old-cross-binutils/gas/config/tc-d10v.c

951 lines
22 KiB
C
Raw Normal View History

/* tc-d10v.c -- Assembler code for the Mitsubishi D10V
Copyright (C) 1996 Free Software Foundation.
This file is part of GAS, the GNU Assembler.
GAS is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GAS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GAS; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include <stdio.h>
#include <ctype.h>
#include "as.h"
#include "subsegs.h"
#include "opcode/d10v.h"
#include "elf/ppc.h"
const char comment_chars[] = "#;";
const char line_comment_chars[] = "#";
const char line_separator_chars[] = "";
const char *md_shortopts = "";
const char EXP_CHARS[] = "eE";
const char FLT_CHARS[] = "dD";
/* fixups */
#define MAX_INSN_FIXUPS (5)
struct d10v_fixup
{
expressionS exp;
bfd_reloc_code_real_type reloc;
};
typedef struct _fixups
{
int fc;
struct d10v_fixup fix[MAX_INSN_FIXUPS];
struct _fixups *next;
} Fixups;
static Fixups FixUps[2];
static Fixups *fixups;
/* local functions */
static int reg_name_search PARAMS ((char *name));
static int register_name PARAMS ((expressionS *expressionP));
static int postfix PARAMS ((char *p));
static bfd_reloc_code_real_type get_reloc PARAMS ((struct d10v_operand *op));
static int get_operands PARAMS ((expressionS exp[]));
static unsigned long build_insn PARAMS ((struct d10v_opcode *opcode, expressionS *opers));
static void write_long PARAMS ((struct d10v_opcode *opcode, unsigned long insn, Fixups *fx));
static void write_1_short PARAMS ((struct d10v_opcode *opcode, unsigned long insn, Fixups *fx));
static int write_2_short PARAMS ((struct d10v_opcode *opcode1, unsigned long insn1,
struct d10v_opcode *opcode2, unsigned long insn2, int exec_type, Fixups *fx));
static unsigned long do_assemble PARAMS ((char *str, struct d10v_opcode **opcode));
static unsigned long d10v_insert_operand PARAMS (( unsigned long insn, int op_type,
offsetT value, int left));
struct option md_longopts[] = {
{NULL, no_argument, NULL, 0}
};
size_t md_longopts_size = sizeof(md_longopts);
/* The target specific pseudo-ops which we support. */
const pseudo_typeS md_pseudo_table[] =
{
{ NULL, NULL, 0 }
};
/* Opcode hash table. */
static struct hash_control *d10v_hash;
/* reg_name_search does a binary search of the pre_defined_registers
array to see if "name" is a valid regiter name. Returns the register
number from the array on success, or -1 on failure. */
static int
reg_name_search (name)
char *name;
{
int middle, low, high;
int cmp;
low = 0;
high = reg_name_cnt() - 1;
do
{
middle = (low + high) / 2;
cmp = strcasecmp (name, pre_defined_registers[middle].name);
if (cmp < 0)
high = middle - 1;
else if (cmp > 0)
low = middle + 1;
else
return pre_defined_registers[middle].value;
}
while (low <= high);
return -1;
}
/* register_name() checks the string at input_line_pointer
to see if it is a valid register name */
static int
register_name (expressionP)
expressionS *expressionP;
{
int reg_number;
char c, *p = input_line_pointer;
while (*p && *p!='\n' && *p!='\r' && *p !=',' && *p!=' ' && *p!=')')
p++;
c = *p;
if (c)
*p++ = 0;
/* look to see if it's in the register table */
reg_number = reg_name_search (input_line_pointer);
if (reg_number >= 0)
{
expressionP->X_op = O_register;
/* temporarily store a pointer to the string here */
expressionP->X_op_symbol = (struct symbol *)input_line_pointer;
expressionP->X_add_number = reg_number;
input_line_pointer = p;
return 1;
}
if (c)
*(p-1) = c;
return 0;
}
void
md_show_usage (stream)
FILE *stream;
{
fprintf(stream, "D10V options:\n\
none yet\n");
}
int
md_parse_option (c, arg)
int c;
char *arg;
{
return 0;
}
symbolS *
md_undefined_symbol (name)
char *name;
{
return 0;
}
char *
md_atof (type, litp, sizep)
int type;
char *litp;
int *sizep;
{
return "";
}
void
md_convert_frag (abfd, sec, fragP)
bfd *abfd;
asection *sec;
fragS *fragP;
{
printf ("call to md_convert_frag \n");
abort ();
}
valueT
md_section_align (seg, addr)
asection *seg;
valueT addr;
{
int align = bfd_get_section_alignment (stdoutput, seg);
return ((addr + (1 << align) - 1) & (-1 << align));
}
void
md_begin ()
{
char *prev_name = "";
struct d10v_opcode *opcode;
d10v_hash = hash_new();
/* Insert unique names into hash table. The D10v instruction set
has many identical opcode names that have different opcodes based
on the operands. This hash table then provides a quick index to
the first opcode with a particular name in the opcode table. */
for (opcode = (struct d10v_opcode *)d10v_opcodes; opcode->name; opcode++)
{
if (strcmp (prev_name, opcode->name))
{
prev_name = (char *)opcode->name;
hash_insert (d10v_hash, opcode->name, (char *) opcode);
}
}
fixups = &FixUps[0];
FixUps[0].next = &FixUps[1];
FixUps[1].next = &FixUps[0];
}
/* this function removes the postincrement or postdecrement
operator ( '+' or '-' ) from an expression */
static int postfix (p)
char *p;
{
while (*p != '-' && *p != '+')
{
if (*p==0 || *p=='\n' || *p=='\r')
break;
p++;
}
if (*p == '-')
{
*p = ' ';
return (-1);
}
if (*p == '+')
{
*p = ' ';
return (1);
}
return (0);
}
static bfd_reloc_code_real_type
get_reloc (op)
struct d10v_operand *op;
{
int bits = op->bits;
/* printf("get_reloc: bits=%d address=%d\n",bits,op->flags & OPERAND_ADDR); */
if (bits <= 4)
return (0);
if (op->flags & OPERAND_ADDR)
{
if (bits == 8)
return (BFD_RELOC_D10V_10_PCREL_R);
else
return (BFD_RELOC_D10V_18_PCREL);
}
return (BFD_RELOC_16);
}
/* get_operands parses a string of operands and returns
an array of expressions */
static int
get_operands (exp)
expressionS exp[];
{
char *p = input_line_pointer;
int numops = 0;
int post = 0;
while (*p)
{
while (*p == ' ' || *p == '\t' || *p == ',')
p++;
if (*p==0 || *p=='\n' || *p=='\r')
break;
if (*p == '@')
{
p++;
exp[numops].X_op = O_absent;
if (*p == '(')
{
p++;
exp[numops].X_add_number = OPERAND_ATPAR;
}
else if (*p == '-')
{
p++;
exp[numops].X_add_number = OPERAND_ATMINUS;
}
else
{
exp[numops].X_add_number = OPERAND_ATSIGN;
post = postfix (p);
}
numops++;
continue;
}
if (*p == ')')
{
/* just skip the trailing paren */
p++;
continue;
}
input_line_pointer = p;
/* check to see if it might be a register name */
if (!register_name (&exp[numops]))
{
/* parse as an expression */
expression (&exp[numops]);
}
if (exp[numops].X_op == O_illegal)
as_bad ("illegal operand");
else if (exp[numops].X_op == O_absent)
as_bad ("missing operand");
numops++;
p = input_line_pointer;
}
switch (post)
{
case -1: /* postdecrement mode */
exp[numops].X_op = O_absent;
exp[numops++].X_add_number = OPERAND_MINUS;
break;
case 1: /* postincrement mode */
exp[numops].X_op = O_absent;
exp[numops++].X_add_number = OPERAND_PLUS;
break;
}
exp[numops].X_op = 0;
return (numops);
}
static unsigned long
d10v_insert_operand (insn, op_type, value, left)
unsigned long insn;
int op_type;
offsetT value;
int left;
{
int shift, bits;
shift = d10v_operands[op_type].shift;
if (left)
shift += 15;
bits = d10v_operands[op_type].bits;
/* truncate to the proper number of bits */
/* FIXME: overflow checking here? */
value &= 0x7FFFFFFF >> (31 - bits);
insn |= (value << shift);
return insn;
}
/* build_insn takes a pointer to the opcode entry in the opcode table
and the array of operand expressions and returns the instruction */
static unsigned long
build_insn (opcode, opers)
struct d10v_opcode *opcode;
expressionS *opers;
{
int i, bits, shift, flags;
unsigned long insn;
unsigned int number;
insn = opcode->opcode;
for (i=0;opcode->operands[i];i++)
{
flags = d10v_operands[opcode->operands[i]].flags;
bits = d10v_operands[opcode->operands[i]].bits;
shift = d10v_operands[opcode->operands[i]].shift;
number = opers[i].X_add_number;
if (flags & OPERAND_REG)
{
number &= REGISTER_MASK;
if (opcode->format == LONG_L)
shift += 15;
}
if (opers[i].X_op != O_register && opers[i].X_op != O_constant)
{
/* now create a fixup */
/*
printf("need a fixup: ");
print_expr_1(stdout,&opers[i]);
printf("\n");
*/
if (fixups->fc >= MAX_INSN_FIXUPS)
as_fatal ("too many fixups");
fixups->fix[fixups->fc].exp = opers[i];
/* put the operand number here for now. We can look up
the reloc type and/or fixup the instruction in md_apply_fix() */
fixups->fix[fixups->fc].reloc = opcode->operands[i];
(fixups->fc)++;
}
/* truncate to the proper number of bits */
/* FIXME: overflow checking here? */
number &= 0x7FFFFFFF >> (31 - bits);
insn = insn | (number << shift);
}
return insn;
}
/* write out a long form instruction */
static void
write_long (opcode, insn, fx)
struct d10v_opcode *opcode;
unsigned long insn;
Fixups *fx;
{
int i;
char *f = frag_more(4);
insn |= FM11;
/* printf("INSN: %08x\n",insn); */
number_to_chars_bigendian (f, insn, 4);
for (i=0; i < fx->fc; i++)
{
if (get_reloc((struct d10v_operand *)&d10v_operands[fx->fix[i].reloc]))
{
/*
printf("fix_new_exp: where:%x size:4\n ",f - frag_now->fr_literal);
print_expr_1(stdout,&(fx->fix[i].exp));
printf("\n");
*/
fix_new_exp (frag_now,
f - frag_now->fr_literal,
4,
&(fx->fix[i].exp),
1,
fx->fix[i].reloc);
}
}
fx->fc = 0;
}
/* write out a short form instruction by itself */
static void
write_1_short (opcode, insn, fx)
struct d10v_opcode *opcode;
unsigned long insn;
Fixups *fx;
{
char *f = frag_more(4);
int i;
insn |= FM00 | (NOP << 15);
/* printf("INSN: %08x\n",insn); */
number_to_chars_bigendian (f, insn, 4);
for (i=0; i < fx->fc; i++)
{
if (get_reloc((struct d10v_operand *)&d10v_operands[fx->fix[i].reloc]))
{
/*
printf("fix_new_exp: where:%x size:4\n ",f - frag_now->fr_literal);
print_expr_1(stdout,&(fx->fix[i].exp));
printf("\n");
*/
fix_new_exp (frag_now,
f - frag_now->fr_literal,
4,
&(fx->fix[i].exp),
1,
fx->fix[i].reloc);
}
}
fx->fc = 0;
}
/* write out a short form instruction if possible */
/* return number of instructions not written out */
static int
write_2_short (opcode1, insn1, opcode2, insn2, exec_type, fx)
struct d10v_opcode *opcode1, *opcode2;
unsigned long insn1, insn2;
int exec_type;
Fixups *fx;
{
unsigned long insn;
char *f;
int i,j;
if(opcode1->exec_type == BRANCH_LINK)
{
/* subroutines must be called from 32-bit boundaries */
/* so the return address will be correct */
write_1_short (opcode1, insn1, fx->next);
return (1);
}
switch (exec_type)
{
case 0:
if (opcode1->unit == IU)
{
/* reverse sequential */
insn = FM10 | (insn2 << 15) | insn1;
}
else
{
insn = FM01 | (insn1 << 15) | insn2;
fx = fx->next;
}
break;
case 1: /* parallel */
insn = FM00 | (insn1 << 15) | insn2;
fx = fx->next;
break;
case 2: /* sequential */
insn = FM01 | (insn1 << 15) | insn2;
fx = fx->next;
break;
case 3: /* reverse sequential */
insn = FM10 | (insn1 << 15) | insn2;
break;
default:
as_fatal("unknown execution type passed to write_2_short()");
}
/* printf("INSN: %08x\n",insn); */
f = frag_more(4);
number_to_chars_bigendian (f, insn, 4);
for (j=0; j<2; j++)
{
bfd_reloc_code_real_type reloc;
for (i=0; i < fx->fc; i++)
{
reloc = get_reloc((struct d10v_operand *)&d10v_operands[fx->fix[i].reloc]);
if (reloc)
{
if ( (reloc == BFD_RELOC_D10V_10_PCREL_R) && (j == 0) )
fx->fix[i].reloc |= 1024;
/*
printf("fix_new_exp: where:%x reloc:%d\n ",f - frag_now->fr_literal,fx->fix[i].reloc);
print_expr_1(stdout,&(fx->fix[i].exp));
printf("\n");
*/
fix_new_exp (frag_now,
f - frag_now->fr_literal,
4,
&(fx->fix[i].exp),
1,
fx->fix[i].reloc);
}
}
fx->fc = 0;
fx = fx->next;
}
return (0);
}
/* This is the main entry point for the machine-dependent assembler. str points to a
machine-dependent instruction. This function is supposed to emit the frags/bytes
it assembles to. For the D10V, it mostly handles the special VLIW parsing and packing
and leaves the difficult stuff to do_assemble().
*/
static unsigned long prev_insn;
static struct d10v_opcode *prev_opcode = 0;
static subsegT prev_subseg;
static segT prev_seg;
void
md_assemble (str)
char *str;
{
struct d10v_opcode *opcode;
unsigned long insn;
int t=0;
char *str2;
/* printf("md_assemble: str=%s\n",str); */
/* look for the special multiple instruction seperators */
str2 = strstr (str, "||");
if (str2)
t = 1;
else
{
str2 = strstr (str, "->");
if (str2)
t = 2;
else
{
str2 = strstr (str, "<-");
if (str2)
t = 3;
}
}
/* str2 points to the seperator, if one */
if (str2)
{
*str2 = 0;
/* if two instructions are present and we already have one saved
then first write it out */
if (prev_opcode)
write_1_short (prev_opcode, prev_insn, fixups->next);
/* assemble first instruction and save it */
prev_insn = do_assemble (str, &prev_opcode);
fixups = fixups->next;
str = str2 + 2;
}
insn = do_assemble (str, &opcode);
/* if this is a long instruction, write it and any previous short instruction */
if (opcode->format & LONG_OPCODE)
{
if (t)
as_fatal("Unable to mix instructions as specified");
if (prev_opcode)
{
write_1_short (prev_opcode, prev_insn, fixups->next);
prev_opcode = NULL;
}
write_long (opcode, insn, fixups);
prev_opcode = NULL;
return;
}
if (prev_opcode && (write_2_short (prev_opcode, prev_insn, opcode, insn, t, fixups) == 0))
{
/* no instructions saved */
prev_opcode = NULL;
}
else
{
if (t)
as_fatal("Unable to mix instructions as specified");
/* save off last instruction so it may be packed on next pass */
prev_opcode = opcode;
prev_insn = insn;
prev_seg = now_seg;
prev_subseg = now_subseg;
fixups = fixups->next;
}
}
static unsigned long
do_assemble (str, opcode)
char *str;
struct d10v_opcode **opcode;
{
struct d10v_opcode *next_opcode;
unsigned char *op_start, *save;
unsigned char *op_end;
char name[20];
int nlen = 0, i, match, numops;
expressionS myops[6];
unsigned long insn;
/* printf("do_assemble: str=%s\n",str); */
/* Drop leading whitespace */
while (*str == ' ')
str++;
/* find the opcode end */
for (op_start = op_end = (unsigned char *) (str);
*op_end
&& nlen < 20
&& !is_end_of_line[*op_end] && *op_end != ' ';
op_end++)
{
name[nlen] = op_start[nlen];
nlen++;
}
name[nlen] = 0;
if (nlen == 0)
as_bad ("can't find opcode ");
/* find the first opcode with the proper name */
*opcode = (struct d10v_opcode *)hash_find (d10v_hash, name);
if (*opcode == NULL)
{
as_bad ("unknown opcode");
return;
}
save = input_line_pointer;
input_line_pointer = op_end;
/* get all the operands and save them as expressions */
numops = get_operands (myops);
/* now search the opcode table table for one with operands */
/* that match what we've got */
do
{
match = 1;
for (i = 0; (*opcode)->operands[i]; i++)
{
int flags = d10v_operands[(*opcode)->operands[i]].flags;
if (myops[i].X_op==0)
{
match=0;
break;
}
if (flags & OPERAND_REG)
{
if ((myops[i].X_op != O_register) ||
((flags & OPERAND_ACC) != (myops[i].X_add_number & OPERAND_ACC)) ||
((flags & OPERAND_FLAG) != (myops[i].X_add_number & OPERAND_FLAG)) ||
((flags & OPERAND_CONTROL) != (myops[i].X_add_number & OPERAND_CONTROL)))
{
match=0;
break;
}
}
if (((flags & OPERAND_MINUS) && ((myops[i].X_op != O_absent) || (myops[i].X_add_number != OPERAND_MINUS))) ||
((flags & OPERAND_PLUS) && ((myops[i].X_op != O_absent) || (myops[i].X_add_number != OPERAND_PLUS))) ||
((flags & OPERAND_ATMINUS) && ((myops[i].X_op != O_absent) || (myops[i].X_add_number != OPERAND_ATMINUS))) ||
((flags & OPERAND_ATPAR) && ((myops[i].X_op != O_absent) || (myops[i].X_add_number != OPERAND_ATPAR))) ||
((flags & OPERAND_ATSIGN) && ((myops[i].X_op != O_absent) || (myops[i].X_add_number != OPERAND_ATSIGN))))
{
match=0;
break;
}
}
/* we're only done if the operands matched AND there
are no more to check */
if (match && myops[i].X_op==0)
break;
next_opcode = (*opcode)+1;
if (next_opcode->opcode == 0)
break;
if (strcmp(next_opcode->name, (*opcode)->name))
break;
(*opcode) = next_opcode;
} while (!match);
if (!match)
{
as_bad ("bad opcode or operands");
return (0);
}
/* Check that all registers that are required to be even are. */
/* Also, if any operands were marked as registers, but were really symbols */
/* fix that here. */
for (i=0; (*opcode)->operands[i]; i++)
{
if ((d10v_operands[(*opcode)->operands[i]].flags & OPERAND_EVEN) &&
(myops[i].X_add_number & 1))
as_fatal("Register number must be EVEN");
if (myops[i].X_op == O_register)
{
if (!(d10v_operands[(*opcode)->operands[i]].flags & OPERAND_REG))
{
myops[i].X_op = O_symbol;
myops[i].X_add_symbol = symbol_find_or_make ((char *)myops[i].X_op_symbol);
myops[i].X_add_number = 0;
myops[i].X_op_symbol = NULL;
/* FIXME create a fixup */
}
}
}
input_line_pointer = save;
/* at this point, we have "opcode" pointing to the opcode entry in the
d10v opcode table, with myops filled out with the operands. */
insn = build_insn ((*opcode), myops);
/* printf("sub-insn = %lx\n",insn); */
return (insn);
}
/* if while processing a fixup, a reloc really needs to be created */
/* then it is done here */
arelent *
tc_gen_reloc (seg, fixp)
asection *seg;
fixS *fixp;
{
arelent *reloc;
reloc = (arelent *) bfd_alloc_by_size_t (stdoutput, sizeof (arelent));
reloc->sym_ptr_ptr = &fixp->fx_addsy->bsym;
reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
if (reloc->howto == (reloc_howto_type *) NULL)
{
as_bad_where (fixp->fx_file, fixp->fx_line,
"reloc %d not supported by object file format", (int)fixp->fx_r_type);
return NULL;
}
reloc->addend = fixp->fx_addnumber;
/* printf("tc_gen_reloc: addr=%x addend=%x\n", reloc->address, reloc->addend); */
return reloc;
}
int
md_estimate_size_before_relax (fragp, seg)
fragS *fragp;
asection *seg;
{
abort ();
return 0;
}
long
md_pcrel_from_section (fixp, sec)
fixS *fixp;
segT sec;
{
return 0;
/* return fixp->fx_frag->fr_address + fixp->fx_where; */
}
int
md_apply_fix3 (fixp, valuep, seg)
fixS *fixp;
valueT *valuep;
segT seg;
{
valueT value;
char *where;
unsigned long insn;
int op_type;
int left=0;
if (fixp->fx_addsy == (symbolS *) NULL)
{
value = *valuep;
fixp->fx_done = 1;
}
else if (fixp->fx_pcrel)
value = *valuep;
else
{
value = fixp->fx_offset;
if (fixp->fx_subsy != (symbolS *) NULL)
{
if (S_GET_SEGMENT (fixp->fx_subsy) == absolute_section)
value -= S_GET_VALUE (fixp->fx_subsy);
else
{
/* We don't actually support subtracting a symbol. */
as_bad_where (fixp->fx_file, fixp->fx_line,
"expression too complex");
}
}
}
/* printf("md_apply_fix: value=0x%x type=%d\n", value, fixp->fx_r_type); */
op_type = fixp->fx_r_type;
if (op_type & 1024)
{
op_type -= 1024;
fixp->fx_r_type = BFD_RELOC_D10V_10_PCREL_L;
left = 1;
}
else
fixp->fx_r_type = get_reloc((struct d10v_operand *)&d10v_operands[op_type]);
/* Fetch the instruction, insert the fully resolved operand
value, and stuff the instruction back again. */
where = fixp->fx_frag->fr_literal + fixp->fx_where;
insn = bfd_getb32 ((unsigned char *) where);
/* printf(" insn=%x value=%x\n",insn,value); */
insn = d10v_insert_operand (insn, op_type, (offsetT) value, left);
/* printf(" new insn=%x\n",insn); */
bfd_putb32 ((bfd_vma) insn, (unsigned char *) where);
if (fixp->fx_done)
return 1;
fixp->fx_addnumber = value;
return 1;
}
/* d10v_cleanup() is called after the assembler has finished parsing the input
file or after a label is defined. Because the D10V assembler sometimes saves short
instructions to see if it can package them with the next instruction, there may
be a short instruction that still needs written. */
int
d10v_cleanup()
{
segT seg;
subsegT subseg;
if (prev_opcode)
{
seg = now_seg;
subseg = now_subseg;
subseg_set (prev_seg, prev_subseg);
write_1_short (prev_opcode, prev_insn, fixups);
subseg_set (seg, subseg);
prev_opcode = NULL;
}
return 1;
}