old-cross-binutils/gdb/ax-gdb.c

2519 lines
79 KiB
C
Raw Normal View History

/* GDB-specific functions for operating on agent expressions.
Copyright (C) 1998, 1999, 2000, 2001, 2003, 2007, 2008, 2009, 2010
2007-01-09 17:59:20 +00:00
Free Software Foundation, Inc.
1999-07-07 20:19:36 +00:00
This file is part of GDB.
1999-07-07 20:19:36 +00:00
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
1999-07-07 20:19:36 +00:00
(at your option) any later version.
1999-07-07 20:19:36 +00:00
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
1999-07-07 20:19:36 +00:00
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "symtab.h"
#include "symfile.h"
#include "gdbtypes.h"
#include "language.h"
#include "value.h"
#include "expression.h"
#include "command.h"
#include "gdbcmd.h"
#include "frame.h"
#include "target.h"
#include "ax.h"
#include "ax-gdb.h"
#include "gdb_string.h"
2003-02-19 David Carlton <carlton@math.stanford.edu> * Makefile.in (SFILES): Add block.c. (block_h): New. (COMMON_OBS): Add block.o. (block.o): New. (x86-64-tdep.o): Add $(block_h). (values.o, valops.o, tracepoint.o, symtab.o, symmisc.o, symfile.o) (stack.o, printcmd.o, p-exp.tab.o, parse.o, objfiles.o) (objc-exp.tab.o, objc-lang.o, nlmread.o, mips-tdep.o, mdebugread.o) (m2-exp.tab.o, linespec.o, jv-lang.o, jv-exp.tab.o, infcmd.o) (f-valprint.o, findvar.o, f-exp.tab.o, expprint.o, coffread.o) (c-exp.tab.o, buildsym.o, breakpoint.o, blockframe.o, ax-gdb.o) (alpha-tdep.o, ada-lang.o, ada-exp.tab.o, mi-cmd-stack.o): Ditto. * value.h: Add opaque declaration for struct block. * parser-defs.h, objc-lang.h, buildsym.h, breakpoint.h: Ditto. * ada-lang.h: Ditto. * x86-64-tdep.c: #include "block.h" * values.c, valops.c, tracepoint.c, symtab.c, symmisc.c: Ditto. * symfile.c, stack.c, printcmd.c, p-exp.y, parse.c: Ditto. * objfiles.c, objc-exp.y, objc-lang.c, nlmread.c: Ditto. * mips-tdep.c, mdebugread.c, m2-exp.y, linespec.c: Ditto. * jv-lang.c, jv-exp.y, infcmd.c, f-valprint.c: Ditto. * findvar.c, f-exp.y, expprint.c, coffread.c, c-exp.y: Ditto. * buildsym.c, breakpoint.c, blockframe.c, ax-gdb.c: Ditto. * alpha-tdep.c, ada-lang.c, ada-exp.y: Ditto. * blockframe.c (blockvector_for_pc_sect): Move to "block.c". (blockvector_for_pc, block_for_pc_sect, block_for_pc): Ditto. * symtab.c (block_function): Ditto. (contained_in): Ditto. * frame.h: Move block_for_pc and block_for_pc_sect declarations to block.h. Add opaque declaration for struct block. * symtab.h: Move block_function and contained_in declarations to block.h. Add opaque declarations for struct block, struct blockvector. (struct block): Move to block.h. (struct blockvector): Ditto. (BLOCK_START, BLOCK_END, BLOCK_FUNCTION, BLOCK_SUPERBLOCK) (BLOCK_GCC_COMPILED, BLOCK_HASHTABLE, BLOCK_NSYMS, BLOCK_SYM) (BLOCK_BUCKETS, BLOCK_BUCKET, BLOCK_HASHTABLE_SIZE) (ALL_BLOCK_SYMBOLS, BLOCK_SHOULD_SORT, BLOCKVECTOR_NBLOCKS) (BLOCKVECTOR_BLOCK, GLOBAL_BLOCK, STATIC_BLOCK, FIRST_LOCAL_BLOCK): Ditto. * block.c: New file. * block.h: New file. 2003-02-19 David Carlton <carlton@math.stanford.edu> * mi-cmd-stack.c: #include "block.h"
2003-02-20 00:01:07 +00:00
#include "block.h"
#include "regcache.h"
#include "user-regs.h"
#include "language.h"
#include "dictionary.h"
Add trace file support. * tracepoint.h (enum trace_stop_reason): New enum. (struct trace_status): New struct. (parse_trace_status): Declare. (struct uploaded_tp): Move here from remote.c, add fields for actions. (struct uploaded_tsv): New struct. * tracepoint.c (tfile_ops): New target vector. (trace_fd): New global. (tfile_open): New function. (tfile_close): New function. (tfile_files_info): New function. (tfile_get_trace_status): New function. (tfile_get_traceframe_address): New function. (tfile_trace_find): New function. (tfile_fetch_registers): New function. (tfile_xfer_partial): New function. (tfile_get_trace_state_variable_value): New function. (init_tfile_ops): New function. (_initialize_tracepoint): Call it, add tfile target. (trace_status): New global. (current_trace_status): New function. (trace_running_p): Remove, change all users to get from current_trace_status()->running. (get_trace_status): Remove. (trace_status_command): Call target_get_trace_status directly, report more detail including tracing stop reasons. (trace_find_command): Always allow tfind on a file. (trace_find_pc_command): Ditto. (trace_find_tracepoint_command): Ditto. (trace_find_line_command): Ditto. (trace_find_range_command): Ditto. (trace_find_outside_command): Ditto. (trace_frames_offset, cur_offset): Declare as off_t. (trace_regblock_size): Rename from reg_size, update users. (parse_trace_status): New function. (tfile_interp_line): New function. (disconnect_or_stop_tracing): Ensure current trace status before asking what to do. (stop_reason_names): New global. (trace_save_command): New command. (get_uploaded_tp): Move here from remote.c. (find_matching_tracepoint): Ditto. (merge_uploaded_tracepoints): New function. (parse_trace_status): Use stop_reason_names. (_initialize_tracepoint): Define tsave command. * target.h (target_ops): New fields to_save_trace_data, to_upload_tracepoints, to_upload_trace_state_variables, to_get_raw_trace_data, change to_get_trace_status to take a pointer to a status struct. (target_save_trace_data): New macro. (target_upload_tracepoints): New macro. (target_upload_trace_state_variables): New macro. (target_get_raw_trace_data): New macro. * target.c (update_current_target): Add new methods, change signature of to_get_trace_status. * remote.c (hex2bin): Make globally visible. (bin2hex): Ditto. (remote_download_trace_state_variable): Download name also. (remote_get_trace_status): Update parameter, use parse_trace_status. (remote_save_trace_data): New function. (remote_upload_tracepoints): New function. (remote_upload_trace_state_variables): New function. (remote_get_raw_trace_data): New function. (remote_start_remote): Use them. (_initialize_remote_ops): Add operations. * ax-gdb.c: Include breakpoint.h. * breakpoint.c (create_tracepoint_from_upload): Use break_command_really, return tracepoint, warn about unimplemented parts. * NEWS: Mention trace file addition. * gdb.texinfo (Trace Files): New section. (Tracepoint Packets): Document QTSave and qTBuffer. (Trace File Format): New appendix. * generic/gdbtk-bp.c (gdb_trace_status): Use current_trace_status. * gdb.trace/tfile.c: New file. * gdb.trace/tfile.exp: New file.
2010-01-15 22:37:20 +00:00
#include "breakpoint.h"
#include "tracepoint.h"
#include "cp-support.h"
1999-09-28 21:55:21 +00:00
/* To make sense of this file, you should read doc/agentexpr.texi.
Then look at the types and enums in ax-gdb.h. For the code itself,
look at gen_expr, towards the bottom; that's the main function that
looks at the GDB expressions and calls everything else to generate
code.
I'm beginning to wonder whether it wouldn't be nicer to internally
generate trees, with types, and then spit out the bytecode in
linear form afterwards; we could generate fewer `swap', `ext', and
`zero_ext' bytecodes that way; it would make good constant folding
easier, too. But at the moment, I think we should be willing to
pay for the simplicity of this code with less-than-optimal bytecode
strings.
1999-07-07 20:19:36 +00:00
Remember, "GBD" stands for "Great Britain, Dammit!" So be careful. */
/* Prototypes for local functions. */
/* There's a standard order to the arguments of these functions:
union exp_element ** --- pointer into expression
struct agent_expr * --- agent expression buffer to generate code into
struct axs_value * --- describes value left on top of stack */
1999-07-07 20:19:36 +00:00
2000-05-28 01:12:42 +00:00
static struct value *const_var_ref (struct symbol *var);
static struct value *const_expr (union exp_element **pc);
static struct value *maybe_const_expr (union exp_element **pc);
static void gen_traced_pop (struct gdbarch *, struct agent_expr *, struct axs_value *);
2000-05-28 01:12:42 +00:00
static void gen_sign_extend (struct agent_expr *, struct type *);
static void gen_extend (struct agent_expr *, struct type *);
static void gen_fetch (struct agent_expr *, struct type *);
static void gen_left_shift (struct agent_expr *, int);
static void gen_frame_args_address (struct gdbarch *, struct agent_expr *);
static void gen_frame_locals_address (struct gdbarch *, struct agent_expr *);
2000-05-28 01:12:42 +00:00
static void gen_offset (struct agent_expr *ax, int offset);
static void gen_sym_offset (struct agent_expr *, struct symbol *);
static void gen_var_ref (struct gdbarch *, struct agent_expr *ax,
2000-05-28 01:12:42 +00:00
struct axs_value *value, struct symbol *var);
static void gen_int_literal (struct agent_expr *ax,
struct axs_value *value,
LONGEST k, struct type *type);
static void require_rvalue (struct agent_expr *ax, struct axs_value *value);
static void gen_usual_unary (struct expression *exp, struct agent_expr *ax,
struct axs_value *value);
2000-05-28 01:12:42 +00:00
static int type_wider_than (struct type *type1, struct type *type2);
static struct type *max_type (struct type *type1, struct type *type2);
static void gen_conversion (struct agent_expr *ax,
struct type *from, struct type *to);
static int is_nontrivial_conversion (struct type *from, struct type *to);
static void gen_usual_arithmetic (struct expression *exp,
struct agent_expr *ax,
2000-05-28 01:12:42 +00:00
struct axs_value *value1,
struct axs_value *value2);
static void gen_integral_promotions (struct expression *exp,
struct agent_expr *ax,
2000-05-28 01:12:42 +00:00
struct axs_value *value);
static void gen_cast (struct agent_expr *ax,
struct axs_value *value, struct type *type);
static void gen_scale (struct agent_expr *ax,
enum agent_op op, struct type *type);
static void gen_ptradd (struct agent_expr *ax, struct axs_value *value,
struct axs_value *value1, struct axs_value *value2);
static void gen_ptrsub (struct agent_expr *ax, struct axs_value *value,
struct axs_value *value1, struct axs_value *value2);
static void gen_ptrdiff (struct agent_expr *ax, struct axs_value *value,
struct axs_value *value1, struct axs_value *value2,
struct type *result_type);
2000-05-28 01:12:42 +00:00
static void gen_binop (struct agent_expr *ax,
struct axs_value *value,
struct axs_value *value1,
struct axs_value *value2,
enum agent_op op,
enum agent_op op_unsigned, int may_carry, char *name);
static void gen_logical_not (struct agent_expr *ax, struct axs_value *value,
struct type *result_type);
2000-05-28 01:12:42 +00:00
static void gen_complement (struct agent_expr *ax, struct axs_value *value);
static void gen_deref (struct agent_expr *, struct axs_value *);
static void gen_address_of (struct agent_expr *, struct axs_value *);
static void gen_bitfield_ref (struct expression *exp, struct agent_expr *ax,
2000-05-28 01:12:42 +00:00
struct axs_value *value,
struct type *type, int start, int end);
static void gen_primitive_field (struct expression *exp,
struct agent_expr *ax,
struct axs_value *value,
int offset, int fieldno, struct type *type);
static int gen_struct_ref_recursive (struct expression *exp,
struct agent_expr *ax,
struct axs_value *value,
char *field, int offset,
struct type *type);
static void gen_struct_ref (struct expression *exp, struct agent_expr *ax,
2000-05-28 01:12:42 +00:00
struct axs_value *value,
char *field,
char *operator_name, char *operand_name);
static void gen_static_field (struct gdbarch *gdbarch,
struct agent_expr *ax, struct axs_value *value,
struct type *type, int fieldno);
static void gen_repeat (struct expression *exp, union exp_element **pc,
2000-05-28 01:12:42 +00:00
struct agent_expr *ax, struct axs_value *value);
static void gen_sizeof (struct expression *exp, union exp_element **pc,
struct agent_expr *ax, struct axs_value *value,
struct type *size_type);
static void gen_expr (struct expression *exp, union exp_element **pc,
2000-05-28 01:12:42 +00:00
struct agent_expr *ax, struct axs_value *value);
static void gen_expr_binop_rest (struct expression *exp,
enum exp_opcode op, union exp_element **pc,
struct agent_expr *ax,
struct axs_value *value,
struct axs_value *value1,
struct axs_value *value2);
1999-07-07 20:19:36 +00:00
2000-05-28 01:12:42 +00:00
static void agent_command (char *exp, int from_tty);
1999-07-07 20:19:36 +00:00
/* Detecting constant expressions. */
/* If the variable reference at *PC is a constant, return its value.
Otherwise, return zero.
Hey, Wally! How can a variable reference be a constant?
Well, Beav, this function really handles the OP_VAR_VALUE operator,
not specifically variable references. GDB uses OP_VAR_VALUE to
refer to any kind of symbolic reference: function names, enum
elements, and goto labels are all handled through the OP_VAR_VALUE
operator, even though they're constants. It makes sense given the
situation.
Gee, Wally, don'cha wonder sometimes if data representations that
subvert commonly accepted definitions of terms in favor of heavily
context-specific interpretations are really just a tool of the
programming hegemony to preserve their power and exclude the
proletariat? */
static struct value *
2000-07-30 01:48:28 +00:00
const_var_ref (struct symbol *var)
{
struct type *type = SYMBOL_TYPE (var);
switch (SYMBOL_CLASS (var))
{
case LOC_CONST:
return value_from_longest (type, (LONGEST) SYMBOL_VALUE (var));
case LOC_LABEL:
* gdbarch.sh (POINTER_TO_ADDRESS, ADDRESS_TO_POINTER): Two new functions which architectures can redefine, defaulting to generic_pointer_to_address and generic_address_to_pointer. * findvar.c (extract_typed_address, store_typed_address, generic_pointer_to_address, generic_address_to_pointer): New functions. (POINTER_TO_ADDRESS, ADDRESS_TO_POINTER): Provide default definitions. (extract_address, store_address): Doc fixes. * values.c (value_as_pointer): Doc fix. (value_from_pointer): New function. * defs.h (extract_typed_address, store_typed_address): New declarations. * inferior.h (generic_address_to_pointer, generic_pointer_to_address): New declarations. * value.h (value_from_pointer): New declaration. * ax-gdb.c (const_var_ref): Use value_from_pointer, not value_from_longest. * blockframe.c (generic_push_dummy_frame): Use read_pc and read_sp, not read_register. * c-valprint.c (c_val_print): Use extract_typed_address instead of extract_address to extract vtable entries and references. * cp-valprint.c (cp_print_value_fields): Use value_from_pointer instead of value_from_longest to extract the vtable's address. * eval.c (evaluate_subexp_standard): Use value_from_pointer instead of value_from_longest to compute `this', and for doing pointer-to-member dereferencing. * findvar.c (read_register): Use extract_unsigned_integer, not extract_address. (read_var_value): Use store_typed_address instead of store_address for building label values. (locate_var_value): Use value_from_pointer instead of value_from_longest. * hppa-tdep.c (find_stub_with_shl_get): Use value_from_pointer, instead of value_from_longest, to build arguments to __d_shl_get. * printcmd.c (set_next_address): Use value_from_pointer, not value_from_longest. (x_command): Use value_from_pointer, not value_from_longest. * tracepoint.c (set_traceframe_context): Use value_from_pointer, not value_from_longest. * valarith.c (value_add, value_sub): Use value_from_pointer, not value_from_longest. * valops.c (find_function_in_inferior, value_coerce_array, value_coerce_function, value_addr, hand_function_call): Same. * value.h (COERCE_REF): Use unpack_pointer, not unpack_long. * values.c (unpack_long): Use extract_typed_address to produce addresses from pointers and references, not extract_address. (value_from_longest): Use store_typed_address instead of store_address to produce pointer and reference values.
2000-04-14 18:43:41 +00:00
return value_from_pointer (type, (CORE_ADDR) SYMBOL_VALUE_ADDRESS (var));
default:
return 0;
}
}
/* If the expression starting at *PC has a constant value, return it.
Otherwise, return zero. If we return a value, then *PC will be
advanced to the end of it. If we return zero, *PC could be
anywhere. */
static struct value *
2000-07-30 01:48:28 +00:00
const_expr (union exp_element **pc)
{
enum exp_opcode op = (*pc)->opcode;
struct value *v1;
switch (op)
{
case OP_LONG:
{
struct type *type = (*pc)[1].type;
LONGEST k = (*pc)[2].longconst;
(*pc) += 4;
return value_from_longest (type, k);
}
case OP_VAR_VALUE:
{
struct value *v = const_var_ref ((*pc)[2].symbol);
(*pc) += 4;
return v;
}
1999-07-07 20:19:36 +00:00
/* We could add more operators in here. */
case UNOP_NEG:
(*pc)++;
v1 = const_expr (pc);
if (v1)
return value_neg (v1);
else
return 0;
default:
return 0;
}
}
/* Like const_expr, but guarantee also that *PC is undisturbed if the
expression is not constant. */
static struct value *
2000-07-30 01:48:28 +00:00
maybe_const_expr (union exp_element **pc)
{
union exp_element *tentative_pc = *pc;
struct value *v = const_expr (&tentative_pc);
/* If we got a value, then update the real PC. */
if (v)
*pc = tentative_pc;
1999-07-07 20:19:36 +00:00
return v;
}
1999-07-07 20:19:36 +00:00
/* Generating bytecode from GDB expressions: general assumptions */
/* Here are a few general assumptions made throughout the code; if you
want to make a change that contradicts one of these, then you'd
better scan things pretty thoroughly.
- We assume that all values occupy one stack element. For example,
1999-07-07 20:19:36 +00:00
sometimes we'll swap to get at the left argument to a binary
operator. If we decide that void values should occupy no stack
elements, or that synthetic arrays (whose size is determined at
run time, created by the `@' operator) should occupy two stack
elements (address and length), then this will cause trouble.
- We assume the stack elements are infinitely wide, and that we
1999-07-07 20:19:36 +00:00
don't have to worry what happens if the user requests an
operation that is wider than the actual interpreter's stack.
That is, it's up to the interpreter to handle directly all the
integer widths the user has access to. (Woe betide the language
with bignums!)
- We don't support side effects. Thus, we don't have to worry about
1999-07-07 20:19:36 +00:00
GCC's generalized lvalues, function calls, etc.
- We don't support floating point. Many places where we switch on
1999-07-07 20:19:36 +00:00
some type don't bother to include cases for floating point; there
may be even more subtle ways this assumption exists. For
example, the arguments to % must be integers.
- We assume all subexpressions have a static, unchanging type. If
1999-07-07 20:19:36 +00:00
we tried to support convenience variables, this would be a
problem.
- All values on the stack should always be fully zero- or
1999-07-07 20:19:36 +00:00
sign-extended.
(I wasn't sure whether to choose this or its opposite --- that
only addresses are assumed extended --- but it turns out that
neither convention completely eliminates spurious extend
operations (if everything is always extended, then you have to
extend after add, because it could overflow; if nothing is
extended, then you end up producing extends whenever you change
sizes), and this is simpler.) */
1999-07-07 20:19:36 +00:00
/* Generating bytecode from GDB expressions: the `trace' kludge */
/* The compiler in this file is a general-purpose mechanism for
translating GDB expressions into bytecode. One ought to be able to
find a million and one uses for it.
However, at the moment it is HOPELESSLY BRAIN-DAMAGED for the sake
of expediency. Let he who is without sin cast the first stone.
For the data tracing facility, we need to insert `trace' bytecodes
before each data fetch; this records all the memory that the
expression touches in the course of evaluation, so that memory will
be available when the user later tries to evaluate the expression
in GDB.
This should be done (I think) in a post-processing pass, that walks
an arbitrary agent expression and inserts `trace' operations at the
appropriate points. But it's much faster to just hack them
directly into the code. And since we're in a crunch, that's what
I've done.
Setting the flag trace_kludge to non-zero enables the code that
emits the trace bytecodes at the appropriate points. */
int trace_kludge;
/* Scan for all static fields in the given class, including any base
classes, and generate tracing bytecodes for each. */
static void
gen_trace_static_fields (struct gdbarch *gdbarch,
struct agent_expr *ax,
struct type *type)
{
int i, nbases = TYPE_N_BASECLASSES (type);
struct axs_value value;
CHECK_TYPEDEF (type);
for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
{
if (field_is_static (&TYPE_FIELD (type, i)))
{
gen_static_field (gdbarch, ax, &value, type, i);
if (value.optimized_out)
continue;
switch (value.kind)
{
case axs_lvalue_memory:
{
int length = TYPE_LENGTH (check_typedef (value.type));
ax_const_l (ax, length);
ax_simple (ax, aop_trace);
}
break;
case axs_lvalue_register:
/* We don't actually need the register's value to be pushed,
just note that we need it to be collected. */
ax_reg_mask (ax, value.u.reg);
default:
break;
}
}
}
/* Now scan through base classes recursively. */
for (i = 0; i < nbases; i++)
{
struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
gen_trace_static_fields (gdbarch, ax, basetype);
}
}
/* Trace the lvalue on the stack, if it needs it. In either case, pop
the value. Useful on the left side of a comma, and at the end of
an expression being used for tracing. */
static void
gen_traced_pop (struct gdbarch *gdbarch,
struct agent_expr *ax, struct axs_value *value)
{
if (trace_kludge)
switch (value->kind)
{
case axs_rvalue:
/* We don't trace rvalues, just the lvalues necessary to
1999-07-07 20:19:36 +00:00
produce them. So just dispose of this value. */
ax_simple (ax, aop_pop);
break;
case axs_lvalue_memory:
{
int length = TYPE_LENGTH (check_typedef (value->type));
/* There's no point in trying to use a trace_quick bytecode
here, since "trace_quick SIZE pop" is three bytes, whereas
"const8 SIZE trace" is also three bytes, does the same
thing, and the simplest code which generates that will also
work correctly for objects with large sizes. */
ax_const_l (ax, length);
ax_simple (ax, aop_trace);
}
1999-07-07 20:19:36 +00:00
break;
case axs_lvalue_register:
/* We don't actually need the register's value to be on the
stack, and the target will get heartburn if the register is
larger than will fit in a stack, so just mark it for
collection and be done with it. */
ax_reg_mask (ax, value->u.reg);
break;
}
else
/* If we're not tracing, just pop the value. */
ax_simple (ax, aop_pop);
/* To trace C++ classes with static fields stored elsewhere. */
if (trace_kludge
&& (TYPE_CODE (value->type) == TYPE_CODE_STRUCT
|| TYPE_CODE (value->type) == TYPE_CODE_UNION))
gen_trace_static_fields (gdbarch, ax, value->type);
}
1999-07-07 20:19:36 +00:00
/* Generating bytecode from GDB expressions: helper functions */
/* Assume that the lower bits of the top of the stack is a value of
type TYPE, and the upper bits are zero. Sign-extend if necessary. */
static void
2000-07-30 01:48:28 +00:00
gen_sign_extend (struct agent_expr *ax, struct type *type)
{
/* Do we need to sign-extend this? */
1999-07-07 20:19:36 +00:00
if (!TYPE_UNSIGNED (type))
ax_ext (ax, TYPE_LENGTH (type) * TARGET_CHAR_BIT);
}
/* Assume the lower bits of the top of the stack hold a value of type
TYPE, and the upper bits are garbage. Sign-extend or truncate as
needed. */
static void
2000-07-30 01:48:28 +00:00
gen_extend (struct agent_expr *ax, struct type *type)
{
int bits = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
/* I just had to. */
((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, bits));
}
/* Assume that the top of the stack contains a value of type "pointer
to TYPE"; generate code to fetch its value. Note that TYPE is the
target type, not the pointer type. */
static void
2000-07-30 01:48:28 +00:00
gen_fetch (struct agent_expr *ax, struct type *type)
{
if (trace_kludge)
{
/* Record the area of memory we're about to fetch. */
ax_trace_quick (ax, TYPE_LENGTH (type));
}
switch (TYPE_CODE (type))
{
case TYPE_CODE_PTR:
case TYPE_CODE_REF:
case TYPE_CODE_ENUM:
case TYPE_CODE_INT:
case TYPE_CODE_CHAR:
case TYPE_CODE_BOOL:
/* It's a scalar value, so we know how to dereference it. How
many bytes long is it? */
switch (TYPE_LENGTH (type))
{
1999-07-07 20:19:36 +00:00
case 8 / TARGET_CHAR_BIT:
ax_simple (ax, aop_ref8);
break;
case 16 / TARGET_CHAR_BIT:
ax_simple (ax, aop_ref16);
break;
case 32 / TARGET_CHAR_BIT:
ax_simple (ax, aop_ref32);
break;
case 64 / TARGET_CHAR_BIT:
ax_simple (ax, aop_ref64);
break;
/* Either our caller shouldn't have asked us to dereference
that pointer (other code's fault), or we're not
implementing something we should be (this code's fault).
In any case, it's a bug the user shouldn't see. */
default:
internal_error (__FILE__, __LINE__,
_("gen_fetch: strange size"));
}
gen_sign_extend (ax, type);
break;
default:
/* Either our caller shouldn't have asked us to dereference that
1999-07-07 20:19:36 +00:00
pointer (other code's fault), or we're not implementing
something we should be (this code's fault). In any case,
it's a bug the user shouldn't see. */
internal_error (__FILE__, __LINE__,
_("gen_fetch: bad type code"));
}
}
/* Generate code to left shift the top of the stack by DISTANCE bits, or
right shift it by -DISTANCE bits if DISTANCE < 0. This generates
unsigned (logical) right shifts. */
static void
2000-07-30 01:48:28 +00:00
gen_left_shift (struct agent_expr *ax, int distance)
{
if (distance > 0)
{
ax_const_l (ax, distance);
ax_simple (ax, aop_lsh);
}
else if (distance < 0)
{
ax_const_l (ax, -distance);
ax_simple (ax, aop_rsh_unsigned);
}
}
1999-07-07 20:19:36 +00:00
/* Generating bytecode from GDB expressions: symbol references */
/* Generate code to push the base address of the argument portion of
the top stack frame. */
static void
gen_frame_args_address (struct gdbarch *gdbarch, struct agent_expr *ax)
{
int frame_reg;
LONGEST frame_offset;
gdbarch_virtual_frame_pointer (gdbarch,
ax->scope, &frame_reg, &frame_offset);
1999-07-07 20:19:36 +00:00
ax_reg (ax, frame_reg);
gen_offset (ax, frame_offset);
}
/* Generate code to push the base address of the locals portion of the
top stack frame. */
static void
gen_frame_locals_address (struct gdbarch *gdbarch, struct agent_expr *ax)
{
int frame_reg;
LONGEST frame_offset;
gdbarch_virtual_frame_pointer (gdbarch,
ax->scope, &frame_reg, &frame_offset);
1999-07-07 20:19:36 +00:00
ax_reg (ax, frame_reg);
gen_offset (ax, frame_offset);
}
/* Generate code to add OFFSET to the top of the stack. Try to
generate short and readable code. We use this for getting to
variables on the stack, and structure members. If we were
programming in ML, it would be clearer why these are the same
thing. */
static void
2000-07-30 01:48:28 +00:00
gen_offset (struct agent_expr *ax, int offset)
{
/* It would suffice to simply push the offset and add it, but this
makes it easier to read positive and negative offsets in the
bytecode. */
if (offset > 0)
{
ax_const_l (ax, offset);
ax_simple (ax, aop_add);
}
else if (offset < 0)
{
ax_const_l (ax, -offset);
ax_simple (ax, aop_sub);
}
}
/* In many cases, a symbol's value is the offset from some other
address (stack frame, base register, etc.) Generate code to add
VAR's value to the top of the stack. */
static void
2000-07-30 01:48:28 +00:00
gen_sym_offset (struct agent_expr *ax, struct symbol *var)
{
gen_offset (ax, SYMBOL_VALUE (var));
}
/* Generate code for a variable reference to AX. The variable is the
symbol VAR. Set VALUE to describe the result. */
static void
gen_var_ref (struct gdbarch *gdbarch, struct agent_expr *ax,
struct axs_value *value, struct symbol *var)
{
/* Dereference any typedefs. */
value->type = check_typedef (SYMBOL_TYPE (var));
value->optimized_out = 0;
/* I'm imitating the code in read_var_value. */
switch (SYMBOL_CLASS (var))
{
case LOC_CONST: /* A constant, like an enum value. */
ax_const_l (ax, (LONGEST) SYMBOL_VALUE (var));
value->kind = axs_rvalue;
break;
case LOC_LABEL: /* A goto label, being used as a value. */
ax_const_l (ax, (LONGEST) SYMBOL_VALUE_ADDRESS (var));
value->kind = axs_rvalue;
break;
case LOC_CONST_BYTES:
internal_error (__FILE__, __LINE__,
_("gen_var_ref: LOC_CONST_BYTES symbols are not supported"));
/* Variable at a fixed location in memory. Easy. */
case LOC_STATIC:
/* Push the address of the variable. */
ax_const_l (ax, SYMBOL_VALUE_ADDRESS (var));
value->kind = axs_lvalue_memory;
break;
case LOC_ARG: /* var lives in argument area of frame */
gen_frame_args_address (gdbarch, ax);
gen_sym_offset (ax, var);
value->kind = axs_lvalue_memory;
break;
case LOC_REF_ARG: /* As above, but the frame slot really
holds the address of the variable. */
gen_frame_args_address (gdbarch, ax);
gen_sym_offset (ax, var);
/* Don't assume any particular pointer size. */
gen_fetch (ax, builtin_type (gdbarch)->builtin_data_ptr);
value->kind = axs_lvalue_memory;
break;
case LOC_LOCAL: /* var lives in locals area of frame */
gen_frame_locals_address (gdbarch, ax);
gen_sym_offset (ax, var);
value->kind = axs_lvalue_memory;
break;
case LOC_TYPEDEF:
error (_("Cannot compute value of typedef `%s'."),
2003-02-20 David Carlton <carlton@math.stanford.edu> * symtab.h (SYMBOL_PRINT_NAME): Rename from SYMBOL_SOURCE_NAME; expand comment. * ada-lang.c (user_select_syms, ada_finish_decode_line_1): Replace SYMBOL_PRINT_NAME with SYMBOL_SOURCE_NAME. * ada-typeprint.c (ada_typedef_print): Ditto. * ax-gdb.c (gen_var_ref): Ditto. * breakpoint.c (print_one_breakpoint): Ditto. * buildsym.c (finish_block): Ditto. * c-valprint.c (c_val_print): Ditto. * expprint.c (print_subexp): Ditto. * findvar.c (locate_var_value): Ditto. * infcmd.c (jump_command): Ditto. * linespec.c (decode_line_2, decode_compound): Ditto. * maint.c (maintenance_translate_address): Ditto. * objc-lang.c (compare_selectors, compare_classes): Ditto. * printcmd.c (build_address_symbolic, sym_info, print_frame_args): Ditto. * p-valprint.c (pascal_val_print): Ditto. * stabsread.c (define_symbol): Ditto. * stack.c (print_frame, frame_info, print_block_frame_locals) (print_frame_arg_vars, return_command): Ditto. * symfile.c (compare_symbols, compare_psymbols): Ditto. * symmisc.c (print_symbol): Ditto. * symtab.c (lookup_partial_symbol, lookup_block_symbol) (compare_search_syms, print_symbol_info, print_msymbol_info) (rbreak_command): Ditto. * tracepoint.c (tracepoints_info): Ditto. * typeprint.c (typedef_print): Ditto. * valops.c (value_of_variable, hand_function_call): Ditto. * cli/cli-cmds.c (edit_command, list_command): Ditto. * ada-typeprint.c: Update Copyright. * infcmd.c, objc-lang.c, p-valprint.c, symmisc.c: Ditto. * tracepoint.c, cli/cli-cmds.c: Ditto.
2003-02-20 17:17:25 +00:00
SYMBOL_PRINT_NAME (var));
break;
case LOC_BLOCK:
ax_const_l (ax, BLOCK_START (SYMBOL_BLOCK_VALUE (var)));
value->kind = axs_rvalue;
break;
case LOC_REGISTER:
/* Don't generate any code at all; in the process of treating
this as an lvalue or rvalue, the caller will generate the
right code. */
value->kind = axs_lvalue_register;
* symtab.h: Rename SYMBOL_OPS to SYMBOL_COMPUTED_OPS. * ax-gdb.c (gen_var_ref): Likewise. * findvar.c (read_var_value, symbol_read_needs_frame): Likewise. * printcmd.c (address_info): Likewise. * dwarf2loc.c (dwarf_expr_frame_base): Likewise. * dwarf2read.c (dwarf2_symbol_mark_computed): Likewise. * symtab.h: Rename struct symbol_ops to struct symbol_computed_ops. * dwarf2loc.h: Likewise. * dwarf2loc.c (dwarf2_locexpr_funcs, dwarf2_loclist_funcs): Likewise. * symtab.h: (struct symbol_register_ops): New struct definition. (struct symbol): Make "ops" member a union of symbol_computed_ops and symbol_register_ops callback pointers. (SYMBOL_REGISTER_OPS): New macro. * tracepoint.c: Include "objfiles.h". (scope_info, collect_symbol): Use SYMBOL_REGISTER_OPS register_number callback to retrieve register numbers. * ax-gdb.c (gen_var_ref): Likewise. * findvar.c (read_var_value): Likewise. * printcmd.c (address_info): Likewise. * coffread.c (coff_reg_to_regnum): New function. (coff_register_funcs): New static variable. (process_coff_symbol): Do not call gdbarch_sdb_reg_to_regnum. Install SYMBOL_REGISTER_OPS callbacks. * mdebugread.c (mdebug_reg_to_regnum): New function. (mdebug_register_funcs): New static variable. (parse_symbol): Do not call gdbarch_ecoff_reg_to_regnum. Install SYMBOL_REGISTER_OPS callbacks. * stabsread.c (stab_reg_to_regnum): New function. (stab_register_funcs): New static variable. (define_symbol): Do not call gdbarch_stab_reg_to_regnum. Install SYMBOL_REGISTER_OPS callbacks.
2009-06-04 12:28:39 +00:00
value->u.reg = SYMBOL_REGISTER_OPS (var)->register_number (var, gdbarch);
break;
/* A lot like LOC_REF_ARG, but the pointer lives directly in a
register, not on the stack. Simpler than LOC_REGISTER
because it's just like any other case where the thing
has a real address. */
case LOC_REGPARM_ADDR:
* symtab.h: Rename SYMBOL_OPS to SYMBOL_COMPUTED_OPS. * ax-gdb.c (gen_var_ref): Likewise. * findvar.c (read_var_value, symbol_read_needs_frame): Likewise. * printcmd.c (address_info): Likewise. * dwarf2loc.c (dwarf_expr_frame_base): Likewise. * dwarf2read.c (dwarf2_symbol_mark_computed): Likewise. * symtab.h: Rename struct symbol_ops to struct symbol_computed_ops. * dwarf2loc.h: Likewise. * dwarf2loc.c (dwarf2_locexpr_funcs, dwarf2_loclist_funcs): Likewise. * symtab.h: (struct symbol_register_ops): New struct definition. (struct symbol): Make "ops" member a union of symbol_computed_ops and symbol_register_ops callback pointers. (SYMBOL_REGISTER_OPS): New macro. * tracepoint.c: Include "objfiles.h". (scope_info, collect_symbol): Use SYMBOL_REGISTER_OPS register_number callback to retrieve register numbers. * ax-gdb.c (gen_var_ref): Likewise. * findvar.c (read_var_value): Likewise. * printcmd.c (address_info): Likewise. * coffread.c (coff_reg_to_regnum): New function. (coff_register_funcs): New static variable. (process_coff_symbol): Do not call gdbarch_sdb_reg_to_regnum. Install SYMBOL_REGISTER_OPS callbacks. * mdebugread.c (mdebug_reg_to_regnum): New function. (mdebug_register_funcs): New static variable. (parse_symbol): Do not call gdbarch_ecoff_reg_to_regnum. Install SYMBOL_REGISTER_OPS callbacks. * stabsread.c (stab_reg_to_regnum): New function. (stab_register_funcs): New static variable. (define_symbol): Do not call gdbarch_stab_reg_to_regnum. Install SYMBOL_REGISTER_OPS callbacks.
2009-06-04 12:28:39 +00:00
ax_reg (ax, SYMBOL_REGISTER_OPS (var)->register_number (var, gdbarch));
value->kind = axs_lvalue_memory;
break;
case LOC_UNRESOLVED:
{
1999-07-07 20:19:36 +00:00
struct minimal_symbol *msym
* ax-gdb.c (gen_var_ref): Use SYMBOL_LINKAGE_NAME. * blockframe.c (find_pc_partial_function): Likewise. * buildsym.c (find_symbol_in_list): Likewise. * c-valprint.c (c_val_print): Likewise. * coffread.c (patch_opaque_types, process_coff_symbol): Likewise. (coff_read_enum_type): Likewise. Use SYMBOL_SET_LINKAGE_NAME. * cp-support.c (cp_remove_params): Renamed from remove_params and made global. (overload_list_add_symbol): Update call to remove_params. * cp-support.h (cp_remove_params): Declare. * dwarf2read.c (process_enumeration_scope): Use SYMBOL_LINKAGE_NAME. (dwarf2_const_value): Use SYMBOL_PRINT_NAME. * expprint.c (dump_subexp_body_standard): Likewise. * f-valprint.c (info_common_command, there_is_a_visible_common_named): Use SYMBOL_LINKAGE_NAME to find symbols and SYMBOL_PRINT_NAME for messages. * findvar.c (read_var_value): Use SYMBOL_LINKAGE_NAME. * gnu-v2-abi.c (gnuv2_value_rtti_type): Likewise. * hppa-hpux-tdep.c (hppa32_hpux_in_solib_call_trampoline) (hppa_hpux_skip_trampoline_code): Use SYMBOL_LINKAGE_NAME to find symbols and SYMBOL_PRINT_NAME for messages. * jv-lang.c (add_class_symbol): Use SYMBOL_SET_LINKAGE_NAME. * linespec.c (decode_line_2): Use SYMBOL_LINKAGE_NAME. * mdebugread.c (parse_symbol): Use SYMBOL_LINKAGE_NAME and SYMBOL_SET_LINKAGE_NAME. (mylookup_symbol): Use SYMBOL_LINKAGE_NAME. * minsyms.c (add_minsym_to_demangled_hash_table): Use SYMBOL_SEARCH_NAME. (lookup_minimal_symbol): Use SYMBOL_LINKAGE_NAME or SYMBOL_MATCHES_SEARCH_NAME, depending on the pass. * objfiles.h (ALL_OBJFILE_MSYMBOLS): Use SYMBOL_LINKAGE_NAME. * printcmd.c (build_address_symbolic): Use SYMBOL_LINKAGE_NAME. (address_info): Use SYMBOL_PRINT_NAME for messages and SYMBOL_LINKAGE_NAME for lookups. * sol-thread.c (info_cb): Use SYMBOL_PRINT_NAME for messages. * stabsread.c (patch_block_stabs, define_symbol) (read_type, read_enum_type, common_block_end) (cleanup_undefined_types_1, scan_file_globals): Use SYMBOL_LINKAGE_NAME, SYMBOL_SET_LINKAGE_NAME, ALL_OBJFILE_MSYMBOLS, and SYMBOL_PRINT_NAME. * stack.c (print_frame_args): Use SYMBOL_LINKAGE_NAME. (print_frame, frame_info): Use SYMBOL_PRINT_NAME for output. Use cp_remove_params instead of cplus_demangle. (print_block_frame_labels, print_frame_arg_vars): Use SYMBOL_LINKAGE_NAME. * symmisc.c (dump_msymbols): Use ALL_OBJFILE_MSYMBOLS and SYMBOL_LINKAGE_NAME. (dump_symtab_1, print_symbol, print_partial_symbols) (maintenance_check_symtabs): Use SYMBOL_LINKAGE_NAME. * symtab.h (DEPRECATED_SYMBOL_NAME): Delete. (SYMBOL_SET_LINKAGE_NAME): New. (SYMBOL_SET_NAMES): Add a comment. * tracepoint.c (set_traceframe_context, validate_actionline) (collect_symbol, scope_info): Use SYMBOL_LINKAGE_NAME for lookups and SYMBOL_PRINT_NAME for output. * typeprint.c (typedef_print): Use SYMBOL_LINKAGE_NAME. * xcoffread.c (process_xcoff_symbol): Use SYMBOL_SET_LINKAGE_NAME.
2008-08-21 18:14:39 +00:00
= lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (var), NULL, NULL);
1999-07-07 20:19:36 +00:00
if (!msym)
error (_("Couldn't resolve symbol `%s'."), SYMBOL_PRINT_NAME (var));
1999-07-07 20:19:36 +00:00
/* Push the address of the variable. */
ax_const_l (ax, SYMBOL_VALUE_ADDRESS (msym));
value->kind = axs_lvalue_memory;
}
1999-07-07 20:19:36 +00:00
break;
case LOC_COMPUTED:
/* FIXME: cagney/2004-01-26: It should be possible to
* symtab.h: Rename SYMBOL_OPS to SYMBOL_COMPUTED_OPS. * ax-gdb.c (gen_var_ref): Likewise. * findvar.c (read_var_value, symbol_read_needs_frame): Likewise. * printcmd.c (address_info): Likewise. * dwarf2loc.c (dwarf_expr_frame_base): Likewise. * dwarf2read.c (dwarf2_symbol_mark_computed): Likewise. * symtab.h: Rename struct symbol_ops to struct symbol_computed_ops. * dwarf2loc.h: Likewise. * dwarf2loc.c (dwarf2_locexpr_funcs, dwarf2_loclist_funcs): Likewise. * symtab.h: (struct symbol_register_ops): New struct definition. (struct symbol): Make "ops" member a union of symbol_computed_ops and symbol_register_ops callback pointers. (SYMBOL_REGISTER_OPS): New macro. * tracepoint.c: Include "objfiles.h". (scope_info, collect_symbol): Use SYMBOL_REGISTER_OPS register_number callback to retrieve register numbers. * ax-gdb.c (gen_var_ref): Likewise. * findvar.c (read_var_value): Likewise. * printcmd.c (address_info): Likewise. * coffread.c (coff_reg_to_regnum): New function. (coff_register_funcs): New static variable. (process_coff_symbol): Do not call gdbarch_sdb_reg_to_regnum. Install SYMBOL_REGISTER_OPS callbacks. * mdebugread.c (mdebug_reg_to_regnum): New function. (mdebug_register_funcs): New static variable. (parse_symbol): Do not call gdbarch_ecoff_reg_to_regnum. Install SYMBOL_REGISTER_OPS callbacks. * stabsread.c (stab_reg_to_regnum): New function. (stab_register_funcs): New static variable. (define_symbol): Do not call gdbarch_stab_reg_to_regnum. Install SYMBOL_REGISTER_OPS callbacks.
2009-06-04 12:28:39 +00:00
unconditionally call the SYMBOL_COMPUTED_OPS method when available.
2004-02-06 18:30:47 +00:00
Unfortunately DWARF 2 stores the frame-base (instead of the
function) location in a function's symbol. Oops! For the
moment enable this when/where applicable. */
SYMBOL_COMPUTED_OPS (var)->tracepoint_var_ref (var, gdbarch, ax, value);
break;
case LOC_OPTIMIZED_OUT:
/* Flag this, but don't say anything; leave it up to callers to
warn the user. */
value->optimized_out = 1;
break;
default:
error (_("Cannot find value of botched symbol `%s'."),
2003-02-20 David Carlton <carlton@math.stanford.edu> * symtab.h (SYMBOL_PRINT_NAME): Rename from SYMBOL_SOURCE_NAME; expand comment. * ada-lang.c (user_select_syms, ada_finish_decode_line_1): Replace SYMBOL_PRINT_NAME with SYMBOL_SOURCE_NAME. * ada-typeprint.c (ada_typedef_print): Ditto. * ax-gdb.c (gen_var_ref): Ditto. * breakpoint.c (print_one_breakpoint): Ditto. * buildsym.c (finish_block): Ditto. * c-valprint.c (c_val_print): Ditto. * expprint.c (print_subexp): Ditto. * findvar.c (locate_var_value): Ditto. * infcmd.c (jump_command): Ditto. * linespec.c (decode_line_2, decode_compound): Ditto. * maint.c (maintenance_translate_address): Ditto. * objc-lang.c (compare_selectors, compare_classes): Ditto. * printcmd.c (build_address_symbolic, sym_info, print_frame_args): Ditto. * p-valprint.c (pascal_val_print): Ditto. * stabsread.c (define_symbol): Ditto. * stack.c (print_frame, frame_info, print_block_frame_locals) (print_frame_arg_vars, return_command): Ditto. * symfile.c (compare_symbols, compare_psymbols): Ditto. * symmisc.c (print_symbol): Ditto. * symtab.c (lookup_partial_symbol, lookup_block_symbol) (compare_search_syms, print_symbol_info, print_msymbol_info) (rbreak_command): Ditto. * tracepoint.c (tracepoints_info): Ditto. * typeprint.c (typedef_print): Ditto. * valops.c (value_of_variable, hand_function_call): Ditto. * cli/cli-cmds.c (edit_command, list_command): Ditto. * ada-typeprint.c: Update Copyright. * infcmd.c, objc-lang.c, p-valprint.c, symmisc.c: Ditto. * tracepoint.c, cli/cli-cmds.c: Ditto.
2003-02-20 17:17:25 +00:00
SYMBOL_PRINT_NAME (var));
break;
}
}
1999-07-07 20:19:36 +00:00
/* Generating bytecode from GDB expressions: literals */
static void
2000-07-30 01:48:28 +00:00
gen_int_literal (struct agent_expr *ax, struct axs_value *value, LONGEST k,
struct type *type)
{
ax_const_l (ax, k);
value->kind = axs_rvalue;
value->type = check_typedef (type);
}
1999-07-07 20:19:36 +00:00
/* Generating bytecode from GDB expressions: unary conversions, casts */
/* Take what's on the top of the stack (as described by VALUE), and
try to make an rvalue out of it. Signal an error if we can't do
that. */
static void
2000-07-30 01:48:28 +00:00
require_rvalue (struct agent_expr *ax, struct axs_value *value)
{
/* Only deal with scalars, structs and such may be too large
to fit in a stack entry. */
value->type = check_typedef (value->type);
if (TYPE_CODE (value->type) == TYPE_CODE_ARRAY
|| TYPE_CODE (value->type) == TYPE_CODE_STRUCT
|| TYPE_CODE (value->type) == TYPE_CODE_UNION
|| TYPE_CODE (value->type) == TYPE_CODE_FUNC)
2010-03-18 16:01:29 +00:00
error (_("Value not scalar: cannot be an rvalue."));
switch (value->kind)
{
case axs_rvalue:
/* It's already an rvalue. */
break;
case axs_lvalue_memory:
/* The top of stack is the address of the object. Dereference. */
gen_fetch (ax, value->type);
break;
case axs_lvalue_register:
/* There's nothing on the stack, but value->u.reg is the
register number containing the value.
1999-07-07 20:19:36 +00:00
When we add floating-point support, this is going to have to
change. What about SPARC register pairs, for example? */
ax_reg (ax, value->u.reg);
gen_extend (ax, value->type);
break;
}
value->kind = axs_rvalue;
}
/* Assume the top of the stack is described by VALUE, and perform the
usual unary conversions. This is motivated by ANSI 6.2.2, but of
course GDB expressions are not ANSI; they're the mishmash union of
a bunch of languages. Rah.
NOTE! This function promises to produce an rvalue only when the
incoming value is of an appropriate type. In other words, the
consumer of the value this function produces may assume the value
is an rvalue only after checking its type.
The immediate issue is that if the user tries to use a structure or
union as an operand of, say, the `+' operator, we don't want to try
to convert that structure to an rvalue; require_rvalue will bomb on
structs and unions. Rather, we want to simply pass the struct
lvalue through unchanged, and let `+' raise an error. */
static void
gen_usual_unary (struct expression *exp, struct agent_expr *ax,
struct axs_value *value)
{
/* We don't have to generate any code for the usual integral
conversions, since values are always represented as full-width on
the stack. Should we tweak the type? */
/* Some types require special handling. */
switch (TYPE_CODE (value->type))
{
/* Functions get converted to a pointer to the function. */
case TYPE_CODE_FUNC:
value->type = lookup_pointer_type (value->type);
value->kind = axs_rvalue; /* Should always be true, but just in case. */
break;
/* Arrays get converted to a pointer to their first element, and
1999-07-07 20:19:36 +00:00
are no longer an lvalue. */
case TYPE_CODE_ARRAY:
{
struct type *elements = TYPE_TARGET_TYPE (value->type);
value->type = lookup_pointer_type (elements);
value->kind = axs_rvalue;
/* We don't need to generate any code; the address of the array
is also the address of its first element. */
}
1999-07-07 20:19:36 +00:00
break;
1999-07-07 20:19:36 +00:00
/* Don't try to convert structures and unions to rvalues. Let the
consumer signal an error. */
case TYPE_CODE_STRUCT:
case TYPE_CODE_UNION:
return;
/* If the value is an enum or a bool, call it an integer. */
case TYPE_CODE_ENUM:
case TYPE_CODE_BOOL:
value->type = builtin_type (exp->gdbarch)->builtin_int;
break;
}
/* If the value is an lvalue, dereference it. */
require_rvalue (ax, value);
}
/* Return non-zero iff the type TYPE1 is considered "wider" than the
type TYPE2, according to the rules described in gen_usual_arithmetic. */
static int
2000-07-30 01:48:28 +00:00
type_wider_than (struct type *type1, struct type *type2)
{
return (TYPE_LENGTH (type1) > TYPE_LENGTH (type2)
|| (TYPE_LENGTH (type1) == TYPE_LENGTH (type2)
&& TYPE_UNSIGNED (type1)
1999-07-07 20:19:36 +00:00
&& !TYPE_UNSIGNED (type2)));
}
/* Return the "wider" of the two types TYPE1 and TYPE2. */
static struct type *
2000-07-30 01:48:28 +00:00
max_type (struct type *type1, struct type *type2)
{
return type_wider_than (type1, type2) ? type1 : type2;
}
/* Generate code to convert a scalar value of type FROM to type TO. */
static void
2000-07-30 01:48:28 +00:00
gen_conversion (struct agent_expr *ax, struct type *from, struct type *to)
{
/* Perhaps there is a more graceful way to state these rules. */
/* If we're converting to a narrower type, then we need to clear out
the upper bits. */
if (TYPE_LENGTH (to) < TYPE_LENGTH (from))
gen_extend (ax, from);
/* If the two values have equal width, but different signednesses,
then we need to extend. */
else if (TYPE_LENGTH (to) == TYPE_LENGTH (from))
{
if (TYPE_UNSIGNED (from) != TYPE_UNSIGNED (to))
gen_extend (ax, to);
}
/* If we're converting to a wider type, and becoming unsigned, then
we need to zero out any possible sign bits. */
else if (TYPE_LENGTH (to) > TYPE_LENGTH (from))
{
if (TYPE_UNSIGNED (to))
gen_extend (ax, to);
}
}
/* Return non-zero iff the type FROM will require any bytecodes to be
emitted to be converted to the type TO. */
static int
2000-07-30 01:48:28 +00:00
is_nontrivial_conversion (struct type *from, struct type *to)
{
struct agent_expr *ax = new_agent_expr (NULL, 0);
int nontrivial;
/* Actually generate the code, and see if anything came out. At the
moment, it would be trivial to replicate the code in
gen_conversion here, but in the future, when we're supporting
floating point and the like, it may not be. Doing things this
way allows this function to be independent of the logic in
gen_conversion. */
gen_conversion (ax, from, to);
nontrivial = ax->len > 0;
free_agent_expr (ax);
return nontrivial;
}
/* Generate code to perform the "usual arithmetic conversions" (ANSI C
6.2.1.5) for the two operands of an arithmetic operator. This
effectively finds a "least upper bound" type for the two arguments,
and promotes each argument to that type. *VALUE1 and *VALUE2
describe the values as they are passed in, and as they are left. */
static void
gen_usual_arithmetic (struct expression *exp, struct agent_expr *ax,
struct axs_value *value1, struct axs_value *value2)
{
/* Do the usual binary conversions. */
if (TYPE_CODE (value1->type) == TYPE_CODE_INT
&& TYPE_CODE (value2->type) == TYPE_CODE_INT)
{
/* The ANSI integral promotions seem to work this way: Order the
1999-07-07 20:19:36 +00:00
integer types by size, and then by signedness: an n-bit
unsigned type is considered "wider" than an n-bit signed
type. Promote to the "wider" of the two types, and always
promote at least to int. */
struct type *target = max_type (builtin_type (exp->gdbarch)->builtin_int,
max_type (value1->type, value2->type));
/* Deal with value2, on the top of the stack. */
gen_conversion (ax, value2->type, target);
/* Deal with value1, not on the top of the stack. Don't
generate the `swap' instructions if we're not actually going
to do anything. */
if (is_nontrivial_conversion (value1->type, target))
{
ax_simple (ax, aop_swap);
gen_conversion (ax, value1->type, target);
ax_simple (ax, aop_swap);
}
value1->type = value2->type = check_typedef (target);
}
}
/* Generate code to perform the integral promotions (ANSI 6.2.1.1) on
the value on the top of the stack, as described by VALUE. Assume
the value has integral type. */
static void
gen_integral_promotions (struct expression *exp, struct agent_expr *ax,
struct axs_value *value)
{
const struct builtin_type *builtin = builtin_type (exp->gdbarch);
if (!type_wider_than (value->type, builtin->builtin_int))
{
gen_conversion (ax, value->type, builtin->builtin_int);
value->type = builtin->builtin_int;
}
else if (!type_wider_than (value->type, builtin->builtin_unsigned_int))
{
gen_conversion (ax, value->type, builtin->builtin_unsigned_int);
value->type = builtin->builtin_unsigned_int;
}
}
/* Generate code for a cast to TYPE. */
static void
2000-07-30 01:48:28 +00:00
gen_cast (struct agent_expr *ax, struct axs_value *value, struct type *type)
{
/* GCC does allow casts to yield lvalues, so this should be fixed
before merging these changes into the trunk. */
require_rvalue (ax, value);
/* Dereference typedefs. */
type = check_typedef (type);
switch (TYPE_CODE (type))
{
case TYPE_CODE_PTR:
case TYPE_CODE_REF:
/* It's implementation-defined, and I'll bet this is what GCC
does. */
break;
case TYPE_CODE_ARRAY:
case TYPE_CODE_STRUCT:
case TYPE_CODE_UNION:
case TYPE_CODE_FUNC:
error (_("Invalid type cast: intended type must be scalar."));
case TYPE_CODE_ENUM:
case TYPE_CODE_BOOL:
/* We don't have to worry about the size of the value, because
all our integral values are fully sign-extended, and when
casting pointers we can do anything we like. Is there any
way for us to know what GCC actually does with a cast like
this? */
break;
1999-07-07 20:19:36 +00:00
case TYPE_CODE_INT:
gen_conversion (ax, value->type, type);
break;
case TYPE_CODE_VOID:
/* We could pop the value, and rely on everyone else to check
1999-07-07 20:19:36 +00:00
the type and notice that this value doesn't occupy a stack
slot. But for now, leave the value on the stack, and
preserve the "value == stack element" assumption. */
break;
default:
error (_("Casts to requested type are not yet implemented."));
}
value->type = type;
}
1999-07-07 20:19:36 +00:00
/* Generating bytecode from GDB expressions: arithmetic */
/* Scale the integer on the top of the stack by the size of the target
of the pointer type TYPE. */
static void
2000-07-30 01:48:28 +00:00
gen_scale (struct agent_expr *ax, enum agent_op op, struct type *type)
{
struct type *element = TYPE_TARGET_TYPE (type);
if (TYPE_LENGTH (element) != 1)
{
ax_const_l (ax, TYPE_LENGTH (element));
ax_simple (ax, op);
}
}
/* Generate code for pointer arithmetic PTR + INT. */
static void
gen_ptradd (struct agent_expr *ax, struct axs_value *value,
struct axs_value *value1, struct axs_value *value2)
{
gdb_assert (pointer_type (value1->type));
gdb_assert (TYPE_CODE (value2->type) == TYPE_CODE_INT);
gen_scale (ax, aop_mul, value1->type);
ax_simple (ax, aop_add);
gen_extend (ax, value1->type); /* Catch overflow. */
value->type = value1->type;
value->kind = axs_rvalue;
}
/* Generate code for pointer arithmetic PTR - INT. */
static void
gen_ptrsub (struct agent_expr *ax, struct axs_value *value,
struct axs_value *value1, struct axs_value *value2)
{
gdb_assert (pointer_type (value1->type));
gdb_assert (TYPE_CODE (value2->type) == TYPE_CODE_INT);
gen_scale (ax, aop_mul, value1->type);
ax_simple (ax, aop_sub);
gen_extend (ax, value1->type); /* Catch overflow. */
value->type = value1->type;
value->kind = axs_rvalue;
}
/* Generate code for pointer arithmetic PTR - PTR. */
static void
gen_ptrdiff (struct agent_expr *ax, struct axs_value *value,
struct axs_value *value1, struct axs_value *value2,
struct type *result_type)
{
gdb_assert (pointer_type (value1->type));
gdb_assert (pointer_type (value2->type));
if (TYPE_LENGTH (TYPE_TARGET_TYPE (value1->type))
!= TYPE_LENGTH (TYPE_TARGET_TYPE (value2->type)))
error (_("\
First argument of `-' is a pointer, but second argument is neither\n\
an integer nor a pointer of the same type."));
ax_simple (ax, aop_sub);
gen_scale (ax, aop_div_unsigned, value1->type);
value->type = result_type;
value->kind = axs_rvalue;
}
static void
gen_equal (struct agent_expr *ax, struct axs_value *value,
struct axs_value *value1, struct axs_value *value2,
struct type *result_type)
{
if (pointer_type (value1->type) || pointer_type (value2->type))
ax_simple (ax, aop_equal);
else
gen_binop (ax, value, value1, value2,
aop_equal, aop_equal, 0, "equal");
value->type = result_type;
value->kind = axs_rvalue;
}
static void
gen_less (struct agent_expr *ax, struct axs_value *value,
struct axs_value *value1, struct axs_value *value2,
struct type *result_type)
{
if (pointer_type (value1->type) || pointer_type (value2->type))
ax_simple (ax, aop_less_unsigned);
else
gen_binop (ax, value, value1, value2,
aop_less_signed, aop_less_unsigned, 0, "less than");
value->type = result_type;
value->kind = axs_rvalue;
}
/* Generate code for a binary operator that doesn't do pointer magic.
We set VALUE to describe the result value; we assume VALUE1 and
VALUE2 describe the two operands, and that they've undergone the
usual binary conversions. MAY_CARRY should be non-zero iff the
result needs to be extended. NAME is the English name of the
operator, used in error messages */
static void
2000-07-30 01:48:28 +00:00
gen_binop (struct agent_expr *ax, struct axs_value *value,
struct axs_value *value1, struct axs_value *value2, enum agent_op op,
enum agent_op op_unsigned, int may_carry, char *name)
{
/* We only handle INT op INT. */
if ((TYPE_CODE (value1->type) != TYPE_CODE_INT)
|| (TYPE_CODE (value2->type) != TYPE_CODE_INT))
error (_("Invalid combination of types in %s."), name);
1999-07-07 20:19:36 +00:00
ax_simple (ax,
TYPE_UNSIGNED (value1->type) ? op_unsigned : op);
if (may_carry)
1999-07-07 20:19:36 +00:00
gen_extend (ax, value1->type); /* catch overflow */
value->type = value1->type;
value->kind = axs_rvalue;
}
static void
gen_logical_not (struct agent_expr *ax, struct axs_value *value,
struct type *result_type)
{
if (TYPE_CODE (value->type) != TYPE_CODE_INT
&& TYPE_CODE (value->type) != TYPE_CODE_PTR)
error (_("Invalid type of operand to `!'."));
ax_simple (ax, aop_log_not);
value->type = result_type;
}
static void
2000-07-30 01:48:28 +00:00
gen_complement (struct agent_expr *ax, struct axs_value *value)
{
if (TYPE_CODE (value->type) != TYPE_CODE_INT)
error (_("Invalid type of operand to `~'."));
ax_simple (ax, aop_bit_not);
gen_extend (ax, value->type);
}
1999-07-07 20:19:36 +00:00
/* Generating bytecode from GDB expressions: * & . -> @ sizeof */
/* Dereference the value on the top of the stack. */
static void
2000-07-30 01:48:28 +00:00
gen_deref (struct agent_expr *ax, struct axs_value *value)
{
/* The caller should check the type, because several operators use
this, and we don't know what error message to generate. */
if (!pointer_type (value->type))
internal_error (__FILE__, __LINE__,
_("gen_deref: expected a pointer"));
/* We've got an rvalue now, which is a pointer. We want to yield an
lvalue, whose address is exactly that pointer. So we don't
actually emit any code; we just change the type from "Pointer to
T" to "T", and mark the value as an lvalue in memory. Leave it
to the consumer to actually dereference it. */
value->type = check_typedef (TYPE_TARGET_TYPE (value->type));
if (TYPE_CODE (value->type) == TYPE_CODE_VOID)
error (_("Attempt to dereference a generic pointer."));
value->kind = ((TYPE_CODE (value->type) == TYPE_CODE_FUNC)
? axs_rvalue : axs_lvalue_memory);
}
/* Produce the address of the lvalue on the top of the stack. */
static void
2000-07-30 01:48:28 +00:00
gen_address_of (struct agent_expr *ax, struct axs_value *value)
{
/* Special case for taking the address of a function. The ANSI
standard describes this as a special case, too, so this
arrangement is not without motivation. */
if (TYPE_CODE (value->type) == TYPE_CODE_FUNC)
/* The value's already an rvalue on the stack, so we just need to
change the type. */
value->type = lookup_pointer_type (value->type);
else
switch (value->kind)
{
case axs_rvalue:
error (_("Operand of `&' is an rvalue, which has no address."));
case axs_lvalue_register:
error (_("Operand of `&' is in a register, and has no address."));
case axs_lvalue_memory:
value->kind = axs_rvalue;
value->type = lookup_pointer_type (value->type);
break;
}
}
/* Generate code to push the value of a bitfield of a structure whose
address is on the top of the stack. START and END give the
starting and one-past-ending *bit* numbers of the field within the
structure. */
static void
gen_bitfield_ref (struct expression *exp, struct agent_expr *ax,
struct axs_value *value, struct type *type,
int start, int end)
{
/* Note that ops[i] fetches 8 << i bits. */
static enum agent_op ops[]
= {aop_ref8, aop_ref16, aop_ref32, aop_ref64};
static int num_ops = (sizeof (ops) / sizeof (ops[0]));
/* We don't want to touch any byte that the bitfield doesn't
actually occupy; we shouldn't make any accesses we're not
explicitly permitted to. We rely here on the fact that the
bytecode `ref' operators work on unaligned addresses.
It takes some fancy footwork to get the stack to work the way
we'd like. Say we're retrieving a bitfield that requires three
fetches. Initially, the stack just contains the address:
1999-07-07 20:19:36 +00:00
addr
For the first fetch, we duplicate the address
1999-07-07 20:19:36 +00:00
addr addr
then add the byte offset, do the fetch, and shift and mask as
needed, yielding a fragment of the value, properly aligned for
the final bitwise or:
1999-07-07 20:19:36 +00:00
addr frag1
then we swap, and repeat the process:
1999-07-07 20:19:36 +00:00
frag1 addr --- address on top
frag1 addr addr --- duplicate it
frag1 addr frag2 --- get second fragment
frag1 frag2 addr --- swap again
frag1 frag2 frag3 --- get third fragment
Notice that, since the third fragment is the last one, we don't
bother duplicating the address this time. Now we have all the
fragments on the stack, and we can simply `or' them together,
yielding the final value of the bitfield. */
/* The first and one-after-last bits in the field, but rounded down
and up to byte boundaries. */
int bound_start = (start / TARGET_CHAR_BIT) * TARGET_CHAR_BIT;
1999-07-07 20:19:36 +00:00
int bound_end = (((end + TARGET_CHAR_BIT - 1)
/ TARGET_CHAR_BIT)
* TARGET_CHAR_BIT);
/* current bit offset within the structure */
int offset;
/* The index in ops of the opcode we're considering. */
int op;
/* The number of fragments we generated in the process. Probably
equal to the number of `one' bits in bytesize, but who cares? */
int fragment_count;
/* Dereference any typedefs. */
type = check_typedef (type);
/* Can we fetch the number of bits requested at all? */
if ((end - start) > ((1 << num_ops) * 8))
internal_error (__FILE__, __LINE__,
_("gen_bitfield_ref: bitfield too wide"));
/* Note that we know here that we only need to try each opcode once.
That may not be true on machines with weird byte sizes. */
offset = bound_start;
fragment_count = 0;
for (op = num_ops - 1; op >= 0; op--)
{
/* number of bits that ops[op] would fetch */
int op_size = 8 << op;
/* The stack at this point, from bottom to top, contains zero or
1999-07-07 20:19:36 +00:00
more fragments, then the address. */
/* Does this fetch fit within the bitfield? */
if (offset + op_size <= bound_end)
{
/* Is this the last fragment? */
int last_frag = (offset + op_size == bound_end);
1999-07-07 20:19:36 +00:00
if (!last_frag)
ax_simple (ax, aop_dup); /* keep a copy of the address */
/* Add the offset. */
gen_offset (ax, offset / TARGET_CHAR_BIT);
if (trace_kludge)
{
/* Record the area of memory we're about to fetch. */
ax_trace_quick (ax, op_size / TARGET_CHAR_BIT);
}
/* Perform the fetch. */
ax_simple (ax, ops[op]);
1999-07-07 20:19:36 +00:00
/* Shift the bits we have to their proper position.
gen_left_shift will generate right shifts when the operand
is negative.
1999-07-07 20:19:36 +00:00
A big-endian field diagram to ponder:
byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
+------++------++------++------++------++------++------++------+
xxxxAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBCCCCCxxxxxxxxxxx
^ ^ ^ ^
bit number 16 32 48 53
These are bit numbers as supplied by GDB. Note that the
bit numbers run from right to left once you've fetched the
value!
1999-07-07 20:19:36 +00:00
A little-endian field diagram to ponder:
byte 7 byte 6 byte 5 byte 4 byte 3 byte 2 byte 1 byte 0
+------++------++------++------++------++------++------++------+
xxxxxxxxxxxAAAAABBBBBBBBBBBBBBBBCCCCCCCCCCCCCCCCCCCCCCCCCCCCxxxx
^ ^ ^ ^ ^
bit number 48 32 16 4 0
In both cases, the most significant end is on the left
(i.e. normal numeric writing order), which means that you
don't go crazy thinking about `left' and `right' shifts.
We don't have to worry about masking yet:
- If they contain garbage off the least significant end, then we
must be looking at the low end of the field, and the right
shift will wipe them out.
- If they contain garbage off the most significant end, then we
must be looking at the most significant end of the word, and
the sign/zero extension will wipe them out.
- If we're in the interior of the word, then there is no garbage
on either end, because the ref operators zero-extend. */
if (gdbarch_byte_order (exp->gdbarch) == BFD_ENDIAN_BIG)
gen_left_shift (ax, end - (offset + op_size));
1999-07-07 20:19:36 +00:00
else
gen_left_shift (ax, offset - start);
1999-07-07 20:19:36 +00:00
if (!last_frag)
/* Bring the copy of the address up to the top. */
ax_simple (ax, aop_swap);
offset += op_size;
fragment_count++;
}
}
/* Generate enough bitwise `or' operations to combine all the
fragments we left on the stack. */
while (fragment_count-- > 1)
ax_simple (ax, aop_bit_or);
/* Sign- or zero-extend the value as appropriate. */
((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, end - start));
/* This is *not* an lvalue. Ugh. */
value->kind = axs_rvalue;
value->type = type;
}
/* Generate bytecodes for field number FIELDNO of type TYPE. OFFSET
is an accumulated offset (in bytes), will be nonzero for objects
embedded in other objects, like C++ base classes. Behavior should
generally follow value_primitive_field. */
static void
gen_primitive_field (struct expression *exp,
struct agent_expr *ax, struct axs_value *value,
int offset, int fieldno, struct type *type)
{
/* Is this a bitfield? */
if (TYPE_FIELD_PACKED (type, fieldno))
gen_bitfield_ref (exp, ax, value, TYPE_FIELD_TYPE (type, fieldno),
(offset * TARGET_CHAR_BIT
+ TYPE_FIELD_BITPOS (type, fieldno)),
(offset * TARGET_CHAR_BIT
+ TYPE_FIELD_BITPOS (type, fieldno)
+ TYPE_FIELD_BITSIZE (type, fieldno)));
else
{
gen_offset (ax, offset
+ TYPE_FIELD_BITPOS (type, fieldno) / TARGET_CHAR_BIT);
value->kind = axs_lvalue_memory;
value->type = TYPE_FIELD_TYPE (type, fieldno);
}
}
/* Search for the given field in either the given type or one of its
base classes. Return 1 if found, 0 if not. */
static int
gen_struct_ref_recursive (struct expression *exp, struct agent_expr *ax,
struct axs_value *value,
char *field, int offset, struct type *type)
{
int i, rslt;
int nbases = TYPE_N_BASECLASSES (type);
CHECK_TYPEDEF (type);
for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
{
char *this_name = TYPE_FIELD_NAME (type, i);
if (this_name)
{
if (strcmp (field, this_name) == 0)
{
/* Note that bytecodes for the struct's base (aka
"this") will have been generated already, which will
be unnecessary but not harmful if the static field is
being handled as a global. */
if (field_is_static (&TYPE_FIELD (type, i)))
{
gen_static_field (exp->gdbarch, ax, value, type, i);
if (value->optimized_out)
error (_("static field `%s' has been optimized out, cannot use"),
field);
return 1;
}
gen_primitive_field (exp, ax, value, offset, i, type);
return 1;
}
#if 0 /* is this right? */
if (this_name[0] == '\0')
internal_error (__FILE__, __LINE__,
_("find_field: anonymous unions not supported"));
#endif
}
}
/* Now scan through base classes recursively. */
for (i = 0; i < nbases; i++)
{
struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
rslt = gen_struct_ref_recursive (exp, ax, value, field,
offset + TYPE_BASECLASS_BITPOS (type, i) / TARGET_CHAR_BIT,
basetype);
if (rslt)
return 1;
}
/* Not found anywhere, flag so caller can complain. */
return 0;
}
/* Generate code to reference the member named FIELD of a structure or
union. The top of the stack, as described by VALUE, should have
type (pointer to a)* struct/union. OPERATOR_NAME is the name of
the operator being compiled, and OPERAND_NAME is the kind of thing
it operates on; we use them in error messages. */
static void
gen_struct_ref (struct expression *exp, struct agent_expr *ax,
struct axs_value *value, char *field,
2000-07-30 01:48:28 +00:00
char *operator_name, char *operand_name)
{
struct type *type;
int found;
/* Follow pointers until we reach a non-pointer. These aren't the C
semantics, but they're what the normal GDB evaluator does, so we
should at least be consistent. */
while (pointer_type (value->type))
{
require_rvalue (ax, value);
gen_deref (ax, value);
}
type = check_typedef (value->type);
/* This must yield a structure or a union. */
if (TYPE_CODE (type) != TYPE_CODE_STRUCT
&& TYPE_CODE (type) != TYPE_CODE_UNION)
error (_("The left operand of `%s' is not a %s."),
operator_name, operand_name);
/* And it must be in memory; we don't deal with structure rvalues,
or structures living in registers. */
if (value->kind != axs_lvalue_memory)
error (_("Structure does not live in memory."));
/* Search through fields and base classes recursively. */
found = gen_struct_ref_recursive (exp, ax, value, field, 0, type);
if (!found)
error (_("Couldn't find member named `%s' in struct/union/class `%s'"),
field, TYPE_TAG_NAME (type));
}
1999-07-07 20:19:36 +00:00
static int
gen_namespace_elt (struct expression *exp,
struct agent_expr *ax, struct axs_value *value,
const struct type *curtype, char *name);
static int
gen_maybe_namespace_elt (struct expression *exp,
struct agent_expr *ax, struct axs_value *value,
const struct type *curtype, char *name);
static void
gen_static_field (struct gdbarch *gdbarch,
struct agent_expr *ax, struct axs_value *value,
struct type *type, int fieldno)
{
if (TYPE_FIELD_LOC_KIND (type, fieldno) == FIELD_LOC_KIND_PHYSADDR)
{
ax_const_l (ax, TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
value->kind = axs_lvalue_memory;
value->type = TYPE_FIELD_TYPE (type, fieldno);
value->optimized_out = 0;
}
else
{
char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
if (sym)
{
gen_var_ref (gdbarch, ax, value, sym);
/* Don't error if the value was optimized out, we may be
scanning all static fields and just want to pass over this
and continue with the rest. */
}
else
{
/* Silently assume this was optimized out; class printing
will let the user know why the data is missing. */
value->optimized_out = 1;
}
}
}
static int
gen_struct_elt_for_reference (struct expression *exp,
struct agent_expr *ax, struct axs_value *value,
struct type *type, char *fieldname)
{
struct type *t = type;
int i;
if (TYPE_CODE (t) != TYPE_CODE_STRUCT
&& TYPE_CODE (t) != TYPE_CODE_UNION)
internal_error (__FILE__, __LINE__,
_("non-aggregate type to gen_struct_elt_for_reference"));
for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
{
char *t_field_name = TYPE_FIELD_NAME (t, i);
if (t_field_name && strcmp (t_field_name, fieldname) == 0)
{
if (field_is_static (&TYPE_FIELD (t, i)))
{
gen_static_field (exp->gdbarch, ax, value, t, i);
if (value->optimized_out)
error (_("static field `%s' has been optimized out, cannot use"),
fieldname);
return 1;
}
if (TYPE_FIELD_PACKED (t, i))
error (_("pointers to bitfield members not allowed"));
/* FIXME we need a way to do "want_address" equivalent */
error (_("Cannot reference non-static field \"%s\""), fieldname);
}
}
/* FIXME add other scoped-reference cases here */
/* Do a last-ditch lookup. */
return gen_maybe_namespace_elt (exp, ax, value, type, fieldname);
}
/* C++: Return the member NAME of the namespace given by the type
CURTYPE. */
static int
gen_namespace_elt (struct expression *exp,
struct agent_expr *ax, struct axs_value *value,
const struct type *curtype, char *name)
{
int found = gen_maybe_namespace_elt (exp, ax, value, curtype, name);
if (!found)
error (_("No symbol \"%s\" in namespace \"%s\"."),
name, TYPE_TAG_NAME (curtype));
return found;
}
/* A helper function used by value_namespace_elt and
value_struct_elt_for_reference. It looks up NAME inside the
context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
is a class and NAME refers to a type in CURTYPE itself (as opposed
to, say, some base class of CURTYPE). */
static int
gen_maybe_namespace_elt (struct expression *exp,
struct agent_expr *ax, struct axs_value *value,
const struct type *curtype, char *name)
{
const char *namespace_name = TYPE_TAG_NAME (curtype);
struct symbol *sym;
sym = cp_lookup_symbol_namespace (namespace_name, name,
block_for_pc (ax->scope),
2010-03-16 00:52:54 +00:00
VAR_DOMAIN);
if (sym == NULL)
return 0;
gen_var_ref (exp->gdbarch, ax, value, sym);
if (value->optimized_out)
error (_("`%s' has been optimized out, cannot use"),
SYMBOL_PRINT_NAME (sym));
return 1;
}
static int
gen_aggregate_elt_ref (struct expression *exp,
struct agent_expr *ax, struct axs_value *value,
struct type *type, char *field,
char *operator_name, char *operand_name)
{
switch (TYPE_CODE (type))
{
case TYPE_CODE_STRUCT:
case TYPE_CODE_UNION:
return gen_struct_elt_for_reference (exp, ax, value, type, field);
break;
case TYPE_CODE_NAMESPACE:
return gen_namespace_elt (exp, ax, value, type, field);
break;
default:
internal_error (__FILE__, __LINE__,
_("non-aggregate type in gen_aggregate_elt_ref"));
}
return 0;
}
/* Generate code for GDB's magical `repeat' operator.
LVALUE @ INT creates an array INT elements long, and whose elements
have the same type as LVALUE, located in memory so that LVALUE is
its first element. For example, argv[0]@argc gives you the array
of command-line arguments.
Unfortunately, because we have to know the types before we actually
have a value for the expression, we can't implement this perfectly
without changing the type system, having values that occupy two
stack slots, doing weird things with sizeof, etc. So we require
the right operand to be a constant expression. */
static void
gen_repeat (struct expression *exp, union exp_element **pc,
struct agent_expr *ax, struct axs_value *value)
{
struct axs_value value1;
/* We don't want to turn this into an rvalue, so no conversions
here. */
gen_expr (exp, pc, ax, &value1);
if (value1.kind != axs_lvalue_memory)
error (_("Left operand of `@' must be an object in memory."));
/* Evaluate the length; it had better be a constant. */
{
struct value *v = const_expr (pc);
int length;
1999-07-07 20:19:36 +00:00
if (!v)
error (_("Right operand of `@' must be a constant, in agent expressions."));
if (TYPE_CODE (value_type (v)) != TYPE_CODE_INT)
error (_("Right operand of `@' must be an integer."));
length = value_as_long (v);
if (length <= 0)
error (_("Right operand of `@' must be positive."));
/* The top of the stack is already the address of the object, so
all we need to do is frob the type of the lvalue. */
{
/* FIXME-type-allocation: need a way to free this type when we are
1999-07-07 20:19:36 +00:00
done with it. */
struct type *array
= lookup_array_range_type (value1.type, 0, length - 1);
value->kind = axs_lvalue_memory;
value->type = array;
}
}
}
/* Emit code for the `sizeof' operator.
*PC should point at the start of the operand expression; we advance it
to the first instruction after the operand. */
static void
gen_sizeof (struct expression *exp, union exp_element **pc,
struct agent_expr *ax, struct axs_value *value,
struct type *size_type)
{
/* We don't care about the value of the operand expression; we only
care about its type. However, in the current arrangement, the
only way to find an expression's type is to generate code for it.
So we generate code for the operand, and then throw it away,
replacing it with code that simply pushes its size. */
int start = ax->len;
gen_expr (exp, pc, ax, value);
/* Throw away the code we just generated. */
ax->len = start;
1999-07-07 20:19:36 +00:00
ax_const_l (ax, TYPE_LENGTH (value->type));
value->kind = axs_rvalue;
value->type = size_type;
}
1999-07-07 20:19:36 +00:00
/* Generating bytecode from GDB expressions: general recursive thingy */
/* XXX: i18n */
/* A gen_expr function written by a Gen-X'er guy.
Append code for the subexpression of EXPR starting at *POS_P to AX. */
static void
gen_expr (struct expression *exp, union exp_element **pc,
struct agent_expr *ax, struct axs_value *value)
{
/* Used to hold the descriptions of operand expressions. */
struct axs_value value1, value2, value3;
enum exp_opcode op = (*pc)[0].opcode, op2;
int if1, go1, if2, go2, end;
struct type *int_type = builtin_type (exp->gdbarch)->builtin_int;
/* If we're looking at a constant expression, just push its value. */
{
struct value *v = maybe_const_expr (pc);
1999-07-07 20:19:36 +00:00
if (v)
{
ax_const_l (ax, value_as_long (v));
value->kind = axs_rvalue;
value->type = check_typedef (value_type (v));
return;
}
}
/* Otherwise, go ahead and generate code for it. */
switch (op)
{
/* Binary arithmetic operators. */
case BINOP_ADD:
case BINOP_SUB:
case BINOP_MUL:
case BINOP_DIV:
case BINOP_REM:
case BINOP_LSH:
case BINOP_RSH:
case BINOP_SUBSCRIPT:
case BINOP_BITWISE_AND:
case BINOP_BITWISE_IOR:
case BINOP_BITWISE_XOR:
case BINOP_EQUAL:
case BINOP_NOTEQUAL:
case BINOP_LESS:
case BINOP_GTR:
case BINOP_LEQ:
case BINOP_GEQ:
(*pc)++;
gen_expr (exp, pc, ax, &value1);
gen_usual_unary (exp, ax, &value1);
gen_expr_binop_rest (exp, op, pc, ax, value, &value1, &value2);
break;
case BINOP_LOGICAL_AND:
(*pc)++;
/* Generate the obvious sequence of tests and jumps. */
gen_expr (exp, pc, ax, &value1);
gen_usual_unary (exp, ax, &value1);
if1 = ax_goto (ax, aop_if_goto);
go1 = ax_goto (ax, aop_goto);
ax_label (ax, if1, ax->len);
gen_expr (exp, pc, ax, &value2);
gen_usual_unary (exp, ax, &value2);
if2 = ax_goto (ax, aop_if_goto);
go2 = ax_goto (ax, aop_goto);
ax_label (ax, if2, ax->len);
ax_const_l (ax, 1);
end = ax_goto (ax, aop_goto);
ax_label (ax, go1, ax->len);
ax_label (ax, go2, ax->len);
ax_const_l (ax, 0);
ax_label (ax, end, ax->len);
value->kind = axs_rvalue;
value->type = int_type;
break;
case BINOP_LOGICAL_OR:
(*pc)++;
/* Generate the obvious sequence of tests and jumps. */
gen_expr (exp, pc, ax, &value1);
gen_usual_unary (exp, ax, &value1);
if1 = ax_goto (ax, aop_if_goto);
gen_expr (exp, pc, ax, &value2);
gen_usual_unary (exp, ax, &value2);
if2 = ax_goto (ax, aop_if_goto);
ax_const_l (ax, 0);
end = ax_goto (ax, aop_goto);
ax_label (ax, if1, ax->len);
ax_label (ax, if2, ax->len);
ax_const_l (ax, 1);
ax_label (ax, end, ax->len);
value->kind = axs_rvalue;
value->type = int_type;
break;
case TERNOP_COND:
(*pc)++;
gen_expr (exp, pc, ax, &value1);
gen_usual_unary (exp, ax, &value1);
/* For (A ? B : C), it's easiest to generate subexpression
bytecodes in order, but if_goto jumps on true, so we invert
the sense of A. Then we can do B by dropping through, and
jump to do C. */
gen_logical_not (ax, &value1, int_type);
if1 = ax_goto (ax, aop_if_goto);
gen_expr (exp, pc, ax, &value2);
gen_usual_unary (exp, ax, &value2);
end = ax_goto (ax, aop_goto);
ax_label (ax, if1, ax->len);
gen_expr (exp, pc, ax, &value3);
gen_usual_unary (exp, ax, &value3);
ax_label (ax, end, ax->len);
/* This is arbitary - what if B and C are incompatible types? */
value->type = value2.type;
value->kind = value2.kind;
break;
case BINOP_ASSIGN:
(*pc)++;
if ((*pc)[0].opcode == OP_INTERNALVAR)
{
char *name = internalvar_name ((*pc)[1].internalvar);
struct trace_state_variable *tsv;
(*pc) += 3;
gen_expr (exp, pc, ax, value);
tsv = find_trace_state_variable (name);
if (tsv)
{
ax_tsv (ax, aop_setv, tsv->number);
if (trace_kludge)
ax_tsv (ax, aop_tracev, tsv->number);
}
else
error (_("$%s is not a trace state variable, may not assign to it"), name);
}
else
error (_("May only assign to trace state variables"));
break;
case BINOP_ASSIGN_MODIFY:
(*pc)++;
op2 = (*pc)[0].opcode;
(*pc)++;
(*pc)++;
if ((*pc)[0].opcode == OP_INTERNALVAR)
{
char *name = internalvar_name ((*pc)[1].internalvar);
struct trace_state_variable *tsv;
(*pc) += 3;
tsv = find_trace_state_variable (name);
if (tsv)
{
/* The tsv will be the left half of the binary operation. */
ax_tsv (ax, aop_getv, tsv->number);
if (trace_kludge)
ax_tsv (ax, aop_tracev, tsv->number);
/* Trace state variables are always 64-bit integers. */
value1.kind = axs_rvalue;
value1.type = builtin_type (exp->gdbarch)->builtin_long_long;
/* Now do right half of expression. */
gen_expr_binop_rest (exp, op2, pc, ax, value, &value1, &value2);
/* We have a result of the binary op, set the tsv. */
ax_tsv (ax, aop_setv, tsv->number);
if (trace_kludge)
ax_tsv (ax, aop_tracev, tsv->number);
}
else
error (_("$%s is not a trace state variable, may not assign to it"), name);
}
else
error (_("May only assign to trace state variables"));
break;
/* Note that we need to be a little subtle about generating code
1999-07-07 20:19:36 +00:00
for comma. In C, we can do some optimizations here because
we know the left operand is only being evaluated for effect.
However, if the tracing kludge is in effect, then we always
need to evaluate the left hand side fully, so that all the
variables it mentions get traced. */
case BINOP_COMMA:
(*pc)++;
gen_expr (exp, pc, ax, &value1);
/* Don't just dispose of the left operand. We might be tracing,
1999-07-07 20:19:36 +00:00
in which case we want to emit code to trace it if it's an
lvalue. */
gen_traced_pop (exp->gdbarch, ax, &value1);
gen_expr (exp, pc, ax, value);
/* It's the consumer's responsibility to trace the right operand. */
break;
1999-07-07 20:19:36 +00:00
case OP_LONG: /* some integer constant */
{
struct type *type = (*pc)[1].type;
LONGEST k = (*pc)[2].longconst;
(*pc) += 4;
gen_int_literal (ax, value, k, type);
}
1999-07-07 20:19:36 +00:00
break;
case OP_VAR_VALUE:
gen_var_ref (exp->gdbarch, ax, value, (*pc)[2].symbol);
if (value->optimized_out)
error (_("`%s' has been optimized out, cannot use"),
SYMBOL_PRINT_NAME ((*pc)[2].symbol));
(*pc) += 4;
break;
case OP_REGISTER:
{
const char *name = &(*pc)[2].string;
int reg;
(*pc) += 4 + BYTES_TO_EXP_ELEM ((*pc)[1].longconst + 1);
reg = user_reg_map_name_to_regnum (exp->gdbarch, name, strlen (name));
if (reg == -1)
internal_error (__FILE__, __LINE__,
_("Register $%s not available"), name);
if (reg >= gdbarch_num_regs (exp->gdbarch))
error (_("'%s' is a pseudo-register; "
"GDB cannot yet trace pseudoregister contents."),
name);
value->kind = axs_lvalue_register;
value->u.reg = reg;
value->type = register_type (exp->gdbarch, reg);
}
1999-07-07 20:19:36 +00:00
break;
case OP_INTERNALVAR:
{
const char *name = internalvar_name ((*pc)[1].internalvar);
struct trace_state_variable *tsv;
(*pc) += 3;
tsv = find_trace_state_variable (name);
if (tsv)
{
ax_tsv (ax, aop_getv, tsv->number);
if (trace_kludge)
ax_tsv (ax, aop_tracev, tsv->number);
/* Trace state variables are always 64-bit integers. */
value->kind = axs_rvalue;
value->type = builtin_type (exp->gdbarch)->builtin_long_long;
}
else
error (_("$%s is not a trace state variable; GDB agent expressions cannot use convenience variables."), name);
}
break;
1999-07-07 20:19:36 +00:00
/* Weirdo operator: see comments for gen_repeat for details. */
case BINOP_REPEAT:
/* Note that gen_repeat handles its own argument evaluation. */
(*pc)++;
gen_repeat (exp, pc, ax, value);
break;
case UNOP_CAST:
{
struct type *type = (*pc)[1].type;
(*pc) += 3;
gen_expr (exp, pc, ax, value);
gen_cast (ax, value, type);
}
1999-07-07 20:19:36 +00:00
break;
case UNOP_MEMVAL:
{
struct type *type = check_typedef ((*pc)[1].type);
(*pc) += 3;
gen_expr (exp, pc, ax, value);
/* I'm not sure I understand UNOP_MEMVAL entirely. I think
it's just a hack for dealing with minsyms; you take some
integer constant, pretend it's the address of an lvalue of
the given type, and dereference it. */
if (value->kind != axs_rvalue)
/* This would be weird. */
internal_error (__FILE__, __LINE__,
_("gen_expr: OP_MEMVAL operand isn't an rvalue???"));
value->type = type;
value->kind = axs_lvalue_memory;
}
1999-07-07 20:19:36 +00:00
break;
case UNOP_PLUS:
(*pc)++;
/* + FOO is equivalent to 0 + FOO, which can be optimized. */
gen_expr (exp, pc, ax, value);
gen_usual_unary (exp, ax, value);
break;
case UNOP_NEG:
(*pc)++;
/* -FOO is equivalent to 0 - FOO. */
gen_int_literal (ax, &value1, 0,
builtin_type (exp->gdbarch)->builtin_int);
gen_usual_unary (exp, ax, &value1); /* shouldn't do much */
gen_expr (exp, pc, ax, &value2);
gen_usual_unary (exp, ax, &value2);
gen_usual_arithmetic (exp, ax, &value1, &value2);
gen_binop (ax, value, &value1, &value2, aop_sub, aop_sub, 1, "negation");
break;
case UNOP_LOGICAL_NOT:
(*pc)++;
gen_expr (exp, pc, ax, value);
gen_usual_unary (exp, ax, value);
gen_logical_not (ax, value, int_type);
break;
case UNOP_COMPLEMENT:
(*pc)++;
gen_expr (exp, pc, ax, value);
gen_usual_unary (exp, ax, value);
gen_integral_promotions (exp, ax, value);
gen_complement (ax, value);
break;
case UNOP_IND:
(*pc)++;
gen_expr (exp, pc, ax, value);
gen_usual_unary (exp, ax, value);
if (!pointer_type (value->type))
error (_("Argument of unary `*' is not a pointer."));
gen_deref (ax, value);
break;
case UNOP_ADDR:
(*pc)++;
gen_expr (exp, pc, ax, value);
gen_address_of (ax, value);
break;
case UNOP_SIZEOF:
(*pc)++;
/* Notice that gen_sizeof handles its own operand, unlike most
1999-07-07 20:19:36 +00:00
of the other unary operator functions. This is because we
have to throw away the code we generate. */
gen_sizeof (exp, pc, ax, value,
builtin_type (exp->gdbarch)->builtin_int);
break;
case STRUCTOP_STRUCT:
case STRUCTOP_PTR:
{
int length = (*pc)[1].longconst;
char *name = &(*pc)[2].string;
(*pc) += 4 + BYTES_TO_EXP_ELEM (length + 1);
gen_expr (exp, pc, ax, value);
if (op == STRUCTOP_STRUCT)
gen_struct_ref (exp, ax, value, name, ".", "structure or union");
else if (op == STRUCTOP_PTR)
gen_struct_ref (exp, ax, value, name, "->",
"pointer to a structure or union");
else
/* If this `if' chain doesn't handle it, then the case list
1999-07-07 20:19:36 +00:00
shouldn't mention it, and we shouldn't be here. */
internal_error (__FILE__, __LINE__,
_("gen_expr: unhandled struct case"));
}
1999-07-07 20:19:36 +00:00
break;
case OP_THIS:
{
char *this_name;
struct symbol *func, *sym;
struct block *b;
func = block_linkage_function (block_for_pc (ax->scope));
this_name = language_def (SYMBOL_LANGUAGE (func))->la_name_of_this;
b = SYMBOL_BLOCK_VALUE (func);
/* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
symbol instead of the LOC_ARG one (if both exist). */
dwarf2_physname patchset: Based on work from Daniel Jacobowitz <dan@codesourcery.com> * c-typeprint.c (cp_type_print_method_args): For non-static methods, print out const or volatile qualifiers, too. (c_type_print_args): Add parameters show_artificial and language. Skip artificial parameters when requested. Use the appropriate language printer. (c_type_print_varspec): Tell c_type_print_args to skip artificial parameters and pass language_c. * dwarf2read.c (die_list): New file global. (struct partial_die_info): Update comments for name field. (pdi_needs_namespace): Renamed to ... (die_needs_namespace): ... this. Rewrite. (dwarf2_linkage_name): Remove. (add_partial_symbol): Do not predicate the call to partial_die_full_name based on pdi_needs_namespace. Remove call to cp_check_possible_namespace_symbols and associated outdated comments. (guess_structure_name): Do not inspect child subprogram DIEs. (dwarf2_fullname): Update comments. Use die_needs_namespace to assist in computing the name. (read_func_scope): Use dwarf2_name to get the DIE's name. Use dwarf2_physname to get the "linkage name" of the DIE. (dwarf2_add_member_field): Use dwarf2_physname instead of dwarf2_linkage_name. (read_structure_type): For structs and classes, set TYPE_NAME, too. (determine_class): Remove. (read_partial_die): Ignore DW_AT_MIPS_linkage_name for all languages except Ada. (new_symbol): Unconditionally call dwarf2_name. Compute the "linkage name" using dwarf2_physname. Use dwarf2_name instead of dwarf2_full_name for enumerator DIEs. When determining to scan for anonymous C++ namespaces, ignore the linkage name. (dwarf2_physname): New function. (dwarf2_full_name): Move content to new function and call that. (dwarf2_compute_name): "New" function. (_initialize_dwarf2_read): Initialize die_list. * gnu-v3-eabi.c (gnu_v3_find_method_in): Remove unused variable physname. (gnu_v3_print_method_ptr): Use the physname for virtual methods without a demangled name. Print out type information for non-virtual methods. * linespec.c (decode_line_1): Force ANY string using "::" (or "." for java) to use decode_compound, and clean up any stray quoting. If we found a file symtab, re-evaluate whether the remainder is_quoted. (decode_compound): Stop consuming at an open parenthesis. Keep template parameters. Keep any overload information. Keep keywords like "const". Remove paren_pointer. Move is_quoted check from set_flags to here. Remove #if 0 code from 2000. Ten years is long enough. (find_method): Before comparing symbol names, canonicalize the string from the user. If a specific overload is requested, find it. Otherwise throw an error. (find_method_overload_end): New function. (set_flags): Remove. (decode_compound): Assume that parentheses are matched. It's a lot easier. * symtab.c (symbol_find_demangled_name): Add DMGL_VERBOSE flag to cplus_demangle. * linespec.c (decode_line_1): Keep important keywords like "const" and "volatile". * symtab.h (SYMBOL_CPLUS_DEMANGLED_NAME): Remove. * typeprint.h (c_type_print_args): Add declaration. * ui-file.c (do_ui_file_obsavestring): New function. (ui_file_obsavestring): New function. * ui-file.h (ui_file_obsavestring): Add declaration. * valops.c (find_overload_match): Resolve the object to a non-pointer type. If the object is a data member, search the object for the member and return with staticp set. Use SYMBOL_NATURAL_NAME instead of SYMBOL_CPLUS_DEMANGLED_NAME. Do not attempt to extract a function name from non-function types. If the extracted function name and the original name are the same, we don't have a C++ method. From Jan Kratochvil <jan.kratochvil@redhat.com>: * dwarf2read.c (new_symbol <DW_TAG_enumerator>): Call dwarf2_full_name. * ada-lang.c (ada_lookup_symbol): Remove linkage_name parameters and arguments from symbol lookups. * ax-gdb.c (gen_expr): Likewise. * cp-namespace.c (cp_lookup_symbol_nonlocal, lookup_namespace_scope, cp_lookup_symbol_namespace, lookup_symbol_file, lookup_nested_type, lookup_possible_namespace_symbol): Likewise. * cp-support.c (read_in_psymtabs): Likewise. * cp-support.h (cp_lookup_symbol_nonlocal): Likewise. * language.h (la_lookup_symbol_nonlocal): Likewise. * scm-valprint.c (scm_inferior_print): Likewise. * solib-darwin.c (darwin_relocate_section_addresses): Likewise. * solib-svr.c (elf_lookup_lib): Likewise. * solib.c (show_auto_solib_add): Likewise. * solist.h (lookup_lib_global, solib_global_lookup): Likewise. * symmisc.c (maintenance_check_symtabs): Likewise. * symtab.c (lookup_symbol_in_language, lookup_symbol_aux, lookup_symbol_aux_local, lookup_symbol_aux_block, lookup_symbol_from_objfile, lookup_symbol_aux_symtabs, lookup_symbol_aux_psymtabs,basic_lookup_symbol_nonlocal, lookup_symbol_static, lookup_symbol_global, symbol_matches_domain, basic_lookup_transparent_type, find_main_psymtab, lookup_block_symbol): Likewise. * symtab.h (basic_lookp_symbol_nonlocal, lookup_symbol_static, lookup_symbol_global, lookup_symbol_aux_block, lookup_symbol_partial_symbol, lookup_block_symbol, lookup_global_symbol, value_maybe_namespace_elt): Likewise.
2010-03-09 18:09:08 +00:00
sym = lookup_block_symbol (b, this_name, VAR_DOMAIN);
if (!sym)
error (_("no `%s' found"), this_name);
gen_var_ref (exp->gdbarch, ax, value, sym);
if (value->optimized_out)
error (_("`%s' has been optimized out, cannot use"),
SYMBOL_PRINT_NAME (sym));
(*pc) += 2;
}
break;
case OP_SCOPE:
{
struct type *type = (*pc)[1].type;
int length = longest_to_int ((*pc)[2].longconst);
char *name = &(*pc)[3].string;
int found;
found = gen_aggregate_elt_ref (exp, ax, value, type, name,
"?", "??");
if (!found)
error (_("There is no field named %s"), name);
(*pc) += 5 + BYTES_TO_EXP_ELEM (length + 1);
}
break;
case OP_TYPE:
error (_("Attempt to use a type name as an expression."));
default:
error (_("Unsupported operator %s (%d) in expression."),
op_string (op), op);
}
}
/* This handles the middle-to-right-side of code generation for binary
expressions, which is shared between regular binary operations and
assign-modify (+= and friends) expressions. */
static void
gen_expr_binop_rest (struct expression *exp,
enum exp_opcode op, union exp_element **pc,
struct agent_expr *ax, struct axs_value *value,
struct axs_value *value1, struct axs_value *value2)
{
struct type *int_type = builtin_type (exp->gdbarch)->builtin_int;
gen_expr (exp, pc, ax, value2);
gen_usual_unary (exp, ax, value2);
gen_usual_arithmetic (exp, ax, value1, value2);
switch (op)
{
case BINOP_ADD:
if (TYPE_CODE (value1->type) == TYPE_CODE_INT
&& pointer_type (value2->type))
{
/* Swap the values and proceed normally. */
ax_simple (ax, aop_swap);
gen_ptradd (ax, value, value2, value1);
}
else if (pointer_type (value1->type)
&& TYPE_CODE (value2->type) == TYPE_CODE_INT)
gen_ptradd (ax, value, value1, value2);
else
gen_binop (ax, value, value1, value2,
aop_add, aop_add, 1, "addition");
break;
case BINOP_SUB:
if (pointer_type (value1->type)
&& TYPE_CODE (value2->type) == TYPE_CODE_INT)
gen_ptrsub (ax,value, value1, value2);
else if (pointer_type (value1->type)
&& pointer_type (value2->type))
/* FIXME --- result type should be ptrdiff_t */
gen_ptrdiff (ax, value, value1, value2,
builtin_type (exp->gdbarch)->builtin_long);
else
gen_binop (ax, value, value1, value2,
aop_sub, aop_sub, 1, "subtraction");
break;
case BINOP_MUL:
gen_binop (ax, value, value1, value2,
aop_mul, aop_mul, 1, "multiplication");
break;
case BINOP_DIV:
gen_binop (ax, value, value1, value2,
aop_div_signed, aop_div_unsigned, 1, "division");
break;
case BINOP_REM:
gen_binop (ax, value, value1, value2,
aop_rem_signed, aop_rem_unsigned, 1, "remainder");
break;
case BINOP_LSH:
gen_binop (ax, value, value1, value2,
aop_lsh, aop_lsh, 1, "left shift");
break;
case BINOP_RSH:
gen_binop (ax, value, value1, value2,
aop_rsh_signed, aop_rsh_unsigned, 1, "right shift");
break;
case BINOP_SUBSCRIPT:
{
struct type *type;
if (binop_types_user_defined_p (op, value1->type, value2->type))
{
error (_("\
cannot subscript requested type: cannot call user defined functions"));
}
else
{
/* If the user attempts to subscript something that is not
an array or pointer type (like a plain int variable for
example), then report this as an error. */
type = check_typedef (value1->type);
if (TYPE_CODE (type) != TYPE_CODE_ARRAY
&& TYPE_CODE (type) != TYPE_CODE_PTR)
{
if (TYPE_NAME (type))
error (_("cannot subscript something of type `%s'"),
TYPE_NAME (type));
else
error (_("cannot subscript requested type"));
}
}
if (!is_integral_type (value2->type))
error (_("Argument to arithmetic operation not a number or boolean."));
gen_ptradd (ax, value, value1, value2);
gen_deref (ax, value);
break;
}
case BINOP_BITWISE_AND:
gen_binop (ax, value, value1, value2,
aop_bit_and, aop_bit_and, 0, "bitwise and");
break;
case BINOP_BITWISE_IOR:
gen_binop (ax, value, value1, value2,
aop_bit_or, aop_bit_or, 0, "bitwise or");
break;
case BINOP_BITWISE_XOR:
gen_binop (ax, value, value1, value2,
aop_bit_xor, aop_bit_xor, 0, "bitwise exclusive-or");
break;
case BINOP_EQUAL:
gen_equal (ax, value, value1, value2, int_type);
break;
case BINOP_NOTEQUAL:
gen_equal (ax, value, value1, value2, int_type);
gen_logical_not (ax, value, int_type);
break;
case BINOP_LESS:
gen_less (ax, value, value1, value2, int_type);
break;
case BINOP_GTR:
ax_simple (ax, aop_swap);
gen_less (ax, value, value1, value2, int_type);
break;
case BINOP_LEQ:
ax_simple (ax, aop_swap);
gen_less (ax, value, value1, value2, int_type);
gen_logical_not (ax, value, int_type);
break;
case BINOP_GEQ:
gen_less (ax, value, value1, value2, int_type);
gen_logical_not (ax, value, int_type);
break;
default:
/* We should only list operators in the outer case statement
that we actually handle in the inner case statement. */
internal_error (__FILE__, __LINE__,
_("gen_expr: op case sets don't match"));
}
}
1999-07-07 20:19:36 +00:00
/* Given a single variable and a scope, generate bytecodes to trace
its value. This is for use in situations where we have only a
variable's name, and no parsed expression; for instance, when the
name comes from a list of local variables of a function. */
struct agent_expr *
gen_trace_for_var (CORE_ADDR scope, struct gdbarch *gdbarch,
struct symbol *var)
{
struct cleanup *old_chain = 0;
struct agent_expr *ax = new_agent_expr (gdbarch, scope);
struct axs_value value;
old_chain = make_cleanup_free_agent_expr (ax);
trace_kludge = 1;
gen_var_ref (gdbarch, ax, &value, var);
/* If there is no actual variable to trace, flag it by returning
an empty agent expression. */
if (value.optimized_out)
{
do_cleanups (old_chain);
return NULL;
}
/* Make sure we record the final object, and get rid of it. */
gen_traced_pop (gdbarch, ax, &value);
/* Oh, and terminate. */
ax_simple (ax, aop_end);
/* We have successfully built the agent expr, so cancel the cleanup
request. If we add more cleanups that we always want done, this
will have to get more complicated. */
discard_cleanups (old_chain);
return ax;
}
1999-07-07 20:19:36 +00:00
/* Generating bytecode from GDB expressions: driver */
/* Given a GDB expression EXPR, return bytecode to trace its value.
The result will use the `trace' and `trace_quick' bytecodes to
record the value of all memory touched by the expression. The
caller can then use the ax_reqs function to discover which
registers it relies upon. */
struct agent_expr *
2000-07-30 01:48:28 +00:00
gen_trace_for_expr (CORE_ADDR scope, struct expression *expr)
{
struct cleanup *old_chain = 0;
struct agent_expr *ax = new_agent_expr (expr->gdbarch, scope);
union exp_element *pc;
struct axs_value value;
2000-05-15 06:15:27 +00:00
old_chain = make_cleanup_free_agent_expr (ax);
pc = expr->elts;
trace_kludge = 1;
value.optimized_out = 0;
gen_expr (expr, &pc, ax, &value);
/* Make sure we record the final object, and get rid of it. */
gen_traced_pop (expr->gdbarch, ax, &value);
/* Oh, and terminate. */
ax_simple (ax, aop_end);
/* We have successfully built the agent expr, so cancel the cleanup
request. If we add more cleanups that we always want done, this
will have to get more complicated. */
discard_cleanups (old_chain);
return ax;
}
/* Given a GDB expression EXPR, return a bytecode sequence that will
evaluate and return a result. The bytecodes will do a direct
evaluation, using the current data on the target, rather than
recording blocks of memory and registers for later use, as
gen_trace_for_expr does. The generated bytecode sequence leaves
the result of expression evaluation on the top of the stack. */
struct agent_expr *
gen_eval_for_expr (CORE_ADDR scope, struct expression *expr)
{
struct cleanup *old_chain = 0;
struct agent_expr *ax = new_agent_expr (expr->gdbarch, scope);
union exp_element *pc;
struct axs_value value;
old_chain = make_cleanup_free_agent_expr (ax);
pc = expr->elts;
trace_kludge = 0;
value.optimized_out = 0;
gen_expr (expr, &pc, ax, &value);
require_rvalue (ax, &value);
/* Oh, and terminate. */
ax_simple (ax, aop_end);
/* We have successfully built the agent expr, so cancel the cleanup
request. If we add more cleanups that we always want done, this
will have to get more complicated. */
discard_cleanups (old_chain);
return ax;
}
static void
2000-07-30 01:48:28 +00:00
agent_command (char *exp, int from_tty)
{
struct cleanup *old_chain = 0;
struct expression *expr;
struct agent_expr *agent;
1999-09-28 21:55:21 +00:00
struct frame_info *fi = get_current_frame (); /* need current scope */
/* We don't deal with overlay debugging at the moment. We need to
think more carefully about this. If you copy this code into
another command, change the error message; the user shouldn't
have to know anything about agent expressions. */
if (overlay_debugging)
error (_("GDB can't do agent expression translation with overlays."));
if (exp == 0)
error_no_arg (_("expression to translate"));
1999-07-07 20:19:36 +00:00
expr = parse_expression (exp);
old_chain = make_cleanup (free_current_contents, &expr);
agent = gen_trace_for_expr (get_frame_pc (fi), expr);
2000-05-15 06:15:27 +00:00
make_cleanup_free_agent_expr (agent);
ax_reqs (agent);
ax_print (gdb_stdout, agent);
1999-06-28 16:06:02 +00:00
/* It would be nice to call ax_reqs here to gather some general info
about the expression, and then print out the result. */
do_cleanups (old_chain);
dont_repeat ();
}
/* Parse the given expression, compile it into an agent expression
that does direct evaluation, and display the resulting
expression. */
static void
agent_eval_command (char *exp, int from_tty)
{
struct cleanup *old_chain = 0;
struct expression *expr;
struct agent_expr *agent;
struct frame_info *fi = get_current_frame (); /* need current scope */
/* We don't deal with overlay debugging at the moment. We need to
think more carefully about this. If you copy this code into
another command, change the error message; the user shouldn't
have to know anything about agent expressions. */
if (overlay_debugging)
error (_("GDB can't do agent expression translation with overlays."));
if (exp == 0)
error_no_arg (_("expression to translate"));
expr = parse_expression (exp);
old_chain = make_cleanup (free_current_contents, &expr);
agent = gen_eval_for_expr (get_frame_pc (fi), expr);
make_cleanup_free_agent_expr (agent);
ax_reqs (agent);
ax_print (gdb_stdout, agent);
/* It would be nice to call ax_reqs here to gather some general info
about the expression, and then print out the result. */
do_cleanups (old_chain);
dont_repeat ();
}
1999-07-07 20:19:36 +00:00
/* Initialization code. */
2000-05-28 01:12:42 +00:00
void _initialize_ax_gdb (void);
void
2000-07-30 01:48:28 +00:00
_initialize_ax_gdb (void)
{
add_cmd ("agent", class_maintenance, agent_command,
_("Translate an expression into remote agent bytecode for tracing."),
&maintenancelist);
add_cmd ("agent-eval", class_maintenance, agent_eval_command,
_("Translate an expression into remote agent bytecode for evaluation."),
&maintenancelist);
}