harness-drone/vendor/github.com/lucas-clemente/quic-go/stream_framer.go
2017-07-24 19:15:25 -04:00

189 lines
5.6 KiB
Go

package quic
import (
"github.com/lucas-clemente/quic-go/flowcontrol"
"github.com/lucas-clemente/quic-go/frames"
"github.com/lucas-clemente/quic-go/internal/utils"
"github.com/lucas-clemente/quic-go/protocol"
)
type streamFramer struct {
streamsMap *streamsMap
flowControlManager flowcontrol.FlowControlManager
retransmissionQueue []*frames.StreamFrame
blockedFrameQueue []*frames.BlockedFrame
}
func newStreamFramer(streamsMap *streamsMap, flowControlManager flowcontrol.FlowControlManager) *streamFramer {
return &streamFramer{
streamsMap: streamsMap,
flowControlManager: flowControlManager,
}
}
func (f *streamFramer) AddFrameForRetransmission(frame *frames.StreamFrame) {
f.retransmissionQueue = append(f.retransmissionQueue, frame)
}
func (f *streamFramer) PopStreamFrames(maxLen protocol.ByteCount) []*frames.StreamFrame {
fs, currentLen := f.maybePopFramesForRetransmission(maxLen)
return append(fs, f.maybePopNormalFrames(maxLen-currentLen)...)
}
func (f *streamFramer) PopBlockedFrame() *frames.BlockedFrame {
if len(f.blockedFrameQueue) == 0 {
return nil
}
frame := f.blockedFrameQueue[0]
f.blockedFrameQueue = f.blockedFrameQueue[1:]
return frame
}
func (f *streamFramer) HasFramesForRetransmission() bool {
return len(f.retransmissionQueue) > 0
}
func (f *streamFramer) HasCryptoStreamFrame() bool {
// TODO(#657): Flow control
cs, _ := f.streamsMap.GetOrOpenStream(1)
return cs.lenOfDataForWriting() > 0
}
// TODO(lclemente): This is somewhat duplicate with the normal path for generating frames.
// TODO(#657): Flow control
func (f *streamFramer) PopCryptoStreamFrame(maxLen protocol.ByteCount) *frames.StreamFrame {
if !f.HasCryptoStreamFrame() {
return nil
}
cs, _ := f.streamsMap.GetOrOpenStream(1)
frame := &frames.StreamFrame{
StreamID: 1,
Offset: cs.writeOffset,
}
frameHeaderBytes, _ := frame.MinLength(protocol.VersionWhatever) // can never error
frame.Data = cs.getDataForWriting(maxLen - frameHeaderBytes)
return frame
}
func (f *streamFramer) maybePopFramesForRetransmission(maxLen protocol.ByteCount) (res []*frames.StreamFrame, currentLen protocol.ByteCount) {
for len(f.retransmissionQueue) > 0 {
frame := f.retransmissionQueue[0]
frame.DataLenPresent = true
frameHeaderLen, _ := frame.MinLength(protocol.VersionWhatever) // can never error
if currentLen+frameHeaderLen >= maxLen {
break
}
currentLen += frameHeaderLen
splitFrame := maybeSplitOffFrame(frame, maxLen-currentLen)
if splitFrame != nil { // StreamFrame was split
res = append(res, splitFrame)
currentLen += splitFrame.DataLen()
break
}
f.retransmissionQueue = f.retransmissionQueue[1:]
res = append(res, frame)
currentLen += frame.DataLen()
}
return
}
func (f *streamFramer) maybePopNormalFrames(maxBytes protocol.ByteCount) (res []*frames.StreamFrame) {
frame := &frames.StreamFrame{DataLenPresent: true}
var currentLen protocol.ByteCount
fn := func(s *stream) (bool, error) {
if s == nil || s.streamID == 1 /* crypto stream is handled separately */ {
return true, nil
}
frame.StreamID = s.streamID
// not perfect, but thread-safe since writeOffset is only written when getting data
frame.Offset = s.writeOffset
frameHeaderBytes, _ := frame.MinLength(protocol.VersionWhatever) // can never error
if currentLen+frameHeaderBytes > maxBytes {
return false, nil // theoretically, we could find another stream that fits, but this is quite unlikely, so we stop here
}
maxLen := maxBytes - currentLen - frameHeaderBytes
var sendWindowSize protocol.ByteCount
lenStreamData := s.lenOfDataForWriting()
if lenStreamData != 0 {
sendWindowSize, _ = f.flowControlManager.SendWindowSize(s.streamID)
maxLen = utils.MinByteCount(maxLen, sendWindowSize)
}
if maxLen == 0 {
return true, nil
}
var data []byte
if lenStreamData != 0 {
// Only getDataForWriting() if we didn't have data earlier, so that we
// don't send without FC approval (if a Write() raced).
data = s.getDataForWriting(maxLen)
}
// This is unlikely, but check it nonetheless, the scheduler might have jumped in. Seems to happen in ~20% of cases in the tests.
shouldSendFin := s.shouldSendFin()
if data == nil && !shouldSendFin {
return true, nil
}
if shouldSendFin {
frame.FinBit = true
s.sentFin()
}
frame.Data = data
f.flowControlManager.AddBytesSent(s.streamID, protocol.ByteCount(len(data)))
// Finally, check if we are now FC blocked and should queue a BLOCKED frame
if f.flowControlManager.RemainingConnectionWindowSize() == 0 {
// We are now connection-level FC blocked
f.blockedFrameQueue = append(f.blockedFrameQueue, &frames.BlockedFrame{StreamID: 0})
} else if !frame.FinBit && sendWindowSize-frame.DataLen() == 0 {
// We are now stream-level FC blocked
f.blockedFrameQueue = append(f.blockedFrameQueue, &frames.BlockedFrame{StreamID: s.StreamID()})
}
res = append(res, frame)
currentLen += frameHeaderBytes + frame.DataLen()
if currentLen == maxBytes {
return false, nil
}
frame = &frames.StreamFrame{DataLenPresent: true}
return true, nil
}
f.streamsMap.RoundRobinIterate(fn)
return
}
// maybeSplitOffFrame removes the first n bytes and returns them as a separate frame. If n >= len(frame), nil is returned and nothing is modified.
func maybeSplitOffFrame(frame *frames.StreamFrame, n protocol.ByteCount) *frames.StreamFrame {
if n >= frame.DataLen() {
return nil
}
defer func() {
frame.Data = frame.Data[n:]
frame.Offset += n
}()
return &frames.StreamFrame{
FinBit: false,
StreamID: frame.StreamID,
Offset: frame.Offset,
Data: frame.Data[:n],
DataLenPresent: frame.DataLenPresent,
}
}