1993-07-08 03:08:49 +00:00
|
|
|
|
/* Target machine sub-parameters for SPARC64, for GDB, the GNU debugger.
|
1995-03-02 00:11:22 +00:00
|
|
|
|
This is included by other tm-*.h files to define SPARC64 cpu-related info.
|
1996-07-28 06:32:48 +00:00
|
|
|
|
Copyright 1994, 1995, 1996 Free Software Foundation, Inc.
|
1993-07-08 03:08:49 +00:00
|
|
|
|
This is (obviously) based on the SPARC Vn (n<9) port.
|
|
|
|
|
Contributed by Doug Evans (dje@cygnus.com).
|
|
|
|
|
|
|
|
|
|
This file is part of GDB.
|
|
|
|
|
|
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
|
|
|
(at your option) any later version.
|
|
|
|
|
|
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
|
along with this program; if not, write to the Free Software
|
1995-08-02 03:41:12 +00:00
|
|
|
|
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
1993-07-08 03:08:49 +00:00
|
|
|
|
|
1995-03-02 00:11:22 +00:00
|
|
|
|
#define GDB_TARGET_IS_SPARC64
|
1993-07-08 03:08:49 +00:00
|
|
|
|
|
1995-03-02 00:11:22 +00:00
|
|
|
|
#include "sparc/tm-sparc.h"
|
1993-07-08 03:08:49 +00:00
|
|
|
|
|
1996-08-25 07:17:22 +00:00
|
|
|
|
/* Stack must be aligned on 128-bit boundaries when synthesizing
|
|
|
|
|
function calls. */
|
1993-07-08 03:08:49 +00:00
|
|
|
|
|
|
|
|
|
#undef STACK_ALIGN
|
1996-08-25 07:17:22 +00:00
|
|
|
|
#define STACK_ALIGN(ADDR) (((ADDR) + 15 ) & -16)
|
1993-07-08 03:08:49 +00:00
|
|
|
|
|
1995-03-02 00:11:22 +00:00
|
|
|
|
/* Number of machine registers. */
|
1993-07-08 03:08:49 +00:00
|
|
|
|
|
|
|
|
|
#undef NUM_REGS
|
1995-03-02 00:11:22 +00:00
|
|
|
|
#define NUM_REGS 125
|
1993-07-08 03:08:49 +00:00
|
|
|
|
|
|
|
|
|
/* Initializer for an array of names of registers.
|
|
|
|
|
There should be NUM_REGS strings in this initializer. */
|
|
|
|
|
/* Some of these registers are only accessible from priviledged mode.
|
|
|
|
|
They are here for kernel debuggers, etc. */
|
|
|
|
|
/* FIXME: icc and xcc are currently considered separate registers.
|
|
|
|
|
This may have to change and consider them as just one (ccr).
|
1995-03-03 08:57:52 +00:00
|
|
|
|
Let's postpone this as long as we can. It's nice to be able to set
|
|
|
|
|
them individually. */
|
1993-07-08 03:08:49 +00:00
|
|
|
|
/* FIXME: fcc0-3 are currently separate, even though they are also part of
|
|
|
|
|
fsr. May have to remove them but let's postpone this as long as
|
1995-03-03 08:57:52 +00:00
|
|
|
|
possible. It's nice to be able to set them individually. */
|
1995-03-02 00:11:22 +00:00
|
|
|
|
/* FIXME: Whether to include f33, f35, etc. here is not clear.
|
|
|
|
|
There are advantages and disadvantages. */
|
1993-07-08 03:08:49 +00:00
|
|
|
|
|
|
|
|
|
#undef REGISTER_NAMES
|
|
|
|
|
#define REGISTER_NAMES \
|
|
|
|
|
{ "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7", \
|
|
|
|
|
"o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7", \
|
|
|
|
|
"l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7", \
|
|
|
|
|
"i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7", \
|
|
|
|
|
\
|
|
|
|
|
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
|
|
|
|
|
"f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
|
|
|
|
|
"f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", \
|
|
|
|
|
"f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", \
|
|
|
|
|
"f32", "f34", "f36", "f38", "f40", "f42", "f44", "f46", \
|
|
|
|
|
"f48", "f50", "f52", "f54", "f56", "f58", "f60", "f62", \
|
|
|
|
|
\
|
1995-03-03 08:57:52 +00:00
|
|
|
|
"pc", "npc", "ccr", "fsr", "fprs", "y", "asi", \
|
1995-03-02 00:11:22 +00:00
|
|
|
|
"ver", "tick", "pil", "pstate", \
|
|
|
|
|
"tstate", "tba", "tl", "tt", "tpc", "tnpc", "wstate", \
|
1993-07-08 03:08:49 +00:00
|
|
|
|
"cwp", "cansave", "canrestore", "cleanwin", "otherwin", \
|
|
|
|
|
"asr16", "asr17", "asr18", "asr19", "asr20", "asr21", \
|
|
|
|
|
"asr22", "asr23", "asr24", "asr25", "asr26", "asr27", \
|
|
|
|
|
"asr28", "asr29", "asr30", "asr31", \
|
|
|
|
|
/* These are here at the end to simplify removing them if we have to. */ \
|
|
|
|
|
"icc", "xcc", "fcc0", "fcc1", "fcc2", "fcc3" \
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Register numbers of various important registers.
|
|
|
|
|
Note that some of these values are "real" register numbers,
|
|
|
|
|
and correspond to the general registers of the machine,
|
|
|
|
|
and some are "phony" register numbers which are too large
|
|
|
|
|
to be actual register numbers as far as the user is concerned
|
|
|
|
|
but do serve to get the desired values when passed to read_register. */
|
|
|
|
|
|
|
|
|
|
#if 0 /* defined in tm-sparc.h, replicated for doc purposes */
|
|
|
|
|
#define G0_REGNUM 0 /* %g0 */
|
|
|
|
|
#define G1_REGNUM 1 /* %g1 */
|
|
|
|
|
#define O0_REGNUM 8 /* %o0 */
|
|
|
|
|
#define SP_REGNUM 14 /* Contains address of top of stack, \
|
|
|
|
|
which is also the bottom of the frame. */
|
|
|
|
|
#define RP_REGNUM 15 /* Contains return address value, *before* \
|
|
|
|
|
any windows get switched. */
|
|
|
|
|
#define O7_REGNUM 15 /* Last local reg not saved on stack frame */
|
|
|
|
|
#define L0_REGNUM 16 /* First local reg that's saved on stack frame
|
|
|
|
|
rather than in machine registers */
|
|
|
|
|
#define I0_REGNUM 24 /* %i0 */
|
|
|
|
|
#define FP_REGNUM 30 /* Contains address of executing stack frame */
|
|
|
|
|
#define I7_REGNUM 31 /* Last local reg saved on stack frame */
|
|
|
|
|
#define FP0_REGNUM 32 /* Floating point register 0 */
|
|
|
|
|
#endif
|
|
|
|
|
|
1993-07-30 18:40:05 +00:00
|
|
|
|
#define FP_MAX_REGNUM 80 /* 1 + last fp reg number */
|
|
|
|
|
|
1993-07-08 03:08:49 +00:00
|
|
|
|
/* #undef v8 misc. regs */
|
|
|
|
|
|
|
|
|
|
#undef Y_REGNUM
|
|
|
|
|
#undef PS_REGNUM
|
|
|
|
|
#undef WIM_REGNUM
|
|
|
|
|
#undef TBR_REGNUM
|
|
|
|
|
#undef PC_REGNUM
|
|
|
|
|
#undef NPC_REGNUM
|
|
|
|
|
#undef FPS_REGNUM
|
|
|
|
|
#undef CPS_REGNUM
|
|
|
|
|
|
|
|
|
|
/* v9 misc. and priv. regs */
|
|
|
|
|
|
1995-03-02 00:11:22 +00:00
|
|
|
|
#define C0_REGNUM FP_MAX_REGNUM /* Start of control registers */
|
|
|
|
|
#define PC_REGNUM (C0_REGNUM + 0) /* Current PC */
|
|
|
|
|
#define NPC_REGNUM (C0_REGNUM + 1) /* Next PC */
|
|
|
|
|
#define CCR_REGNUM (C0_REGNUM + 2) /* Condition Code Register (%xcc,%icc) */
|
|
|
|
|
#define FSR_REGNUM (C0_REGNUM + 3) /* Floating Point State */
|
|
|
|
|
#define FPRS_REGNUM (C0_REGNUM + 4) /* Floating Point Registers State */
|
|
|
|
|
#define Y_REGNUM (C0_REGNUM + 5) /* Temp register for multiplication, etc. */
|
|
|
|
|
#define ASI_REGNUM (C0_REGNUM + 6) /* Alternate Space Identifier */
|
|
|
|
|
#define VER_REGNUM (C0_REGNUM + 7) /* Version register */
|
|
|
|
|
#define TICK_REGNUM (C0_REGNUM + 8) /* Tick register */
|
|
|
|
|
#define PIL_REGNUM (C0_REGNUM + 9) /* Processor Interrupt Level */
|
|
|
|
|
#define PSTATE_REGNUM (C0_REGNUM + 10) /* Processor State */
|
|
|
|
|
#define TSTATE_REGNUM (C0_REGNUM + 11) /* Trap State */
|
|
|
|
|
#define TBA_REGNUM (C0_REGNUM + 12) /* Trap Base Address */
|
|
|
|
|
#define TL_REGNUM (C0_REGNUM + 13) /* Trap Level */
|
|
|
|
|
#define TT_REGNUM (C0_REGNUM + 14) /* Trap Type */
|
|
|
|
|
#define TPC_REGNUM (C0_REGNUM + 15) /* Trap pc */
|
|
|
|
|
#define TNPC_REGNUM (C0_REGNUM + 16) /* Trap npc */
|
|
|
|
|
#define WSTATE_REGNUM (C0_REGNUM + 17) /* Window State */
|
|
|
|
|
#define CWP_REGNUM (C0_REGNUM + 18) /* Current Window Pointer */
|
|
|
|
|
#define CANSAVE_REGNUM (C0_REGNUM + 19) /* Savable Windows */
|
|
|
|
|
#define CANRESTORE_REGNUM (C0_REGNUM + 20) /* Restorable Windows */
|
|
|
|
|
#define CLEANWIN_REGNUM (C0_REGNUM + 21) /* Clean Windows */
|
|
|
|
|
#define OTHERWIN_REGNUM (C0_REGNUM + 22) /* Other Windows */
|
|
|
|
|
#define ASR_REGNUM(n) (C0_REGNUM+(23-16)+(n)) /* Ancillary State Register
|
1993-07-08 03:08:49 +00:00
|
|
|
|
(n = 16...31) */
|
1995-03-02 00:11:22 +00:00
|
|
|
|
#define ICC_REGNUM (C0_REGNUM + 39) /* 32 bit condition codes */
|
|
|
|
|
#define XCC_REGNUM (C0_REGNUM + 40) /* 64 bit condition codes */
|
|
|
|
|
#define FCC0_REGNUM (C0_REGNUM + 41) /* fp cc reg 0 */
|
|
|
|
|
#define FCC1_REGNUM (C0_REGNUM + 42) /* fp cc reg 1 */
|
|
|
|
|
#define FCC2_REGNUM (C0_REGNUM + 43) /* fp cc reg 2 */
|
|
|
|
|
#define FCC3_REGNUM (C0_REGNUM + 44) /* fp cc reg 3 */
|
1993-07-08 03:08:49 +00:00
|
|
|
|
|
|
|
|
|
/* Total amount of space needed to store our copies of the machine's
|
|
|
|
|
register state, the array `registers'.
|
|
|
|
|
Some of the registers aren't 64 bits, but it's a lot simpler just to assume
|
|
|
|
|
they all are (since most of them are). */
|
|
|
|
|
#undef REGISTER_BYTES
|
1995-03-02 00:11:22 +00:00
|
|
|
|
#define REGISTER_BYTES (32*8+32*8+45*8)
|
1993-07-08 03:08:49 +00:00
|
|
|
|
|
|
|
|
|
/* Index within `registers' of the first byte of the space for
|
|
|
|
|
register N. */
|
|
|
|
|
#undef REGISTER_BYTE
|
|
|
|
|
#define REGISTER_BYTE(N) \
|
|
|
|
|
((N) < 32 ? (N)*8 \
|
|
|
|
|
: (N) < 64 ? 32*8 + ((N)-32)*4 \
|
1993-07-30 18:40:05 +00:00
|
|
|
|
: (N) < C0_REGNUM ? 32*8 + 32*4 + ((N)-64)*8 \
|
|
|
|
|
: 64*8 + ((N)-C0_REGNUM)*8)
|
1993-07-08 03:08:49 +00:00
|
|
|
|
|
1995-03-02 00:11:22 +00:00
|
|
|
|
/* Say how long (ordinary) registers are. This is a piece of bogosity
|
|
|
|
|
used in push_word and a few other places; REGISTER_RAW_SIZE is the
|
|
|
|
|
real way to know how big a register is. */
|
|
|
|
|
|
|
|
|
|
#undef REGISTER_SIZE
|
|
|
|
|
#define REGISTER_SIZE 8
|
|
|
|
|
|
1993-07-08 03:08:49 +00:00
|
|
|
|
/* Number of bytes of storage in the actual machine representation
|
|
|
|
|
for register N. */
|
|
|
|
|
|
|
|
|
|
#undef REGISTER_RAW_SIZE
|
1995-09-06 21:35:20 +00:00
|
|
|
|
#define REGISTER_RAW_SIZE(N) \
|
|
|
|
|
((N) < 32 ? 8 : (N) < 64 ? 4 : 8)
|
1993-07-08 03:08:49 +00:00
|
|
|
|
|
|
|
|
|
/* Number of bytes of storage in the program's representation
|
|
|
|
|
for register N. */
|
|
|
|
|
|
|
|
|
|
#undef REGISTER_VIRTUAL_SIZE
|
1995-09-06 21:35:20 +00:00
|
|
|
|
#define REGISTER_VIRTUAL_SIZE(N) \
|
|
|
|
|
((N) < 32 ? 8 : (N) < 64 ? 4 : 8)
|
1993-07-08 03:08:49 +00:00
|
|
|
|
|
|
|
|
|
/* Largest value REGISTER_RAW_SIZE can have. */
|
|
|
|
|
/* tm-sparc.h defines this as 8, but play it safe. */
|
|
|
|
|
|
|
|
|
|
#undef MAX_REGISTER_RAW_SIZE
|
1995-03-02 00:11:22 +00:00
|
|
|
|
#define MAX_REGISTER_RAW_SIZE 8
|
1993-07-08 03:08:49 +00:00
|
|
|
|
|
|
|
|
|
/* Largest value REGISTER_VIRTUAL_SIZE can have. */
|
|
|
|
|
/* tm-sparc.h defines this as 8, but play it safe. */
|
|
|
|
|
|
|
|
|
|
#undef MAX_REGISTER_VIRTUAL_SIZE
|
1995-03-02 00:11:22 +00:00
|
|
|
|
#define MAX_REGISTER_VIRTUAL_SIZE 8
|
1993-07-08 03:08:49 +00:00
|
|
|
|
|
|
|
|
|
/* Return the GDB type object for the "standard" data type
|
|
|
|
|
of data in register N. */
|
|
|
|
|
|
|
|
|
|
#undef REGISTER_VIRTUAL_TYPE
|
|
|
|
|
#define REGISTER_VIRTUAL_TYPE(N) \
|
1995-09-06 21:35:20 +00:00
|
|
|
|
((N) < 32 ? builtin_type_long_long \
|
|
|
|
|
: (N) < 64 ? builtin_type_float \
|
|
|
|
|
: (N) < 80 ? builtin_type_double \
|
|
|
|
|
: builtin_type_long_long)
|
1993-07-08 03:08:49 +00:00
|
|
|
|
|
1994-03-20 23:36:50 +00:00
|
|
|
|
/* We use to support both 32 bit and 64 bit pointers.
|
|
|
|
|
We can't anymore because TARGET_PTR_BIT must now be a constant. */
|
1993-07-08 03:08:49 +00:00
|
|
|
|
#undef TARGET_PTR_BIT
|
1994-03-20 23:36:50 +00:00
|
|
|
|
#define TARGET_PTR_BIT 64
|
1993-07-08 03:08:49 +00:00
|
|
|
|
|
1995-03-04 01:35:34 +00:00
|
|
|
|
/* Does the specified function use the "struct returning" convention
|
|
|
|
|
or the "value returning" convention? The "value returning" convention
|
|
|
|
|
almost invariably returns the entire value in registers. The
|
|
|
|
|
"struct returning" convention often returns the entire value in
|
|
|
|
|
memory, and passes a pointer (out of or into the function) saying
|
|
|
|
|
where the value (is or should go).
|
|
|
|
|
|
|
|
|
|
Since this sometimes depends on whether it was compiled with GCC,
|
|
|
|
|
this is also an argument. This is used in call_function to build a
|
|
|
|
|
stack, and in value_being_returned to print return values.
|
|
|
|
|
|
|
|
|
|
On sparc64, all structs are returned via a pointer. */
|
|
|
|
|
|
|
|
|
|
#undef USE_STRUCT_CONVENTION
|
|
|
|
|
#define USE_STRUCT_CONVENTION(gcc_p, type) 1
|
|
|
|
|
|
1993-07-08 03:08:49 +00:00
|
|
|
|
/* Store the address of the place in which to copy the structure the
|
|
|
|
|
subroutine will return. This is called from call_function. */
|
|
|
|
|
/* FIXME: V9 uses %o0 for this. */
|
|
|
|
|
|
|
|
|
|
#undef STORE_STRUCT_RETURN
|
|
|
|
|
#define STORE_STRUCT_RETURN(ADDR, SP) \
|
|
|
|
|
{ target_write_memory ((SP)+(16*8), (char *)&(ADDR), 8); }
|
|
|
|
|
|
|
|
|
|
/* Return number of bytes at start of arglist that are not really args. */
|
|
|
|
|
|
|
|
|
|
#undef FRAME_ARGS_SKIP
|
|
|
|
|
#define FRAME_ARGS_SKIP 136
|
|
|
|
|
|
|
|
|
|
/* We need two arguments (in general) to the "info frame" command.
|
|
|
|
|
Note that the definition of this macro implies that there exists a
|
|
|
|
|
function "setup_arbitrary_frame" in sparc-tdep.c */
|
|
|
|
|
|
|
|
|
|
#undef SETUP_ARBITRARY_FRAME /*FIXME*/
|
|
|
|
|
#undef FRAME_SPECIFICATION_DYADIC
|
|
|
|
|
#define FRAME_SPECIFICATION_DYADIC
|
|
|
|
|
|
1993-07-30 18:40:05 +00:00
|
|
|
|
/* To print every pair of float registers as a double, we use this hook.
|
|
|
|
|
We also print the condition code registers in a readable format
|
|
|
|
|
(FIXME: can expand this to all control regs). */
|
1993-07-08 03:08:49 +00:00
|
|
|
|
|
|
|
|
|
#undef PRINT_REGISTER_HOOK
|
|
|
|
|
#define PRINT_REGISTER_HOOK(regno) \
|
1993-07-30 18:40:05 +00:00
|
|
|
|
sparc_print_register_hook (regno)
|
|
|
|
|
|
|
|
|
|
/* Offsets into jmp_buf.
|
|
|
|
|
FIXME: This was borrowed from the v8 stuff and will probably have to change
|
|
|
|
|
for v9. */
|
|
|
|
|
|
|
|
|
|
#define JB_ELEMENT_SIZE 8 /* Size of each element in jmp_buf */
|
|
|
|
|
|
|
|
|
|
#define JB_ONSSTACK 0
|
|
|
|
|
#define JB_SIGMASK 1
|
|
|
|
|
#define JB_SP 2
|
|
|
|
|
#define JB_PC 3
|
|
|
|
|
#define JB_NPC 4
|
|
|
|
|
#define JB_PSR 5
|
|
|
|
|
#define JB_G1 6
|
|
|
|
|
#define JB_O0 7
|
|
|
|
|
#define JB_WBCNT 8
|
|
|
|
|
|
|
|
|
|
/* Figure out where the longjmp will land. We expect that we have just entered
|
|
|
|
|
longjmp and haven't yet setup the stack frame, so the args are still in the
|
|
|
|
|
output regs. %o0 (O0_REGNUM) points at the jmp_buf structure from which we
|
|
|
|
|
extract the pc (JB_PC) that we will land at. The pc is copied into ADDR.
|
|
|
|
|
This routine returns true on success */
|
|
|
|
|
|
|
|
|
|
extern int
|
|
|
|
|
get_longjmp_target PARAMS ((CORE_ADDR *));
|
|
|
|
|
|
|
|
|
|
#define GET_LONGJMP_TARGET(ADDR) get_longjmp_target(ADDR)
|