old-cross-binutils/gold/merge.cc

334 lines
8.5 KiB
C++
Raw Normal View History

2007-05-16 17:42:48 +00:00
// merge.cc -- handle section merging for gold
#include "gold.h"
#include <cstdlib>
#include "merge.h"
namespace gold
{
// Sort the entries in a merge mapping. The key is an input object, a
// section index in that object, and an offset in that section.
bool
Output_merge_base::Merge_key_less::operator()(const Merge_key& mk1,
const Merge_key& mk2) const
{
// The order of different objects and different sections doesn't
// matter. We want to get consistent results across links so we
// don't use pointer comparison.
if (mk1.object != mk2.object)
return mk1.object->name() < mk2.object->name();
if (mk1.shndx != mk2.shndx)
return mk1.shndx < mk2.shndx;
return mk1.offset < mk2.offset;
}
// Add a mapping from an OFFSET in input section SHNDX in object
// OBJECT to an OUTPUT_OFFSET in a merged output section. This
// manages the mapping used to resolve relocations against merged
// sections.
void
Output_merge_base::add_mapping(Relobj* object, unsigned int shndx,
off_t offset, off_t output_offset)
{
Merge_key mk;
mk.object = object;
mk.shndx = shndx;
mk.offset = offset;
std::pair<Merge_map::iterator, bool> ins =
this->merge_map_.insert(std::make_pair(mk, output_offset));
gold_assert(ins.second);
}
// Return the output address for an input address. The input address
// is at offset OFFSET in section SHNDX in OBJECT.
// OUTPUT_SECTION_ADDRESS is the address of the output section. If we
// know the address, set *POUTPUT and return true. Otherwise return
// false.
bool
Output_merge_base::do_output_address(const Relobj* object, unsigned int shndx,
off_t offset,
uint64_t output_section_address,
uint64_t* poutput) const
{
gold_assert(output_section_address == this->address());
Merge_key mk;
mk.object = object;
mk.shndx = shndx;
mk.offset = offset;
Merge_map::const_iterator p = this->merge_map_.lower_bound(mk);
// If MK is not in the map, lower_bound returns the next iterator
// larger than it.
if (p->first.object != object
|| p->first.shndx != shndx
|| p->first.offset != offset)
{
if (p == this->merge_map_.begin())
return false;
--p;
}
if (p->first.object != object || p->first.shndx != shndx)
return false;
// Any input section is fully mapped: we don't need to know the size
// of the range starting at P->FIRST.OFFSET.
*poutput = output_section_address + p->second + (offset - p->first.offset);
return true;
}
// Compute the hash code for a fixed-size constant.
size_t
Output_merge_data::Merge_data_hash::operator()(Merge_data_key k) const
{
const unsigned char* p = this->pomd_->constant(k);
uint64_t entsize = this->pomd_->entsize();
// Fowler/Noll/Vo (FNV) hash (type FNV-1a).
if (sizeof(size_t) == 8)
{
size_t result = static_cast<size_t>(14695981039346656037ULL);
for (uint64_t i = 0; i < entsize; ++i)
{
result &= (size_t) *p++;
result *= 1099511628211ULL;
}
return result;
}
else
{
size_t result = 2166136261UL;
for (uint64_t i = 0; i < entsize; ++i)
{
result ^= (size_t) *p++;
result *= 16777619UL;
}
return result;
}
}
// Return whether one hash table key equals another.
bool
Output_merge_data::Merge_data_eq::operator()(Merge_data_key k1,
Merge_data_key k2) const
{
const unsigned char* p1 = this->pomd_->constant(k1);
const unsigned char* p2 = this->pomd_->constant(k2);
return memcmp(p1, p2, this->pomd_->entsize()) == 0;
}
// Add a constant to the end of the section contents.
void
Output_merge_data::add_constant(const unsigned char* p)
{
uint64_t entsize = this->entsize();
if (this->len_ + entsize > this->alc_)
{
if (this->alc_ == 0)
this->alc_ = 128 * entsize;
else
this->alc_ *= 2;
this->p_ = static_cast<unsigned char*>(realloc(this->p_, this->alc_));
if (this->p_ == NULL)
gold_fatal("out of memory", true);
}
memcpy(this->p_ + this->len_, p, entsize);
this->len_ += entsize;
}
// Add the input section SHNDX in OBJECT to a merged output section
// which holds fixed length constants. Return whether we were able to
// handle the section; if not, it will be linked as usual without
// constant merging.
bool
Output_merge_data::do_add_input_section(Relobj* object, unsigned int shndx)
{
off_t len;
const unsigned char* p = object->section_contents(shndx, &len);
uint64_t entsize = this->entsize();
if (len % entsize != 0)
return false;
for (off_t i = 0; i < len; i += entsize, p += entsize)
{
// Add the constant to the section contents. If we find that it
// is already in the hash table, we will remove it again.
Merge_data_key k = this->len_;
this->add_constant(p);
std::pair<Merge_data_hashtable::iterator, bool> ins =
this->hashtable_.insert(k);
if (!ins.second)
{
// Key was already present. Remove the copy we just added.
this->len_ -= entsize;
k = *ins.first;
}
// Record the offset of this constant in the output section.
this->add_mapping(object, shndx, i, k);
}
return true;
}
// Set the final data size in a merged output section with fixed size
// constants.
void
Output_merge_data::do_set_address(uint64_t, off_t)
{
// Release the memory we don't need.
this->p_ = static_cast<unsigned char*>(realloc(this->p_, this->len_));
gold_assert(this->p_ != NULL);
this->set_data_size(this->len_);
}
// Write the data of a merged output section with fixed size constants
// to the file.
void
Output_merge_data::do_write(Output_file* of)
{
of->write(this->offset(), this->p_, this->len_);
}
// Compute a hash code for a Merge_string_key, which is an object, a
// section index, and an offset.
template<typename Char_type>
size_t
Output_merge_string<Char_type>::Merge_string_key_hash::operator()(
const Merge_string_key& key) const
{
// This is a very simple minded hash code. Fix it if it we get too
// many collisions.
const std::string& oname(key.object->name());
return oname[0] + oname.length() + key.shndx + key.offset;
}
// Compare two Merge_string_keys for equality.
template<typename Char_type>
bool
Output_merge_string<Char_type>::Merge_string_key_eq::operator()(
const Merge_string_key& k1, const Merge_string_key& k2) const
{
return (k1.object == k2.object
&& k1.shndx == k2.shndx
&& k1.offset == k2.offset);
}
// Add an input section to a merged string section.
template<typename Char_type>
bool
Output_merge_string<Char_type>::do_add_input_section(Relobj* object,
unsigned int shndx)
{
off_t len;
const unsigned char* pdata = object->section_contents(shndx, &len);
const Char_type* p = reinterpret_cast<const Char_type*>(pdata);
if (len % sizeof(Char_type) != 0)
{
fprintf(stderr,
_("%s: %s: mergeable string section length not multiple of "
"character size\n"),
program_name, object->name().c_str());
gold_exit(false);
}
len /= sizeof(Char_type);
off_t i = 0;
while (i < len)
{
off_t plen = 0;
for (const Char_type* pl = p; *pl != 0; ++pl)
{
++plen;
if (i + plen >= len)
{
fprintf(stderr,
_("%s: %s: entry in mergeable string section "
"not null terminated\n"),
program_name, object->name().c_str());
gold_exit(false);
}
}
const Char_type* str = this->stringpool_.add(p, NULL);
Merge_string_key k(object, shndx, i);
typename Merge_string_hashtable::value_type v(k, str);
bool b = this->hashtable_.insert(v).second;
gold_assert(b);
p += plen + 1;
i += plen + 1;
}
return true;
}
// Set the final data size of a merged string section. This is where
// we finalize the mappings from the input sections to the output
// section.
template<typename Char_type>
void
Output_merge_string<Char_type>::do_set_address(uint64_t, off_t)
{
this->stringpool_.set_string_offsets();
for (typename Merge_string_hashtable::const_iterator p =
this->hashtable_.begin();
p != this->hashtable_.end();
++p)
this->add_mapping(p->first.object, p->first.shndx, p->first.offset,
this->stringpool_.get_offset(p->second));
this->set_data_size(this->stringpool_.get_strtab_size());
// Save some memory.
this->hashtable_.clear();
}
// Write out a merged string section.
template<typename Char_type>
void
Output_merge_string<Char_type>::do_write(Output_file* of)
{
this->stringpool_.write(of, this->offset());
}
// Instantiate the templates we need.
template
class Output_merge_string<char>;
template
class Output_merge_string<uint16_t>;
template
class Output_merge_string<uint32_t>;
} // End namespace gold.