = (unsigned int) strtoul (pmajor, &tail, 0);
*vminor = (unsigned int) strtoul (pminor, &tail, 0);
*vrelease = (unsigned int) strtoul (prelease, &tail, 0);
return ((*vmajor << 16) | (*vminor << 8) | *vrelease);
}
void
_initialize_arm_linux_nat (void)
{
os_version = get_linux_version (&os_major, &os_minor, &os_release);
}