404 lines
12 KiB
Go
404 lines
12 KiB
Go
|
package ackhandler
|
||
|
|
||
|
import (
|
||
|
"errors"
|
||
|
"fmt"
|
||
|
"time"
|
||
|
|
||
|
"github.com/lucas-clemente/quic-go/congestion"
|
||
|
"github.com/lucas-clemente/quic-go/frames"
|
||
|
"github.com/lucas-clemente/quic-go/internal/utils"
|
||
|
"github.com/lucas-clemente/quic-go/protocol"
|
||
|
"github.com/lucas-clemente/quic-go/qerr"
|
||
|
)
|
||
|
|
||
|
const (
|
||
|
// Maximum reordering in time space before time based loss detection considers a packet lost.
|
||
|
// In fraction of an RTT.
|
||
|
timeReorderingFraction = 1.0 / 8
|
||
|
// defaultRTOTimeout is the RTO time on new connections
|
||
|
defaultRTOTimeout = 500 * time.Millisecond
|
||
|
// Minimum time in the future an RTO alarm may be set for.
|
||
|
minRTOTimeout = 200 * time.Millisecond
|
||
|
// maxRTOTimeout is the maximum RTO time
|
||
|
maxRTOTimeout = 60 * time.Second
|
||
|
)
|
||
|
|
||
|
var (
|
||
|
// ErrDuplicateOrOutOfOrderAck occurs when a duplicate or an out-of-order ACK is received
|
||
|
ErrDuplicateOrOutOfOrderAck = errors.New("SentPacketHandler: Duplicate or out-of-order ACK")
|
||
|
// ErrTooManyTrackedSentPackets occurs when the sentPacketHandler has to keep track of too many packets
|
||
|
ErrTooManyTrackedSentPackets = errors.New("Too many outstanding non-acked and non-retransmitted packets")
|
||
|
// ErrAckForSkippedPacket occurs when the client sent an ACK for a packet number that we intentionally skipped
|
||
|
ErrAckForSkippedPacket = qerr.Error(qerr.InvalidAckData, "Received an ACK for a skipped packet number")
|
||
|
errAckForUnsentPacket = qerr.Error(qerr.InvalidAckData, "Received ACK for an unsent package")
|
||
|
)
|
||
|
|
||
|
var errPacketNumberNotIncreasing = errors.New("Already sent a packet with a higher packet number")
|
||
|
|
||
|
type sentPacketHandler struct {
|
||
|
lastSentPacketNumber protocol.PacketNumber
|
||
|
skippedPackets []protocol.PacketNumber
|
||
|
|
||
|
LargestAcked protocol.PacketNumber
|
||
|
|
||
|
largestReceivedPacketWithAck protocol.PacketNumber
|
||
|
|
||
|
packetHistory *PacketList
|
||
|
stopWaitingManager stopWaitingManager
|
||
|
|
||
|
retransmissionQueue []*Packet
|
||
|
|
||
|
bytesInFlight protocol.ByteCount
|
||
|
|
||
|
congestion congestion.SendAlgorithm
|
||
|
rttStats *congestion.RTTStats
|
||
|
|
||
|
// The number of times an RTO has been sent without receiving an ack.
|
||
|
rtoCount uint32
|
||
|
|
||
|
// The time at which the next packet will be considered lost based on early transmit or exceeding the reordering window in time.
|
||
|
lossTime time.Time
|
||
|
|
||
|
// The alarm timeout
|
||
|
alarm time.Time
|
||
|
}
|
||
|
|
||
|
// NewSentPacketHandler creates a new sentPacketHandler
|
||
|
func NewSentPacketHandler(rttStats *congestion.RTTStats) SentPacketHandler {
|
||
|
congestion := congestion.NewCubicSender(
|
||
|
congestion.DefaultClock{},
|
||
|
rttStats,
|
||
|
false, /* don't use reno since chromium doesn't (why?) */
|
||
|
protocol.InitialCongestionWindow,
|
||
|
protocol.DefaultMaxCongestionWindow,
|
||
|
)
|
||
|
|
||
|
return &sentPacketHandler{
|
||
|
packetHistory: NewPacketList(),
|
||
|
stopWaitingManager: stopWaitingManager{},
|
||
|
rttStats: rttStats,
|
||
|
congestion: congestion,
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func (h *sentPacketHandler) largestInOrderAcked() protocol.PacketNumber {
|
||
|
if f := h.packetHistory.Front(); f != nil {
|
||
|
return f.Value.PacketNumber - 1
|
||
|
}
|
||
|
return h.LargestAcked
|
||
|
}
|
||
|
|
||
|
func (h *sentPacketHandler) SentPacket(packet *Packet) error {
|
||
|
if packet.PacketNumber <= h.lastSentPacketNumber {
|
||
|
return errPacketNumberNotIncreasing
|
||
|
}
|
||
|
|
||
|
if protocol.PacketNumber(len(h.retransmissionQueue)+h.packetHistory.Len()+1) > protocol.MaxTrackedSentPackets {
|
||
|
return ErrTooManyTrackedSentPackets
|
||
|
}
|
||
|
|
||
|
for p := h.lastSentPacketNumber + 1; p < packet.PacketNumber; p++ {
|
||
|
h.skippedPackets = append(h.skippedPackets, p)
|
||
|
|
||
|
if len(h.skippedPackets) > protocol.MaxTrackedSkippedPackets {
|
||
|
h.skippedPackets = h.skippedPackets[1:]
|
||
|
}
|
||
|
}
|
||
|
|
||
|
h.lastSentPacketNumber = packet.PacketNumber
|
||
|
now := time.Now()
|
||
|
|
||
|
packet.Frames = stripNonRetransmittableFrames(packet.Frames)
|
||
|
isRetransmittable := len(packet.Frames) != 0
|
||
|
|
||
|
if isRetransmittable {
|
||
|
packet.SendTime = now
|
||
|
h.bytesInFlight += packet.Length
|
||
|
h.packetHistory.PushBack(*packet)
|
||
|
}
|
||
|
|
||
|
h.congestion.OnPacketSent(
|
||
|
now,
|
||
|
h.bytesInFlight,
|
||
|
packet.PacketNumber,
|
||
|
packet.Length,
|
||
|
isRetransmittable,
|
||
|
)
|
||
|
|
||
|
h.updateLossDetectionAlarm()
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
func (h *sentPacketHandler) ReceivedAck(ackFrame *frames.AckFrame, withPacketNumber protocol.PacketNumber, rcvTime time.Time) error {
|
||
|
if ackFrame.LargestAcked > h.lastSentPacketNumber {
|
||
|
return errAckForUnsentPacket
|
||
|
}
|
||
|
|
||
|
// duplicate or out-of-order ACK
|
||
|
if withPacketNumber <= h.largestReceivedPacketWithAck {
|
||
|
return ErrDuplicateOrOutOfOrderAck
|
||
|
}
|
||
|
h.largestReceivedPacketWithAck = withPacketNumber
|
||
|
|
||
|
// ignore repeated ACK (ACKs that don't have a higher LargestAcked than the last ACK)
|
||
|
if ackFrame.LargestAcked <= h.largestInOrderAcked() {
|
||
|
return nil
|
||
|
}
|
||
|
h.LargestAcked = ackFrame.LargestAcked
|
||
|
|
||
|
if h.skippedPacketsAcked(ackFrame) {
|
||
|
return ErrAckForSkippedPacket
|
||
|
}
|
||
|
|
||
|
rttUpdated := h.maybeUpdateRTT(ackFrame.LargestAcked, ackFrame.DelayTime, rcvTime)
|
||
|
|
||
|
if rttUpdated {
|
||
|
h.congestion.MaybeExitSlowStart()
|
||
|
}
|
||
|
|
||
|
ackedPackets, err := h.determineNewlyAckedPackets(ackFrame)
|
||
|
if err != nil {
|
||
|
return err
|
||
|
}
|
||
|
|
||
|
if len(ackedPackets) > 0 {
|
||
|
for _, p := range ackedPackets {
|
||
|
h.onPacketAcked(p)
|
||
|
h.congestion.OnPacketAcked(p.Value.PacketNumber, p.Value.Length, h.bytesInFlight)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
h.detectLostPackets()
|
||
|
h.updateLossDetectionAlarm()
|
||
|
|
||
|
h.garbageCollectSkippedPackets()
|
||
|
h.stopWaitingManager.ReceivedAck(ackFrame)
|
||
|
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
func (h *sentPacketHandler) determineNewlyAckedPackets(ackFrame *frames.AckFrame) ([]*PacketElement, error) {
|
||
|
var ackedPackets []*PacketElement
|
||
|
ackRangeIndex := 0
|
||
|
for el := h.packetHistory.Front(); el != nil; el = el.Next() {
|
||
|
packet := el.Value
|
||
|
packetNumber := packet.PacketNumber
|
||
|
|
||
|
// Ignore packets below the LowestAcked
|
||
|
if packetNumber < ackFrame.LowestAcked {
|
||
|
continue
|
||
|
}
|
||
|
// Break after LargestAcked is reached
|
||
|
if packetNumber > ackFrame.LargestAcked {
|
||
|
break
|
||
|
}
|
||
|
|
||
|
if ackFrame.HasMissingRanges() {
|
||
|
ackRange := ackFrame.AckRanges[len(ackFrame.AckRanges)-1-ackRangeIndex]
|
||
|
|
||
|
for packetNumber > ackRange.LastPacketNumber && ackRangeIndex < len(ackFrame.AckRanges)-1 {
|
||
|
ackRangeIndex++
|
||
|
ackRange = ackFrame.AckRanges[len(ackFrame.AckRanges)-1-ackRangeIndex]
|
||
|
}
|
||
|
|
||
|
if packetNumber >= ackRange.FirstPacketNumber { // packet i contained in ACK range
|
||
|
if packetNumber > ackRange.LastPacketNumber {
|
||
|
return nil, fmt.Errorf("BUG: ackhandler would have acked wrong packet 0x%x, while evaluating range 0x%x -> 0x%x", packetNumber, ackRange.FirstPacketNumber, ackRange.LastPacketNumber)
|
||
|
}
|
||
|
ackedPackets = append(ackedPackets, el)
|
||
|
}
|
||
|
} else {
|
||
|
ackedPackets = append(ackedPackets, el)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return ackedPackets, nil
|
||
|
}
|
||
|
|
||
|
func (h *sentPacketHandler) maybeUpdateRTT(largestAcked protocol.PacketNumber, ackDelay time.Duration, rcvTime time.Time) bool {
|
||
|
for el := h.packetHistory.Front(); el != nil; el = el.Next() {
|
||
|
packet := el.Value
|
||
|
if packet.PacketNumber == largestAcked {
|
||
|
h.rttStats.UpdateRTT(rcvTime.Sub(packet.SendTime), ackDelay, time.Now())
|
||
|
return true
|
||
|
}
|
||
|
// Packets are sorted by number, so we can stop searching
|
||
|
if packet.PacketNumber > largestAcked {
|
||
|
break
|
||
|
}
|
||
|
}
|
||
|
return false
|
||
|
}
|
||
|
|
||
|
func (h *sentPacketHandler) updateLossDetectionAlarm() {
|
||
|
// Cancel the alarm if no packets are outstanding
|
||
|
if h.packetHistory.Len() == 0 {
|
||
|
h.alarm = time.Time{}
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// TODO(#496): Handle handshake packets separately
|
||
|
// TODO(#497): TLP
|
||
|
if !h.lossTime.IsZero() {
|
||
|
// Early retransmit timer or time loss detection.
|
||
|
h.alarm = h.lossTime
|
||
|
} else {
|
||
|
// RTO
|
||
|
h.alarm = time.Now().Add(h.computeRTOTimeout())
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func (h *sentPacketHandler) detectLostPackets() {
|
||
|
h.lossTime = time.Time{}
|
||
|
now := time.Now()
|
||
|
|
||
|
maxRTT := float64(utils.MaxDuration(h.rttStats.LatestRTT(), h.rttStats.SmoothedRTT()))
|
||
|
delayUntilLost := time.Duration((1.0 + timeReorderingFraction) * maxRTT)
|
||
|
|
||
|
var lostPackets []*PacketElement
|
||
|
for el := h.packetHistory.Front(); el != nil; el = el.Next() {
|
||
|
packet := el.Value
|
||
|
|
||
|
if packet.PacketNumber > h.LargestAcked {
|
||
|
break
|
||
|
}
|
||
|
|
||
|
timeSinceSent := now.Sub(packet.SendTime)
|
||
|
if timeSinceSent > delayUntilLost {
|
||
|
lostPackets = append(lostPackets, el)
|
||
|
} else if h.lossTime.IsZero() {
|
||
|
// Note: This conditional is only entered once per call
|
||
|
h.lossTime = now.Add(delayUntilLost - timeSinceSent)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if len(lostPackets) > 0 {
|
||
|
for _, p := range lostPackets {
|
||
|
h.queuePacketForRetransmission(p)
|
||
|
h.congestion.OnPacketLost(p.Value.PacketNumber, p.Value.Length, h.bytesInFlight)
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func (h *sentPacketHandler) OnAlarm() {
|
||
|
// TODO(#496): Handle handshake packets separately
|
||
|
// TODO(#497): TLP
|
||
|
if !h.lossTime.IsZero() {
|
||
|
// Early retransmit or time loss detection
|
||
|
h.detectLostPackets()
|
||
|
} else {
|
||
|
// RTO
|
||
|
h.retransmitOldestTwoPackets()
|
||
|
h.rtoCount++
|
||
|
}
|
||
|
|
||
|
h.updateLossDetectionAlarm()
|
||
|
}
|
||
|
|
||
|
func (h *sentPacketHandler) GetAlarmTimeout() time.Time {
|
||
|
return h.alarm
|
||
|
}
|
||
|
|
||
|
func (h *sentPacketHandler) onPacketAcked(packetElement *PacketElement) {
|
||
|
h.bytesInFlight -= packetElement.Value.Length
|
||
|
h.rtoCount = 0
|
||
|
// TODO(#497): h.tlpCount = 0
|
||
|
h.packetHistory.Remove(packetElement)
|
||
|
}
|
||
|
|
||
|
func (h *sentPacketHandler) DequeuePacketForRetransmission() *Packet {
|
||
|
if len(h.retransmissionQueue) == 0 {
|
||
|
return nil
|
||
|
}
|
||
|
packet := h.retransmissionQueue[0]
|
||
|
// Shift the slice and don't retain anything that isn't needed.
|
||
|
copy(h.retransmissionQueue, h.retransmissionQueue[1:])
|
||
|
h.retransmissionQueue[len(h.retransmissionQueue)-1] = nil
|
||
|
h.retransmissionQueue = h.retransmissionQueue[:len(h.retransmissionQueue)-1]
|
||
|
return packet
|
||
|
}
|
||
|
|
||
|
func (h *sentPacketHandler) GetLeastUnacked() protocol.PacketNumber {
|
||
|
return h.largestInOrderAcked() + 1
|
||
|
}
|
||
|
|
||
|
func (h *sentPacketHandler) GetStopWaitingFrame(force bool) *frames.StopWaitingFrame {
|
||
|
return h.stopWaitingManager.GetStopWaitingFrame(force)
|
||
|
}
|
||
|
|
||
|
func (h *sentPacketHandler) SendingAllowed() bool {
|
||
|
congestionLimited := h.bytesInFlight > h.congestion.GetCongestionWindow()
|
||
|
maxTrackedLimited := protocol.PacketNumber(len(h.retransmissionQueue)+h.packetHistory.Len()) >= protocol.MaxTrackedSentPackets
|
||
|
if congestionLimited {
|
||
|
utils.Debugf("Congestion limited: bytes in flight %d, window %d",
|
||
|
h.bytesInFlight,
|
||
|
h.congestion.GetCongestionWindow())
|
||
|
}
|
||
|
// Workaround for #555:
|
||
|
// Always allow sending of retransmissions. This should probably be limited
|
||
|
// to RTOs, but we currently don't have a nice way of distinguishing them.
|
||
|
haveRetransmissions := len(h.retransmissionQueue) > 0
|
||
|
return !maxTrackedLimited && (!congestionLimited || haveRetransmissions)
|
||
|
}
|
||
|
|
||
|
func (h *sentPacketHandler) retransmitOldestTwoPackets() {
|
||
|
if p := h.packetHistory.Front(); p != nil {
|
||
|
h.queueRTO(p)
|
||
|
}
|
||
|
if p := h.packetHistory.Front(); p != nil {
|
||
|
h.queueRTO(p)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func (h *sentPacketHandler) queueRTO(el *PacketElement) {
|
||
|
packet := &el.Value
|
||
|
utils.Debugf(
|
||
|
"\tQueueing packet 0x%x for retransmission (RTO), %d outstanding",
|
||
|
packet.PacketNumber,
|
||
|
h.packetHistory.Len(),
|
||
|
)
|
||
|
h.queuePacketForRetransmission(el)
|
||
|
h.congestion.OnPacketLost(packet.PacketNumber, packet.Length, h.bytesInFlight)
|
||
|
h.congestion.OnRetransmissionTimeout(true)
|
||
|
}
|
||
|
|
||
|
func (h *sentPacketHandler) queuePacketForRetransmission(packetElement *PacketElement) {
|
||
|
packet := &packetElement.Value
|
||
|
h.bytesInFlight -= packet.Length
|
||
|
h.retransmissionQueue = append(h.retransmissionQueue, packet)
|
||
|
h.packetHistory.Remove(packetElement)
|
||
|
h.stopWaitingManager.QueuedRetransmissionForPacketNumber(packet.PacketNumber)
|
||
|
}
|
||
|
|
||
|
func (h *sentPacketHandler) computeRTOTimeout() time.Duration {
|
||
|
rto := h.congestion.RetransmissionDelay()
|
||
|
if rto == 0 {
|
||
|
rto = defaultRTOTimeout
|
||
|
}
|
||
|
rto = utils.MaxDuration(rto, minRTOTimeout)
|
||
|
// Exponential backoff
|
||
|
rto = rto << h.rtoCount
|
||
|
return utils.MinDuration(rto, maxRTOTimeout)
|
||
|
}
|
||
|
|
||
|
func (h *sentPacketHandler) skippedPacketsAcked(ackFrame *frames.AckFrame) bool {
|
||
|
for _, p := range h.skippedPackets {
|
||
|
if ackFrame.AcksPacket(p) {
|
||
|
return true
|
||
|
}
|
||
|
}
|
||
|
return false
|
||
|
}
|
||
|
|
||
|
func (h *sentPacketHandler) garbageCollectSkippedPackets() {
|
||
|
lioa := h.largestInOrderAcked()
|
||
|
deleteIndex := 0
|
||
|
for i, p := range h.skippedPackets {
|
||
|
if p <= lioa {
|
||
|
deleteIndex = i + 1
|
||
|
}
|
||
|
}
|
||
|
h.skippedPackets = h.skippedPackets[deleteIndex:]
|
||
|
}
|